Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 8;64(Pt 3):o569. doi: 10.1107/S1600536808001773

1-Benzyl-1,4-diazepan-5-one

Fei Sha a, Hao Xu a, Shan Liu a, Peng Wang b, Jin-tang Wang a,*
PMCID: PMC2960785  PMID: 21201912

Abstract

The title compound, C12H16N2O, is a diazepane inter­mediate that can be used as an inhibitor of human nitric oxide synthesis. In the mol­ecule, the seven-membered ring has a chair-like conformation and the two rings are approximately perpendicular to one another, with a C—N—C—C torsion angle of 77.8 (4)°. Inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into dimers around a centre of symmetry, with C—H⋯O inter­actions linking the dimers into infinite sheets.

Related literature

For related literature, see: Gopalakrishnan et al. (2007); Wlodarczyk et al. (2006).graphic file with name e-64-0o569-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O

  • M r = 204.27

  • Monoclinic, Inline graphic

  • a = 12.602 (3) Å

  • b = 7.4920 (15) Å

  • c = 12.824 (3) Å

  • β = 111.00 (3)°

  • V = 1130.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.985, T max = 0.992

  • 2308 measured reflections

  • 2205 independent reflections

  • 1162 reflections with I > 2σ(I)

  • R int = 0.053

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.088

  • wR(F 2) = 0.189

  • S = 0.99

  • 2205 reflections

  • 130 parameters

  • 46 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001773/fl2179sup1.cif

e-64-0o569-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001773/fl2179Isup2.hkl

e-64-0o569-Isup2.hkl (108.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Oi 0.86 2.00 2.821 (5) 160
C4—H4B⋯Oii 0.97 2.51 3.377 (5) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound is a 1-substituted 1,4-diazepan-5-one; an important class of heterocyclic compounds that have widespread applications from pharmaceuticals (Wlodarczyk et al., 2006) to biology (Gopalakrishnan et al., 2007). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule (Fig. 1) the 7-membered ring has a chair-like conformation with C1,C2,C3 and C4 forming the planar seat of the chair and N2 out of the plane on one side and N1—C5 out of the plane on the other side. The two rings are approximately perpendicular to one another with a C3—N2—C6—C7 torsion angle of 77.8 (4)°. Intermolecular N—H···O hydrogen bonds link the molecules into dimers around a center of symmetry with C—H···O interactions linking the dimers into infinite sheets (Fig. 2).

Experimental

1-Benzyl-piperidin-4-one (18.9 g,0.1 mol) was added into a stirred mixture of sulfuric acid (40 ml) and dichloromethane (80 ml) at 273 K. Then, at 273 K, sodium azide (32.5 g,0.5 mol) was cautiously added over a period of 3 h and the resulting mixture was stirred for 1 h with the temperature kept at approximately 278 K. Then ice (1 kg) was quickly added and the solution was alkalized with ammonium hydroxide (15%,200 mL) to pH=11. The organic layer was separated with the water fraction extracted with dichloromethane (3x100mL). The organic extracts were combined,dried over NaSO4, and concentrated in vacuo. The residue was recrystallized from EtOAc to give the title compound, (I) (yield: 13.0 g, 65%). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and 0.93 Å fro aromatic carbons and 0.97 Å for all others, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C12H16N2O F000 = 440
Mr = 204.27 Dx = 1.200 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 12.602 (3) Å θ = 9–12º
b = 7.4920 (15) Å µ = 0.08 mm1
c = 12.824 (3) Å T = 298 (2) K
β = 111.00 (3)º BLOCK, colourless
V = 1130.3 (4) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.053
Radiation source: fine-focus sealed tube θmax = 26.0º
Monochromator: graphite θmin = 1.7º
T = 298(2) K h = −15→14
ω/2θ scans k = 0→9
Absorption correction: ψ scan(North et al., 1968) l = 0→15
Tmin = 0.985, Tmax = 0.992 3 standard reflections
2308 measured reflections every 200 reflections
2205 independent reflections intensity decay: none
1162 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.088 H-atom parameters constrained
wR(F2) = 0.189   w = 1/[σ2(Fo2) + (0.04P)2 + 1.65P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2205 reflections Δρmax = 0.52 e Å3
130 parameters Δρmin = −0.18 e Å3
46 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.3935 (3) −0.4319 (6) 0.5667 (3) 0.0870 (12)
H1A 0.4312 −0.5275 0.5667 0.104*
O 0.5027 (3) −0.2681 (5) 0.4894 (3) 0.108
N2 0.2757 (3) −0.1384 (4) 0.6724 (2) 0.0542 (8)
C1 0.2993 (4) −0.4434 (5) 0.6094 (4) 0.0705 (12)
H1B 0.2940 −0.5657 0.6319 0.085*
H1C 0.2289 −0.4158 0.5487 0.085*
C2 0.3090 (4) −0.3232 (5) 0.7059 (4) 0.0697 (11)
H2A 0.2613 −0.3696 0.7446 0.084*
H2B 0.3869 −0.3245 0.7579 0.084*
C3 0.3581 (3) −0.0442 (5) 0.6349 (3) 0.0632 (10)
H3A 0.4334 −0.0571 0.6912 0.076*
H3B 0.3396 0.0820 0.6278 0.076*
C4 0.3596 (3) −0.1132 (6) 0.5236 (3) 0.0683 (11)
H4A 0.2817 −0.1299 0.4735 0.082*
H4B 0.3932 −0.0222 0.4913 0.082*
C5 0.4230 (3) −0.2848 (7) 0.5289 (4) 0.0765 (13)
C6 0.2595 (3) −0.0404 (6) 0.7642 (3) 0.0685 (12)
H6A 0.3332 −0.0018 0.8157 0.082*
H6B 0.2272 −0.1204 0.8043 0.082*
C7 0.1827 (3) 0.1221 (5) 0.7265 (3) 0.0531 (9)
C8 0.1029 (3) 0.1333 (5) 0.6142 (4) 0.0643 (11)
H8A 0.1017 0.0489 0.5606 0.077*
C9 0.0285 (4) 0.2739 (6) 0.5892 (4) 0.0779 (13)
H9A −0.0223 0.2845 0.5161 0.094*
C10 0.0241 (4) 0.3960 (7) 0.6626 (5) 0.0865 (15)
H10A −0.0288 0.4879 0.6406 0.104*
C11 0.0969 (5) 0.3858 (6) 0.7691 (5) 0.0869 (15)
H11A 0.0954 0.4710 0.8213 0.104*
C12 0.1748 (4) 0.2447 (6) 0.7999 (4) 0.0713 (12)
H12A 0.2230 0.2354 0.8741 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.065 (2) 0.109 (3) 0.076 (3) 0.031 (2) 0.0121 (19) −0.027 (2)
O 0.108 0.108 0.108 0.000 0.039 0.000
N2 0.0666 (19) 0.0520 (18) 0.0461 (17) 0.0091 (16) 0.0229 (15) −0.0087 (15)
C1 0.084 (3) 0.048 (2) 0.083 (3) 0.011 (2) 0.034 (2) −0.003 (2)
C2 0.085 (3) 0.050 (2) 0.073 (3) −0.004 (2) 0.027 (2) 0.011 (2)
C3 0.072 (3) 0.055 (2) 0.070 (3) −0.005 (2) 0.035 (2) 0.002 (2)
C4 0.054 (2) 0.089 (3) 0.065 (2) 0.012 (2) 0.0255 (19) 0.016 (2)
C5 0.051 (2) 0.100 (3) 0.084 (3) 0.017 (2) 0.030 (2) −0.033 (3)
C6 0.069 (3) 0.079 (3) 0.055 (2) 0.025 (2) 0.020 (2) 0.003 (2)
C7 0.060 (2) 0.048 (2) 0.058 (2) 0.0113 (18) 0.0293 (19) 0.0002 (18)
C8 0.052 (2) 0.058 (2) 0.080 (3) 0.003 (2) 0.020 (2) −0.009 (2)
C9 0.064 (3) 0.064 (3) 0.092 (3) 0.012 (2) 0.011 (2) 0.007 (3)
C10 0.066 (3) 0.074 (3) 0.131 (5) 0.018 (3) 0.050 (3) −0.009 (3)
C11 0.098 (4) 0.061 (3) 0.119 (4) 0.001 (3) 0.061 (4) −0.018 (3)
C12 0.078 (3) 0.064 (3) 0.084 (3) −0.011 (2) 0.043 (3) −0.003 (2)

Geometric parameters (Å, °)

N1—C5 1.311 (6) C4—H4A 0.9700
N1—C1 1.477 (5) C4—H4B 0.9700
N1—H1A 0.8600 C6—C7 1.523 (5)
O—C5 1.284 (5) C6—H6A 0.9700
N2—C6 1.462 (4) C6—H6B 0.9700
N2—C2 1.465 (5) C7—C12 1.345 (5)
N2—C3 1.471 (4) C7—C8 1.433 (5)
C1—C2 1.500 (5) C8—C9 1.370 (5)
C1—H1B 0.9700 C8—H8A 0.9300
C1—H1C 0.9700 C9—C10 1.328 (6)
C2—H2A 0.9700 C9—H9A 0.9300
C2—H2B 0.9700 C10—C11 1.347 (7)
C3—C4 1.525 (5) C10—H10A 0.9300
C3—H3A 0.9700 C11—C12 1.400 (6)
C3—H3B 0.9700 C11—H11A 0.9300
C4—C5 1.502 (6) C12—H12A 0.9300
C5—N1—C1 124.0 (4) H4A—C4—H4B 107.4
C5—N1—H1A 118.0 O—C5—N1 126.5 (4)
C1—N1—H1A 118.0 O—C5—C4 112.2 (5)
C6—N2—C2 110.3 (3) N1—C5—C4 121.3 (3)
C6—N2—C3 109.9 (3) N2—C6—C7 113.7 (3)
C2—N2—C3 112.8 (3) N2—C6—H6A 108.8
N1—C1—C2 115.6 (4) C7—C6—H6A 108.8
N1—C1—H1B 108.4 N2—C6—H6B 108.8
C2—C1—H1B 108.4 C7—C6—H6B 108.8
N1—C1—H1C 108.4 H6A—C6—H6B 107.7
C2—C1—H1C 108.4 C12—C7—C8 117.6 (4)
H1B—C1—H1C 107.4 C12—C7—C6 121.5 (4)
N2—C2—C1 113.3 (3) C8—C7—C6 120.2 (3)
N2—C2—H2A 108.9 C9—C8—C7 117.1 (4)
C1—C2—H2A 108.9 C9—C8—H8A 121.5
N2—C2—H2B 108.9 C7—C8—H8A 121.5
C1—C2—H2B 108.9 C10—C9—C8 124.2 (5)
H2A—C2—H2B 107.7 C10—C9—H9A 117.9
N2—C3—C4 113.0 (3) C8—C9—H9A 117.9
N2—C3—H3A 109.0 C9—C10—C11 119.6 (5)
C4—C3—H3A 109.0 C9—C10—H10A 120.2
N2—C3—H3B 109.0 C11—C10—H10A 120.2
C4—C3—H3B 109.0 C10—C11—C12 118.9 (5)
H3A—C3—H3B 107.8 C10—C11—H11A 120.6
C5—C4—C3 115.7 (3) C12—C11—H11A 120.6
C5—C4—H4A 108.4 C7—C12—C11 122.6 (4)
C3—C4—H4A 108.4 C7—C12—H12A 118.7
C5—C4—H4B 108.4 C11—C12—H12A 118.7
C3—C4—H4B 108.4
C5—N1—C1—C2 −58.5 (6) C3—N2—C6—C7 77.8 (4)
C6—N2—C2—C1 165.8 (3) N2—C6—C7—C12 −167.9 (4)
C3—N2—C2—C1 −70.9 (4) N2—C6—C7—C8 22.3 (5)
N1—C1—C2—N2 79.5 (5) C12—C7—C8—C9 3.2 (6)
C6—N2—C3—C4 −166.9 (3) C6—C7—C8—C9 173.4 (4)
C2—N2—C3—C4 69.6 (4) C7—C8—C9—C10 −1.8 (7)
N2—C3—C4—C5 −78.3 (4) C8—C9—C10—C11 0.5 (8)
C1—N1—C5—O −178.8 (4) C9—C10—C11—C12 −0.7 (7)
C1—N1—C5—C4 −1.4 (7) C8—C7—C12—C11 −3.6 (6)
C3—C4—C5—O −122.4 (4) C6—C7—C12—C11 −173.7 (4)
C3—C4—C5—N1 59.8 (6) C10—C11—C12—C7 2.4 (7)
C2—N2—C6—C7 −157.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Oi 0.86 2.00 2.821 (5) 160
C4—H4B···Oii 0.97 2.51 3.377 (5) 149

Symmetry codes: (i) −x+1, −y−1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2179).

References

  1. Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  2. Gopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., Govindaraju, R. & Jayasri, G. (2007). J. Enzyme Inhib. Med. Chem.22, 709–715. [DOI] [PubMed]
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wlodarczyk, N., Gilleron, P., Millet, R., Houssin, R., Goossens, J., Lemoine, A., Pommery, N., Wei, M. & Hénichart, J. (2006). Oncol. Res.16, 107–118. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808001773/fl2179sup1.cif

e-64-0o569-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808001773/fl2179Isup2.hkl

e-64-0o569-Isup2.hkl (108.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES