Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 13;64(Pt 3):m466–m467. doi: 10.1107/S1600536808003930

Guanidinium (aqua-2κO)(4-hydr­oxy-6-carboxy­pyridine-2-carboxyl­ato-2κ3 O 2,N,O 6)(μ-4-hydroxy­pyridine-2,6-dicarboxyl­ato-1:2κ4 O 2,N,O 6:O 2)(4-hydroxy­pyridine-2,6-dicarboxyl­ato-1κ3 O 2,N,O 6)dizincate(II) dihydrate

Hossein Aghabozorg a,*, Somayeh Saadaty b, Elham Motyeian c, Mohammad Ghadermazi d, Faranak Manteghi e
PMCID: PMC2960790  PMID: 21201857

Abstract

The title compound, (CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2O, has an anionic binuclear complex of ZnII balanced with a guanidinium cation. There are two uncoord­inated water mol­ecules in the structure. The asymmetric unit of the compound has two different coordination types (the coordination of Zn1 is distorted trigonal-bipyramidal, while that of Zn2 is distorted octahedral) of ZnII in the crystal structure that are bridged to each other via one hypydc2− group (hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid). A variety of inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving water mol­ecules, cations and anions, and also a weak π–π inter­action [3.798 (1) Å], are responsible for extending the structure into a three-dimensional network.

Related literature

For related literature, see: Moghimi, Aghabozorg, Sheshmani, et al. (2005); Moghimi, Aghabozorg, Soleimannejad et al. (2005); Aghabozorg et al. (2008); Ranjbar et al. (2002); Sharif et al. (2007).graphic file with name e-64-0m466-scheme1.jpg

Experimental

Crystal data

  • (CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2O

  • M r = 789.20

  • Triclinic, Inline graphic

  • a = 9.1077 (12) Å

  • b = 9.2900 (12) Å

  • c = 16.347 (3) Å

  • α = 96.018 (4)°

  • β = 99.229 (4)°

  • γ = 91.760 (7)°

  • V = 1356.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 100 (2) K

  • 0.21 × 0.15 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.695, T max = 0.807

  • 19615 measured reflections

  • 8987 independent reflections

  • 6765 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.089

  • S = 1.00

  • 8987 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003930/om2211sup1.cif

e-64-0m466-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003930/om2211Isup2.hkl

e-64-0m466-Isup2.hkl (439.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O13 1.9541 (14)
Zn1—O1W 1.9599 (14)
Zn1—N1 2.0157 (17)
Zn1—O1 2.0955 (14)
Zn1—O3 2.4440 (15)
Zn2—N2 1.9965 (17)
Zn2—N3 2.0143 (17)
Zn2—O11 2.0715 (14)
Zn2—O8 2.2311 (15)
Zn2—O6 2.2320 (15)
Zn2—O13 2.3857 (14)
O13—Zn1—O1 101.14 (6)
O1—Zn1—O3 151.36 (5)
N2—Zn2—N3 162.44 (7)
O11—Zn2—O6 90.99 (6)
O8—Zn2—O6 152.06 (5)
O11—Zn2—O13 151.16 (5)
O8—Zn2—O13 86.07 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O6i 0.88 2.17 2.894 (2) 139
N4—H4B⋯O14ii 0.88 1.95 2.810 (2) 164
N5—H5A⋯O1Wii 0.88 2.29 3.074 (2) 149
N5—H5B⋯O12iii 0.88 2.18 2.949 (2) 146
N6—H6A⋯O3 0.88 2.08 2.901 (2) 156
N6—H6B⋯O12iii 0.88 2.09 2.882 (2) 150
O4—H4C⋯O3W 0.84 1.75 2.586 (2) 170
O5—H5C⋯O9iv 0.84 1.78 2.596 (2) 163
O10—H10A⋯O2v 0.84 1.78 2.615 (2) 171
O15—H15⋯O1vi 0.84 1.87 2.637 (2) 152
O1W—H1⋯O2Wvii 0.85 1.79 2.642 (2) 175
O1W—H2⋯O7i 0.85 1.76 2.609 (2) 178
O2W—H3⋯O8 0.85 2.07 2.912 (2) 171
O2W—H4⋯O3W 0.85 2.02 2.827 (2) 158
O3W—H5⋯O11i 0.85 1.78 2.622 (2) 170
O3W—H6⋯O10iv 0.85 2.59 3.344 (2) 148
C4—H4D⋯O9iv 0.95 2.30 2.993 (2) 129
C9—H9A⋯O2v 0.95 2.37 3.046 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

Comment

After the synthesis of proton transfer ion pairs with the formulae of (GH)(hypydcH) (Moghimi, Aghabozorg, Soleimannejad et al., 2005) and (GH)(hypydcH).H2O (Moghimi, Aghabozorg, Sheshmani et al., 2005), the first metallic compound related to them formulated as (GH)2[Ni(hypydc)2] .2H2O was synthesized (Aghabozorg, Motyeian et al., 2008). Slightly different, the title compound is another metallic compound related to the mentioned ion pairs.

The molecular structure of the compound is shown in Fig. 1. A s it can be observed, the anionic complex involves two ZnII atoms with different coordination modes including penta and hexa-coordination. One ZnII is coordinated to two (hypydc)2- groups, one of which is bridged to the second ZnII which is also coordinated to an (hypydcH)- group and a water molecule. The coordination polyhedron around Zn1 is a distorted trigonal bipyramid, while that of Zn2 is a distorted octahedron (Fig. 2). It is notable that the –COOH of the (hypydcH)-group is coordinated to Zn1 via its carbonyl O3 atom, while the –COO- group is coordinated to Zn1 through its O1 atom, as usual. This is shown by essentially different C7–O3 (1.229 (2) Å) and C6–O1 (1.273 (2) Å) bond lengths. Moreover, (GH)+ as counter ion and two uncoordinated water molecules are incorporated in the structure. Investigating the angles of (GH)+ shows that the sum of all three angles around C22 (120.63 (19), 120.05 (19) and 119.30 (19)°) confirms the coplanarity of the three bonds. In addition, since the three bonds of (GH)+ are almost the same (N4–C22, 1.325 (3); N5–C22, 1.328 (3) and N6–C22, 1.327 (3) Å), it can be concluded that the positive charge is delocalized on the counter ion.

By comparison, the bond length of Zn1–O1 (2.0955 (14) Å) is obviously shorter than Zn1–O3 (2.4440 (15) Å). This is due to that O3 is of unprotonated –COOH group, but O1 is belonged to the deprotonated carboxylate group. Thus, Zn1–O3 is longer than the Zn1–O1 bond. This resembles to (pydaH)[Zn(pydc)(pydcH)]. 3H2O (pyda: pyridine-2,6-diamine, pydcH2: pyridine-2,6-dicarboxylic acid) complex in which the carbonyl oxygen atom of –COOH group forms a longer bond to metallic center (Ranjbar et al., 2002). Also, the length of Zn2–O13 is longer than Zn2–O11, i.e. the bridge O13 atom lies further to Zn2, this is similar to polymeric (GH)[Bi(pydc)(H2O)] complex in which the bridge oxygen atom forms a longer bond to BiIII atom (Sharif et al., 2007). Moreover, the lengths of Zn1–O13 (1.9541 (14) Å) and Zn2–O13 (2.3857 (14) Å) are significantly different. As the O13–Zn2–O8–C14 (-83.49 (14)°) and O13–Zn2–O6–C13 (86.01 (14)°) torsion angles and O6–Zn2–O11 (90.99 (6)°) and O8–Zn2–O13 (86.07 (5)°) bond angles show, the two (hypydc)2- rings coordinated to Zn2 are almost perpendicular.

The bond angles of Zn2 to four oxygen atoms of carboxylate groups show that they are oriented on a flattened tetrahedral arrangement around the metallic center (Table 1).

As shown in Fig. 3, there are plenty of hydrogen bonds of type O–H···O and N–H···O ranging from 2.586 (2) to 3.344 (2) Å, and C–H···O bonds with 2.993 (2) and 3.046 (3) Å lengths between the fragments (Table 2). Also, there is a weak π-π interaction with distance of 3.798 (1) Å between the aromatic rings (Fig. 4). The crystal packing of the compoud is shown in Fig. 5. A s illustrated in Fig. 6, there are a type of channels produced by aromatic rings of the structure with the distance of ~3.3 Å.

Experimental

An aqueous solution of 200 mg guanidine hydrochloride (2 mmol) with 80 mg sodium hydroxide (2 mmol) was prepared. After stirring the obtained suspension, an aqueous solution of 291 mg ZnSO4.7H2O (1 mmol) and 360 mg 4-hydroxypyridine-2,6-dicarboxylic acid (2 mmol) was added to it. The mixture with the volume of 50 ml was heated and boiled for 2 h. Colorless crystals were obtained by slow cooling during three days.

Refinement

The positions of hydrogen atoms on amino and hydroxo groups and water molecules were located from the difference Fourier syntheses and normalized to 0.88, 0.84 and 0.85%A distances, respectively. All hydrogen atom positions were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2(N) for amino, 1.2Ueq(O) for hydroxo groups, to 1.2Ueq(C) for all carbon atoms and to 1.5Ueq(O) for water molecules where Ueq(C) and Ueq(O) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Coordination polyhedron around two metallic centers in the asymmetric unit.

Fig. 3.

Fig. 3.

Hydrogen bondings in the title compound are shown with dashed lines. Symmetry codes to generate equivalent atoms are A: x, y - 1, z; B: -x + 1, -y, -z + 1; C: -x, -y + 1, -z + 1; D: -x, -y, -z; E: -x + 1, -y + 1, -z; F: -x + 1, -y + 1, -z + 1; G: x + 1, y, z.

Fig. 4.

Fig. 4.

The two C–H···O bond lengths with symmetry codes of (-x, -y, -z) and (-x + 1, -y + 1, -z), and π-π distances between N1/C1—C5 and N2/C8—C12 rings of the asymmetric unit.

Fig. 5.

Fig. 5.

The crystal packing of the compound as viewed down a. Hydrogen bonds are shown as dashed lines.

Fig. 6.

Fig. 6.

The packing of compound shows a type of channels between the layers of (hypydc)2- rings with the distance of ~3.3 Å.

Crystal data

(CH6N3)[Zn2(C7H3N1O5)2(C7H4N1O5)(H2O)]·2H2O Z = 2
Mr = 789.20 F000 = 800
Triclinic, P1 Dx = 1.933 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.1077 (12) Å Cell parameters from 540 reflections
b = 9.2900 (12) Å θ = 2.8–27.2º
c = 16.347 (3) Å µ = 1.87 mm1
α = 96.018 (4)º T = 100 (2) K
β = 99.229 (4)º Prism, colourless
γ = 91.760 (7)º 0.21 × 0.15 × 0.12 mm
V = 1356.1 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 8987 independent reflections
Radiation source: fine-focus sealed tube 6765 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 100(2) K θmax = 31.5º
ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2001) h = −13→13
Tmin = 0.695, Tmax = 0.807 k = −13→13
19615 measured reflections l = −23→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.089   w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
8987 reflections Δρmax = 0.59 e Å3
433 parameters Δρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.43557 (3) 0.16470 (2) 0.258415 (14) 0.01093 (6)
Zn2 0.18238 (3) 0.50031 (2) 0.310910 (14) 0.01149 (6)
N1 0.36197 (18) 0.12238 (18) 0.13492 (10) 0.0107 (3)
N2 0.18759 (19) 0.47854 (18) 0.18862 (10) 0.0110 (3)
N3 0.23352 (18) 0.48751 (17) 0.43438 (10) 0.0099 (3)
N4 0.3338 (2) −0.10238 (19) 0.43263 (11) 0.0157 (4)
H4A 0.3274 −0.1284 0.3788 0.019*
H4B 0.3992 −0.1414 0.4684 0.019*
N5 0.2568 (2) 0.03721 (19) 0.54093 (11) 0.0156 (4)
H5A 0.3235 −0.0004 0.5767 0.019*
H5B 0.1978 0.1023 0.5589 0.019*
N6 0.1460 (2) 0.0554 (2) 0.40657 (11) 0.0148 (4)
H6A 0.1387 0.0300 0.3526 0.018*
H6B 0.0875 0.1205 0.4252 0.018*
O1 0.59008 (16) 0.29141 (15) 0.21141 (9) 0.0137 (3)
O2 0.63792 (18) 0.36048 (18) 0.09069 (9) 0.0215 (3)
O3 0.21305 (16) 0.00289 (16) 0.23874 (9) 0.0145 (3)
O4 0.07106 (17) −0.13769 (16) 0.13266 (9) 0.0153 (3)
H4C 0.0149 −0.1491 0.1678 0.018*
O5 0.27628 (16) 0.02110 (16) −0.11860 (9) 0.0143 (3)
H5C 0.2173 −0.0520 −0.1315 0.017*
O6 0.34222 (17) 0.67780 (16) 0.29445 (9) 0.0146 (3)
O7 0.44783 (17) 0.76832 (16) 0.19381 (9) 0.0172 (3)
O8 0.00950 (16) 0.32407 (16) 0.26076 (9) 0.0143 (3)
O9 −0.05698 (17) 0.17203 (16) 0.14388 (9) 0.0159 (3)
O10 0.19172 (17) 0.42385 (16) −0.06347 (9) 0.0171 (3)
H10A 0.2427 0.4907 −0.0779 0.021*
O11 0.04286 (16) 0.64962 (15) 0.35657 (9) 0.0135 (3)
O12 −0.01195 (16) 0.76190 (15) 0.47515 (9) 0.0147 (3)
O13 0.35192 (16) 0.31130 (15) 0.32996 (9) 0.0129 (3)
O14 0.49768 (17) 0.21787 (16) 0.43224 (9) 0.0166 (3)
O15 0.31816 (17) 0.47150 (16) 0.68773 (9) 0.0160 (3)
H15 0.3166 0.5532 0.7150 0.019*
C1 0.4418 (2) 0.1863 (2) 0.08551 (12) 0.0107 (4)
C2 0.4131 (2) 0.1565 (2) −0.00030 (12) 0.0122 (4)
H2A 0.4696 0.2048 −0.0342 0.015*
C3 0.2999 (2) 0.0541 (2) −0.03617 (12) 0.0110 (4)
C4 0.2169 (2) −0.0136 (2) 0.01602 (12) 0.0115 (4)
H4D 0.1386 −0.0835 −0.0065 0.014*
C5 0.2529 (2) 0.0247 (2) 0.10110 (12) 0.0112 (4)
C6 0.5679 (2) 0.2891 (2) 0.13240 (13) 0.0127 (4)
C7 0.1755 (2) −0.0385 (2) 0.16419 (12) 0.0118 (4)
C8 0.2775 (2) 0.5651 (2) 0.15616 (12) 0.0116 (4)
C9 0.2842 (2) 0.5519 (2) 0.07219 (13) 0.0136 (4)
H9A 0.3492 0.6146 0.0506 0.016*
C10 0.1938 (2) 0.4448 (2) 0.01905 (12) 0.0127 (4)
C11 0.1009 (2) 0.3538 (2) 0.05356 (12) 0.0127 (4)
H11A 0.0391 0.2794 0.0193 0.015*
C12 0.1010 (2) 0.3745 (2) 0.13860 (12) 0.0109 (4)
C13 0.3656 (2) 0.6799 (2) 0.22034 (13) 0.0124 (4)
C14 0.0089 (2) 0.2824 (2) 0.18459 (12) 0.0118 (4)
C15 0.1664 (2) 0.5794 (2) 0.48423 (12) 0.0109 (4)
C16 0.1924 (2) 0.5833 (2) 0.57028 (12) 0.0123 (4)
H16A 0.1455 0.6509 0.6041 0.015*
C17 0.2895 (2) 0.4848 (2) 0.60600 (12) 0.0123 (4)
C18 0.3603 (2) 0.3900 (2) 0.55377 (12) 0.0116 (4)
H18A 0.4279 0.3230 0.5764 0.014*
C19 0.3294 (2) 0.3963 (2) 0.46898 (12) 0.0107 (4)
C20 0.0565 (2) 0.6734 (2) 0.43629 (12) 0.0114 (4)
C21 0.4003 (2) 0.2998 (2) 0.40786 (12) 0.0106 (4)
C22 0.2451 (2) −0.0043 (2) 0.45983 (13) 0.0125 (4)
O1W 0.55695 (16) 0.00217 (15) 0.28937 (9) 0.0130 (3)
H1 0.6477 0.0287 0.2913 0.020*
H2 0.5227 −0.0755 0.2593 0.020*
O2W −0.15742 (16) 0.07809 (17) 0.30343 (9) 0.0166 (3)
H3 −0.1151 0.1488 0.2859 0.025*
H4 −0.1159 0.0052 0.2830 0.025*
O3W −0.09191 (17) −0.20352 (17) 0.24040 (9) 0.0180 (3)
H5 −0.0481 −0.2423 0.2819 0.027*
H6 −0.1443 −0.2697 0.2077 0.027*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01283 (12) 0.01187 (11) 0.00817 (11) 0.00039 (9) 0.00278 (8) 0.00002 (8)
Zn2 0.01472 (12) 0.01176 (11) 0.00832 (11) 0.00042 (9) 0.00333 (9) 0.00050 (8)
N1 0.0103 (8) 0.0110 (8) 0.0105 (8) 0.0004 (6) 0.0018 (6) 0.0002 (6)
N2 0.0132 (8) 0.0094 (7) 0.0110 (8) −0.0014 (6) 0.0041 (6) 0.0017 (6)
N3 0.0107 (8) 0.0092 (7) 0.0098 (8) −0.0002 (6) 0.0029 (6) −0.0007 (6)
N4 0.0170 (9) 0.0171 (9) 0.0126 (8) 0.0048 (7) 0.0011 (7) 0.0004 (7)
N5 0.0209 (9) 0.0180 (9) 0.0080 (8) 0.0026 (7) 0.0023 (7) 0.0011 (6)
N6 0.0148 (8) 0.0211 (9) 0.0095 (8) 0.0057 (7) 0.0033 (6) 0.0023 (7)
O1 0.0154 (7) 0.0155 (7) 0.0095 (7) −0.0029 (6) 0.0019 (5) −0.0003 (5)
O2 0.0243 (9) 0.0271 (9) 0.0127 (7) −0.0133 (7) 0.0042 (6) 0.0033 (6)
O3 0.0164 (7) 0.0181 (7) 0.0085 (7) −0.0015 (6) 0.0024 (5) −0.0003 (5)
O4 0.0176 (7) 0.0176 (7) 0.0111 (7) −0.0068 (6) 0.0056 (6) 0.0004 (6)
O5 0.0154 (7) 0.0182 (7) 0.0081 (7) −0.0071 (6) 0.0014 (5) −0.0012 (5)
O6 0.0199 (8) 0.0138 (7) 0.0102 (7) −0.0022 (6) 0.0049 (6) 0.0000 (5)
O7 0.0232 (8) 0.0137 (7) 0.0148 (7) −0.0068 (6) 0.0065 (6) −0.0011 (6)
O8 0.0166 (7) 0.0168 (7) 0.0100 (7) −0.0036 (6) 0.0050 (6) 0.0004 (5)
O9 0.0170 (7) 0.0162 (7) 0.0138 (7) −0.0068 (6) 0.0031 (6) −0.0002 (6)
O10 0.0250 (8) 0.0169 (7) 0.0093 (7) −0.0083 (6) 0.0050 (6) 0.0002 (6)
O11 0.0155 (7) 0.0145 (7) 0.0111 (7) 0.0023 (6) 0.0035 (5) 0.0018 (5)
O12 0.0151 (7) 0.0136 (7) 0.0162 (7) 0.0032 (6) 0.0059 (6) 0.0002 (6)
O13 0.0159 (7) 0.0131 (7) 0.0101 (7) 0.0018 (6) 0.0043 (5) −0.0002 (5)
O14 0.0179 (8) 0.0169 (7) 0.0158 (7) 0.0067 (6) 0.0047 (6) 0.0009 (6)
O15 0.0227 (8) 0.0160 (7) 0.0081 (7) 0.0024 (6) 0.0005 (6) −0.0016 (5)
C1 0.0109 (9) 0.0095 (8) 0.0120 (9) 0.0006 (7) 0.0032 (7) 0.0007 (7)
C2 0.0126 (9) 0.0133 (9) 0.0114 (9) 0.0010 (7) 0.0031 (7) 0.0029 (7)
C3 0.0131 (9) 0.0115 (9) 0.0084 (9) 0.0020 (7) 0.0015 (7) 0.0010 (7)
C4 0.0117 (9) 0.0112 (9) 0.0113 (9) −0.0028 (7) 0.0012 (7) 0.0012 (7)
C5 0.0110 (9) 0.0122 (9) 0.0110 (9) 0.0000 (7) 0.0036 (7) 0.0014 (7)
C6 0.0136 (9) 0.0135 (9) 0.0110 (9) −0.0022 (7) 0.0032 (7) 0.0000 (7)
C7 0.0116 (9) 0.0124 (9) 0.0124 (9) 0.0010 (7) 0.0039 (7) 0.0022 (7)
C8 0.0143 (9) 0.0091 (9) 0.0116 (9) −0.0008 (7) 0.0031 (7) 0.0005 (7)
C9 0.0163 (10) 0.0125 (9) 0.0122 (9) −0.0027 (8) 0.0033 (8) 0.0017 (7)
C10 0.0160 (10) 0.0124 (9) 0.0101 (9) 0.0010 (8) 0.0032 (7) 0.0014 (7)
C11 0.0145 (9) 0.0121 (9) 0.0113 (9) −0.0012 (7) 0.0016 (7) 0.0010 (7)
C12 0.0110 (9) 0.0091 (8) 0.0123 (9) −0.0012 (7) 0.0017 (7) 0.0005 (7)
C13 0.0156 (10) 0.0090 (8) 0.0125 (9) −0.0011 (7) 0.0024 (7) 0.0003 (7)
C14 0.0105 (9) 0.0129 (9) 0.0122 (9) 0.0000 (7) 0.0018 (7) 0.0027 (7)
C15 0.0112 (9) 0.0089 (8) 0.0127 (9) −0.0016 (7) 0.0035 (7) −0.0002 (7)
C16 0.0136 (9) 0.0120 (9) 0.0111 (9) −0.0016 (7) 0.0041 (7) −0.0016 (7)
C17 0.0122 (9) 0.0125 (9) 0.0116 (9) −0.0033 (7) 0.0024 (7) −0.0006 (7)
C18 0.0121 (9) 0.0109 (9) 0.0115 (9) −0.0014 (7) 0.0013 (7) 0.0003 (7)
C19 0.0116 (9) 0.0094 (8) 0.0112 (9) −0.0014 (7) 0.0036 (7) −0.0002 (7)
C20 0.0110 (9) 0.0101 (9) 0.0136 (9) −0.0025 (7) 0.0032 (7) 0.0024 (7)
C21 0.0095 (9) 0.0106 (9) 0.0121 (9) −0.0022 (7) 0.0044 (7) 0.0001 (7)
C22 0.0124 (9) 0.0128 (9) 0.0125 (9) −0.0026 (7) 0.0029 (7) 0.0018 (7)
O1W 0.0127 (7) 0.0121 (7) 0.0132 (7) −0.0014 (5) 0.0010 (5) −0.0009 (5)
O2W 0.0159 (7) 0.0188 (8) 0.0158 (7) −0.0018 (6) 0.0040 (6) 0.0032 (6)
O3W 0.0200 (8) 0.0199 (8) 0.0151 (7) 0.0022 (6) 0.0030 (6) 0.0069 (6)

Geometric parameters (Å, °)

Zn1—O13 1.9541 (14) O10—H10A 0.8400
Zn1—O1W 1.9599 (14) O11—C20 1.284 (2)
Zn1—N1 2.0157 (17) O12—C20 1.231 (2)
Zn1—O1 2.0955 (14) O13—C21 1.296 (2)
Zn1—O3 2.4440 (15) O14—C21 1.232 (2)
Zn2—N2 1.9965 (17) O15—C17 1.339 (2)
Zn2—N3 2.0143 (17) O15—H15 0.8400
Zn2—O11 2.0715 (14) C1—C2 1.382 (3)
Zn2—O8 2.2311 (15) C1—C6 1.522 (3)
Zn2—O6 2.2320 (15) C2—C3 1.393 (3)
Zn2—O13 2.3857 (14) C2—H2A 0.9500
N1—C5 1.334 (3) C3—C4 1.409 (3)
N1—C1 1.340 (3) C4—C5 1.383 (3)
N2—C8 1.337 (3) C4—H4D 0.9500
N2—C12 1.344 (2) C5—C7 1.497 (3)
N3—C19 1.337 (3) C8—C9 1.377 (3)
N3—C15 1.346 (2) C8—C13 1.524 (3)
N4—C22 1.325 (3) C9—C10 1.401 (3)
N4—H4A 0.8800 C9—H9A 0.9500
N4—H4B 0.8800 C10—C11 1.399 (3)
N5—C22 1.328 (3) C11—C12 1.383 (3)
N5—H5A 0.8800 C11—H11A 0.9500
N5—H5B 0.8800 C12—C14 1.515 (3)
N6—C22 1.327 (3) C15—C16 1.385 (3)
N6—H6A 0.8800 C15—C20 1.525 (3)
N6—H6B 0.8800 C16—C17 1.399 (3)
O1—C6 1.273 (2) C16—H16A 0.9500
O2—C6 1.233 (2) C17—C18 1.405 (3)
O3—C7 1.229 (2) C18—C19 1.377 (3)
O4—C7 1.307 (2) C18—H18A 0.9500
O4—H4C 0.8400 C19—C21 1.507 (3)
O5—C3 1.331 (2) O1W—H1 0.8500
O5—H5C 0.8400 O1W—H2 0.8500
O6—C13 1.265 (2) O2W—H3 0.8501
O7—C13 1.251 (2) O2W—H4 0.8499
O8—C14 1.264 (2) O3W—H5 0.8499
O9—C14 1.243 (2) O3W—H6 0.8500
O10—C10 1.340 (2)
O13—Zn1—O1W 129.21 (6) C2—C3—C4 119.01 (18)
O13—Zn1—N1 123.11 (6) C5—C4—C3 117.96 (18)
O1W—Zn1—N1 105.76 (6) C5—C4—H4D 121.0
O13—Zn1—O1 101.14 (6) C3—C4—H4D 121.0
O1W—Zn1—O1 100.48 (6) N1—C5—C4 122.62 (18)
N1—Zn1—O1 79.40 (6) N1—C5—C7 113.35 (17)
O13—Zn1—O3 93.10 (6) C4—C5—C7 124.03 (18)
O1W—Zn1—O3 89.12 (6) O2—C6—O1 126.81 (19)
N1—Zn1—O3 72.01 (6) O2—C6—C1 117.40 (18)
O1—Zn1—O3 151.36 (5) O1—C6—C1 115.79 (17)
N2—Zn2—N3 162.44 (7) O3—C7—O4 125.56 (18)
N2—Zn2—O11 118.12 (6) O3—C7—C5 119.99 (18)
N3—Zn2—O11 78.99 (6) O4—C7—C5 114.45 (17)
N2—Zn2—O8 76.65 (6) N2—C8—C9 122.00 (18)
N3—Zn2—O8 106.40 (6) N2—C8—C13 113.48 (17)
O11—Zn2—O8 97.59 (6) C9—C8—C13 124.49 (18)
N2—Zn2—O6 75.85 (6) C8—C9—C10 119.03 (19)
N3—Zn2—O6 101.32 (6) C8—C9—H9A 120.5
O11—Zn2—O6 90.99 (6) C10—C9—H9A 120.5
O8—Zn2—O6 152.06 (5) O10—C10—C11 117.85 (18)
N2—Zn2—O13 90.61 (6) O10—C10—C9 123.52 (18)
N3—Zn2—O13 72.57 (6) C11—C10—C9 118.63 (18)
O11—Zn2—O13 151.16 (5) C12—C11—C10 118.62 (18)
O8—Zn2—O13 86.07 (5) C12—C11—H11A 120.7
O6—Zn2—O13 99.08 (5) C10—C11—H11A 120.7
C5—N1—C1 119.59 (17) N2—C12—C11 122.00 (18)
C5—N1—Zn1 124.22 (13) N2—C12—C14 113.65 (17)
C1—N1—Zn1 115.71 (13) C11—C12—C14 124.34 (17)
C8—N2—C12 119.71 (17) O7—C13—O6 127.34 (19)
C8—N2—Zn2 120.75 (13) O7—C13—C8 116.96 (18)
C12—N2—Zn2 119.54 (13) O6—C13—C8 115.64 (17)
C19—N3—C15 118.98 (17) O9—C14—O8 126.80 (19)
C19—N3—Zn2 124.50 (13) O9—C14—C12 116.56 (18)
C15—N3—Zn2 116.52 (13) O8—C14—C12 116.62 (17)
C22—N4—H4A 120.0 N3—C15—C16 122.62 (19)
C22—N4—H4B 120.0 N3—C15—C20 113.29 (17)
H4A—N4—H4B 120.0 C16—C15—C20 124.07 (18)
C22—N5—H5A 120.0 C15—C16—C17 118.16 (18)
C22—N5—H5B 120.0 C15—C16—H16A 120.9
H5A—N5—H5B 120.0 C17—C16—H16A 120.9
C22—N6—H6A 120.0 O15—C17—C16 124.33 (18)
C22—N6—H6B 120.0 O15—C17—C18 116.65 (18)
H6A—N6—H6B 120.0 C16—C17—C18 119.00 (18)
C6—O1—Zn1 114.71 (12) C19—C18—C17 118.50 (19)
C7—O3—Zn1 109.54 (13) C19—C18—H18A 120.7
C7—O4—H4C 109.5 C17—C18—H18A 120.8
C3—O5—H5C 109.5 N3—C19—C18 122.71 (18)
C13—O6—Zn2 114.20 (12) N3—C19—C21 114.77 (17)
C14—O8—Zn2 112.58 (12) C18—C19—C21 122.52 (18)
C10—O10—H10A 109.5 O12—C20—O11 125.77 (19)
C20—O11—Zn2 116.08 (13) O12—C20—C15 119.31 (18)
C21—O13—Zn1 110.63 (12) O11—C20—C15 114.91 (17)
C21—O13—Zn2 112.70 (12) O14—C21—O13 123.87 (18)
Zn1—O13—Zn2 136.65 (7) O14—C21—C19 120.94 (18)
C17—O15—H15 109.5 O13—C21—C19 115.19 (17)
N1—C1—C2 122.10 (18) N4—C22—N6 120.63 (19)
N1—C1—C6 114.11 (17) N4—C22—N5 120.05 (19)
C2—C1—C6 123.76 (18) N6—C22—N5 119.30 (19)
C1—C2—C3 118.71 (18) Zn1—O1W—H1 107.7
C1—C2—H2A 120.6 Zn1—O1W—H2 110.3
C3—C2—H2A 120.6 H1—O1W—H2 118.8
O5—C3—C2 118.70 (18) H3—O2W—H4 103.0
O5—C3—C4 122.27 (18) H5—O3W—H6 107.7
O13—Zn1—N1—C5 −89.84 (17) C2—C3—C4—C5 −0.4 (3)
O1W—Zn1—N1—C5 75.66 (17) C1—N1—C5—C4 −0.5 (3)
O1—Zn1—N1—C5 173.68 (17) Zn1—N1—C5—C4 −172.25 (15)
O3—Zn1—N1—C5 −8.11 (15) C1—N1—C5—C7 179.16 (17)
O13—Zn1—N1—C1 98.09 (15) Zn1—N1—C5—C7 7.4 (2)
O1W—Zn1—N1—C1 −96.40 (14) C3—C4—C5—N1 0.0 (3)
O1—Zn1—N1—C1 1.62 (14) C3—C4—C5—C7 −179.55 (18)
O3—Zn1—N1—C1 179.83 (15) Zn1—O1—C6—O2 175.64 (18)
N3—Zn2—N2—C8 −80.4 (3) Zn1—O1—C6—C1 −4.7 (2)
O11—Zn2—N2—C8 85.88 (16) N1—C1—C6—O2 −174.20 (18)
O8—Zn2—N2—C8 177.43 (16) C2—C1—C6—O2 7.8 (3)
O6—Zn2—N2—C8 2.45 (15) N1—C1—C6—O1 6.1 (3)
O13—Zn2—N2—C8 −96.76 (15) C2—C1—C6—O1 −171.92 (19)
N3—Zn2—N2—C12 98.9 (3) Zn1—O3—C7—O4 172.31 (16)
O11—Zn2—N2—C12 −94.91 (15) Zn1—O3—C7—C5 −7.0 (2)
O8—Zn2—N2—C12 −3.36 (14) N1—C5—C7—O3 1.3 (3)
O6—Zn2—N2—C12 −178.34 (16) C4—C5—C7—O3 −179.03 (19)
O13—Zn2—N2—C12 82.45 (15) N1—C5—C7—O4 −178.08 (17)
N2—Zn2—N3—C19 −15.1 (3) C4—C5—C7—O4 1.5 (3)
O11—Zn2—N3—C19 177.21 (16) C12—N2—C8—C9 0.3 (3)
O8—Zn2—N3—C19 82.45 (16) Zn2—N2—C8—C9 179.54 (15)
O6—Zn2—N3—C19 −93.99 (16) C12—N2—C8—C13 178.52 (17)
O13—Zn2—N3—C19 2.08 (15) Zn2—N2—C8—C13 −2.3 (2)
N2—Zn2—N3—C15 164.06 (19) N2—C8—C9—C10 0.2 (3)
O11—Zn2—N3—C15 −3.60 (14) C13—C8—C9—C10 −177.83 (19)
O8—Zn2—N3—C15 −98.36 (14) C8—C9—C10—O10 179.67 (19)
O6—Zn2—N3—C15 85.20 (14) C8—C9—C10—C11 −0.7 (3)
O13—Zn2—N3—C15 −178.73 (15) O10—C10—C11—C12 −179.61 (18)
O13—Zn1—O1—C6 −120.04 (14) C9—C10—C11—C12 0.7 (3)
O1W—Zn1—O1—C6 106.20 (14) C8—N2—C12—C11 −0.3 (3)
N1—Zn1—O1—C6 1.94 (14) Zn2—N2—C12—C11 −179.50 (15)
O3—Zn1—O1—C6 −1.6 (2) C8—N2—C12—C14 178.22 (17)
O13—Zn1—O3—C7 131.73 (14) Zn2—N2—C12—C14 −1.0 (2)
O1W—Zn1—O3—C7 −99.05 (14) C10—C11—C12—N2 −0.2 (3)
N1—Zn1—O3—C7 7.85 (13) C10—C11—C12—C14 −178.59 (18)
O1—Zn1—O3—C7 11.5 (2) Zn2—O6—C13—O7 178.91 (18)
N2—Zn2—O6—C13 −2.32 (14) Zn2—O6—C13—C8 1.9 (2)
N3—Zn2—O6—C13 159.91 (14) N2—C8—C13—O7 −177.34 (18)
O11—Zn2—O6—C13 −121.12 (14) C9—C8—C13—O7 0.8 (3)
O8—Zn2—O6—C13 −12.8 (2) N2—C8—C13—O6 0.0 (3)
O13—Zn2—O6—C13 86.01 (14) C9—C8—C13—O6 178.2 (2)
N2—Zn2—O8—C14 8.08 (14) Zn2—O8—C14—O9 167.49 (17)
N3—Zn2—O8—C14 −154.02 (14) Zn2—O8—C14—C12 −11.0 (2)
O11—Zn2—O8—C14 125.28 (14) N2—C12—C14—O9 −170.05 (18)
O6—Zn2—O8—C14 18.5 (2) C11—C12—C14—O9 8.4 (3)
O13—Zn2—O8—C14 −83.49 (14) N2—C12—C14—O8 8.6 (3)
N2—Zn2—O11—C20 −171.55 (13) C11—C12—C14—O8 −172.96 (19)
N3—Zn2—O11—C20 4.25 (14) C19—N3—C15—C16 −0.1 (3)
O8—Zn2—O11—C20 109.57 (14) Zn2—N3—C15—C16 −179.36 (15)
O6—Zn2—O11—C20 −97.09 (14) C19—N3—C15—C20 −178.17 (17)
O13—Zn2—O11—C20 13.9 (2) Zn2—N3—C15—C20 2.6 (2)
O1W—Zn1—O13—C21 7.05 (16) N3—C15—C16—C17 −1.7 (3)
N1—Zn1—O13—C21 168.94 (12) C20—C15—C16—C17 176.16 (18)
O1—Zn1—O13—C21 −106.53 (13) C15—C16—C17—O15 −176.19 (18)
O3—Zn1—O13—C21 98.44 (13) C15—C16—C17—C18 2.1 (3)
O1W—Zn1—O13—Zn2 −171.49 (8) O15—C17—C18—C19 177.56 (18)
N1—Zn1—O13—Zn2 −9.60 (14) C16—C17—C18—C19 −0.9 (3)
O1—Zn1—O13—Zn2 74.93 (11) C15—N3—C19—C18 1.5 (3)
O3—Zn1—O13—Zn2 −80.10 (10) Zn2—N3—C19—C18 −179.35 (14)
N2—Zn2—O13—C21 170.56 (13) C15—N3—C19—C21 −179.06 (17)
N3—Zn2—O13—C21 −4.31 (13) Zn2—N3—C19—C21 0.1 (2)
O11—Zn2—O13—C21 −14.27 (19) C17—C18—C19—N3 −0.9 (3)
O8—Zn2—O13—C21 −112.87 (13) C17—C18—C19—C21 179.63 (17)
O6—Zn2—O13—C21 94.79 (13) Zn2—O11—C20—O12 177.04 (16)
N2—Zn2—O13—Zn1 −10.92 (11) Zn2—O11—C20—C15 −4.1 (2)
N3—Zn2—O13—Zn1 174.20 (12) N3—C15—C20—O12 −179.99 (18)
O11—Zn2—O13—Zn1 164.25 (9) C16—C15—C20—O12 2.0 (3)
O8—Zn2—O13—Zn1 65.65 (10) N3—C15—C20—O11 1.0 (2)
O6—Zn2—O13—Zn1 −86.69 (11) C16—C15—C20—O11 −176.98 (18)
C5—N1—C1—C2 1.2 (3) Zn1—O13—C21—O14 7.2 (2)
Zn1—N1—C1—C2 173.70 (15) Zn2—O13—C21—O14 −173.85 (16)
C5—N1—C1—C6 −176.84 (17) Zn1—O13—C21—C19 −173.27 (12)
Zn1—N1—C1—C6 −4.4 (2) Zn2—O13—C21—C19 5.6 (2)
N1—C1—C2—C3 −1.5 (3) N3—C19—C21—O14 175.23 (18)
C6—C1—C2—C3 176.35 (18) C18—C19—C21—O14 −5.3 (3)
C1—C2—C3—O5 −177.33 (18) N3—C19—C21—O13 −4.3 (2)
C1—C2—C3—C4 1.1 (3) C18—C19—C21—O13 175.18 (18)
O5—C3—C4—C5 177.99 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O6i 0.88 2.17 2.894 (2) 139
N4—H4B···O14ii 0.88 1.95 2.810 (2) 164
N5—H5A···O1Wii 0.88 2.29 3.074 (2) 149
N5—H5B···O12iii 0.88 2.18 2.949 (2) 146
N6—H6A···O3 0.88 2.08 2.901 (2) 156
N6—H6B···O12iii 0.88 2.09 2.882 (2) 150
O4—H4C···O3W 0.84 1.76 2.586 (2) 170
O5—H5C···O9iv 0.84 1.78 2.596 (2) 163
O10—H10A···O2v 0.84 1.78 2.615 (2) 171
O15—H15···O1vi 0.84 1.87 2.637 (2) 152
O1W—H1···O2Wvii 0.85 1.79 2.642 (2) 175
O1W—H2···O7i 0.85 1.76 2.609 (2) 178
O2W—H3···O8 0.85 2.07 2.912 (2) 171
O2W—H4···O3W 0.85 2.02 2.827 (2) 158
O3W—H5···O11i 0.85 1.78 2.622 (2) 170
O3W—H6···O10iv 0.85 2.59 3.344 (2) 148
C4—H4D···O9iv 0.95 2.30 2.993 (2) 129
C9—H9A···O2v 0.95 2.37 3.046 (3) 128

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x, −y, −z; (v) −x+1, −y+1, −z; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2211).

References

  1. Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst E64, m144. [DOI] [PMC free article] [PubMed]
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Moghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005). Anal. Sci 21, x71–x72.
  5. Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442–o444.
  6. Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci 18, x219–x220. [DOI] [PubMed]
  7. Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003930/om2211sup1.cif

e-64-0m466-sup1.cif (30.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003930/om2211Isup2.hkl

e-64-0m466-Isup2.hkl (439.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES