Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 13;64(Pt 3):o580. doi: 10.1107/S1600536808003954

1-(4-Bromo­benzo­yl)-2-phenyl­pyrrolidine-2-carboxamide

Rafael Tamazyan a,*, Armen Ayvazyan a, Ashot Martirosyan b, Gohar Harutunyan b, Vahan Martirosyan b
PMCID: PMC2960799  PMID: 21201919

Abstract

In the title compound, C18H17BrN2O2, which is a potential ­human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor, the pyrrolidine ring exhibits an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds [N⋯O = 2.861 (3) Å] link the mol­ecules into centrosymmetric dimers.

Related literature

For related crystal structures, see: Karapetyan et al. (2002); Tamazyan et al. (2002, 2007). For details of the synthesis, see: Martirosyan et al. (2000, 2004). For potential pharmacological applications, see: De Clercq (1996).graphic file with name e-64-0o580-scheme1.jpg

Experimental

Crystal data

  • C18H17BrN2O2

  • M r = 373.25

  • Monoclinic, Inline graphic

  • a = 9.5707 (19) Å

  • b = 13.738 (3) Å

  • c = 13.302 (3) Å

  • β = 96.99 (2)°

  • V = 1736.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 260 (2) K

  • 0.14 mm (radius)

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere (SHELXTL; Sheldrick, 2008) T min = 0.612, T max = 0.617

  • 8356 measured reflections

  • 4180 independent reflections

  • 2941 reflections with I > 2σ(I)

  • R int = 0.050

  • 3 standard reflections frequency: 180 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.118

  • S = 1.02

  • 4180 reflections

  • 216 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: DATACOL in CAD-4 (Enraf–Nonius, 1988); cell refinement: LS in CAD-4; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003954/cv2386sup1.cif

e-64-0o580-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003954/cv2386Isup2.hkl

e-64-0o580-Isup2.hkl (204.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7b⋯O16 0.83 (2) 1.95 (3) 2.726 (3) 155 (3)
N7—H7a⋯O8i 0.86 (3) 2.00 (3) 2.861 (3) 176 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Armenian Science and Education Foundation (ANSEF) (grant No. PS-chemorg-907).

supplementary crystallographic information

Comment

The title compound, (I), belongs to a family of non-nucleoside reverse transcriptase inhibitors (NNRTIs), which exhibit potential HIV-1 RT inhibition properties (De Clercq, 1996).

In (I) (Fig. 1), all bond lengths and angles are in good agreement with those observed in the related compounds (Karapetyan et al., 2002; Tamazyan et al., 2002, 2007). Both H atoms of amide group, H7b and H7a, respectively, are involved in intra- and intermolecular N—H···O hydrogen bonds (Table 1). The latter one links the molecules into centrosymmetric dimers (Fig. 2).

Experimental

The title compound was synthesized by cycloalkylation of N1-(3-chloropropyl)-N1-cyano(phenyl)methyl-4-bromobenzamide in phase transfer catalyses condition to 1-(4-bromobenzoyl)-2-phenyl-2-pyrrolidinecarbonitrile and then by hydrolizes with concentric sulfuric acid (Martirosyan et al., 2000, 2004). The compound as synthesized is a racemic mixture of optical isomers (R and S) of 1-(4-bromobenzoyl)-2-phenyl-2-pyrrolidinecarboxamide molecule. The crystals were grown from methanol solution. The suitable sample with spherical shape of the size ~0.28 mm was prepared and selected for X-ray diffraction experiment.

Refinement

All H atoms were located on a difference map. Atoms H7a and H7b were refined isotropically. C-bound H atoms were placed in idealized positions (C—H 0.93–0.97 Å) and refined as riding, with Uiso = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and displacement ellipsoids at the 50% probability level. H atoms omitted for clarity.

Fig. 2.

Fig. 2.

Hydrogen-bonded (dashed lines) dimer in the crystal structure of (I) [symmetry code: (i) -x, 1 - y, 1 - z]. Only H atoms participating in hydrogen-bonding are shown.

Crystal data

C18H17BrN2O2 F000 = 760
Mr = 373.25 Dx = 1.428 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 9.5707 (19) Å θ = 13–16º
b = 13.738 (3) Å µ = 2.38 mm1
c = 13.302 (3) Å T = 260 (2) K
β = 96.99 (2)º Spherical, colourless
V = 1736.0 (6) Å3 0.28 × 0.28 × 0.28 × 0.14 (radius) mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.050
Radiation source: fine-focus sealed tube θmax = 28.0º
Monochromator: graphite θmin = 2.1º
T = 260(2) K h = −12→12
θ/2θ scans k = 0→18
Absorption correction: for a sphere(SHELXTL; Sheldrick, 2008) l = −17→17
Tmin = 0.612, Tmax = 0.617 3 standard reflections
8356 measured reflections every 180 min
4180 independent reflections intensity decay: none
2941 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119   w = 1/[σ2(Fo2) + (0.0458P)2 + 1.2016P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4180 reflections Δρmax = 0.87 e Å3
216 parameters Δρmin = −0.89 e Å3
10 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.68968 (4) 1.01480 (3) 0.85408 (3) 0.07187 (17)
C1 −0.0555 (2) 0.71666 (16) 0.64026 (16) 0.0217 (4)
N2 0.08435 (19) 0.75423 (14) 0.68588 (13) 0.0230 (4)
C3 0.1138 (3) 0.7265 (2) 0.79443 (18) 0.0372 (6)
H3A 0.1112 0.7831 0.8379 0.045*
H3B 0.2051 0.6955 0.8084 0.045*
C4 −0.0033 (3) 0.65609 (19) 0.80987 (18) 0.0330 (5)
H4A −0.0257 0.6581 0.8790 0.040*
H4B 0.0215 0.5900 0.7935 0.040*
C5 −0.1249 (3) 0.69388 (18) 0.73599 (17) 0.0277 (5)
H5A −0.1656 0.7520 0.7620 0.033*
H5B −0.1977 0.6449 0.7224 0.033*
C6 −0.0375 (2) 0.62094 (16) 0.58089 (16) 0.0225 (5)
N7 0.0475 (3) 0.62518 (17) 0.50977 (16) 0.0310 (5)
H7A 0.060 (3) 0.572 (2) 0.477 (2) 0.026 (7)*
H7B 0.089 (3) 0.677 (2) 0.502 (2) 0.038 (8)*
O8 −0.1011 (2) 0.54709 (12) 0.60012 (14) 0.0357 (4)
C9 −0.1430 (2) 0.78995 (16) 0.57304 (17) 0.0245 (5)
C10 −0.1242 (3) 0.88979 (18) 0.5831 (2) 0.0333 (5)
H10 −0.0515 0.9139 0.6291 0.040*
C11 −0.2120 (3) 0.9539 (2) 0.5257 (2) 0.0448 (7)
H11 −0.1975 1.0206 0.5328 0.054*
C12 −0.3217 (3) 0.9190 (2) 0.4578 (2) 0.0484 (8)
H12 −0.3811 0.9621 0.4193 0.058*
C13 −0.3422 (3) 0.8208 (2) 0.4475 (2) 0.0454 (7)
H13 −0.4160 0.7973 0.4021 0.055*
C14 −0.2534 (3) 0.75578 (19) 0.50447 (19) 0.0341 (6)
H14 −0.2680 0.6891 0.4966 0.041*
C15 0.1780 (2) 0.79997 (16) 0.63414 (17) 0.0244 (5)
O16 0.16487 (18) 0.80521 (12) 0.54045 (12) 0.0298 (4)
C17 0.3019 (2) 0.84793 (17) 0.69371 (18) 0.0264 (5)
C18 0.4350 (3) 0.8311 (2) 0.6659 (2) 0.0356 (6)
H18 0.4463 0.7867 0.6148 0.043*
C19 0.5505 (3) 0.8797 (2) 0.7137 (2) 0.0441 (7)
H19 0.6397 0.8679 0.6955 0.053*
C20 0.5317 (3) 0.9461 (2) 0.7890 (2) 0.0412 (7)
C21 0.4003 (3) 0.9652 (2) 0.8166 (2) 0.0410 (6)
H21 0.3892 1.0110 0.8666 0.049*
C22 0.2853 (3) 0.91537 (19) 0.7691 (2) 0.0337 (6)
H22 0.1962 0.9271 0.7877 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0470 (2) 0.0818 (3) 0.0793 (3) −0.02922 (18) −0.02262 (18) 0.0072 (2)
C1 0.0249 (10) 0.0220 (11) 0.0184 (10) −0.0011 (8) 0.0038 (8) −0.0017 (8)
N2 0.0263 (9) 0.0274 (10) 0.0154 (9) −0.0030 (8) 0.0033 (7) −0.0008 (7)
C3 0.0455 (15) 0.0498 (16) 0.0152 (11) −0.0080 (12) −0.0002 (10) 0.0018 (11)
C4 0.0441 (14) 0.0370 (14) 0.0188 (11) −0.0031 (11) 0.0070 (10) 0.0039 (10)
C5 0.0329 (12) 0.0292 (12) 0.0229 (11) 0.0000 (10) 0.0108 (9) −0.0012 (9)
C6 0.0273 (11) 0.0230 (11) 0.0170 (10) 0.0020 (9) 0.0014 (8) 0.0005 (8)
N7 0.0464 (13) 0.0213 (11) 0.0280 (11) −0.0039 (10) 0.0159 (9) −0.0048 (9)
O8 0.0492 (11) 0.0245 (9) 0.0365 (10) −0.0080 (8) 0.0176 (8) −0.0047 (7)
C9 0.0266 (11) 0.0263 (11) 0.0216 (11) 0.0033 (9) 0.0070 (9) 0.0019 (9)
C10 0.0359 (13) 0.0281 (13) 0.0367 (14) 0.0033 (10) 0.0076 (11) 0.0004 (11)
C11 0.0519 (17) 0.0289 (13) 0.0556 (19) 0.0102 (12) 0.0146 (15) 0.0123 (13)
C12 0.0484 (17) 0.0498 (18) 0.0472 (17) 0.0196 (14) 0.0065 (14) 0.0200 (14)
C13 0.0398 (15) 0.0563 (19) 0.0375 (16) 0.0111 (13) −0.0064 (12) 0.0058 (13)
C14 0.0359 (13) 0.0332 (13) 0.0324 (13) 0.0040 (11) 0.0011 (11) −0.0017 (11)
C15 0.0282 (11) 0.0221 (11) 0.0237 (11) 0.0022 (9) 0.0063 (9) −0.0015 (9)
O16 0.0383 (9) 0.0314 (9) 0.0208 (8) −0.0058 (7) 0.0078 (7) −0.0010 (7)
C17 0.0257 (11) 0.0270 (11) 0.0267 (11) 0.0000 (9) 0.0042 (9) 0.0001 (10)
C18 0.0310 (13) 0.0372 (14) 0.0398 (15) 0.0024 (11) 0.0095 (11) −0.0016 (11)
C19 0.0244 (12) 0.0528 (17) 0.0552 (18) 0.0022 (11) 0.0060 (12) 0.0068 (15)
C20 0.0299 (13) 0.0445 (15) 0.0453 (16) −0.0118 (11) −0.0107 (11) 0.0070 (13)
C21 0.0430 (15) 0.0394 (15) 0.0392 (15) −0.0072 (12) −0.0001 (12) −0.0086 (12)
C22 0.0287 (12) 0.0357 (13) 0.0374 (14) −0.0013 (10) 0.0064 (10) −0.0093 (11)

Geometric parameters (Å, °)

Br1—C20 1.899 (3) C10—C11 1.382 (4)
C1—N2 1.493 (3) C10—H10 0.9300
C1—C9 1.527 (3) C11—C12 1.385 (5)
C1—C5 1.538 (3) C11—H11 0.9300
C1—C6 1.554 (3) C12—C13 1.368 (5)
N2—C15 1.350 (3) C12—H12 0.9300
N2—C3 1.487 (3) C13—C14 1.392 (4)
C3—C4 1.513 (4) C13—H13 0.9300
C3—H3A 0.9700 C14—H14 0.9300
C3—H3B 0.9700 C15—O16 1.239 (3)
C4—C5 1.520 (3) C15—C17 1.496 (3)
C4—H4A 0.9700 C17—C18 1.388 (3)
C4—H4B 0.9700 C17—C22 1.389 (3)
C5—H5A 0.9700 C18—C19 1.378 (4)
C5—H5B 0.9700 C18—H18 0.9300
C6—O8 1.226 (3) C19—C20 1.383 (4)
C6—N7 1.321 (3) C19—H19 0.9300
N7—H7A 0.86 (3) C20—C21 1.378 (4)
N7—H7B 0.83 (3) C21—C22 1.383 (4)
C9—C10 1.388 (3) C21—H21 0.9300
C9—C14 1.391 (3) C22—H22 0.9300
N2—C1—C9 114.23 (18) C11—C10—C9 121.0 (3)
N2—C1—C5 100.93 (17) C11—C10—H10 119.5
C9—C1—C5 110.99 (18) C9—C10—H10 119.5
N2—C1—C6 110.43 (17) C10—C11—C12 120.1 (3)
C9—C1—C6 110.32 (17) C10—C11—H11 120.0
C5—C1—C6 109.54 (18) C12—C11—H11 120.0
C15—N2—C3 123.7 (2) C13—C12—C11 119.6 (3)
C15—N2—C1 124.89 (18) C13—C12—H12 120.2
C3—N2—C1 111.14 (18) C11—C12—H12 120.2
N2—C3—C4 103.87 (19) C12—C13—C14 120.6 (3)
N2—C3—H3A 111.0 C12—C13—H13 119.7
C4—C3—H3A 111.0 C14—C13—H13 119.7
N2—C3—H3B 111.0 C9—C14—C13 120.3 (3)
C4—C3—H3B 111.0 C9—C14—H14 119.8
H3A—C3—H3B 109.0 C13—C14—H14 119.8
C3—C4—C5 102.4 (2) O16—C15—N2 123.2 (2)
C3—C4—H4A 111.3 O16—C15—C17 118.9 (2)
C5—C4—H4A 111.3 N2—C15—C17 117.9 (2)
C3—C4—H4B 111.3 C18—C17—C22 119.5 (2)
C5—C4—H4B 111.3 C18—C17—C15 118.6 (2)
H4A—C4—H4B 109.2 C22—C17—C15 121.5 (2)
C4—C5—C1 103.39 (19) C19—C18—C17 120.5 (3)
C4—C5—H5A 111.1 C19—C18—H18 119.8
C1—C5—H5A 111.1 C17—C18—H18 119.8
C4—C5—H5B 111.1 C18—C19—C20 119.1 (3)
C1—C5—H5B 111.1 C18—C19—H19 120.5
H5A—C5—H5B 109.1 C20—C19—H19 120.5
O8—C6—N7 123.4 (2) C21—C20—C19 121.5 (2)
O8—C6—C1 120.3 (2) C21—C20—Br1 119.0 (2)
N7—C6—C1 116.3 (2) C19—C20—Br1 119.5 (2)
C6—N7—H7A 117.1 (18) C20—C21—C22 119.0 (3)
C6—N7—H7B 119 (2) C20—C21—H21 120.5
H7A—N7—H7B 124 (3) C22—C21—H21 120.5
C10—C9—C14 118.4 (2) C21—C22—C17 120.4 (2)
C10—C9—C1 122.7 (2) C21—C22—H22 119.8
C14—C9—C1 118.7 (2) C17—C22—H22 119.8
C9—C1—N2—C15 −49.1 (3) C1—C9—C10—C11 −175.3 (2)
C5—C1—N2—C15 −168.3 (2) C9—C10—C11—C12 0.7 (4)
C6—C1—N2—C15 75.9 (3) C10—C11—C12—C13 −0.2 (5)
C9—C1—N2—C3 136.3 (2) C11—C12—C13—C14 −0.3 (5)
C5—C1—N2—C3 17.2 (2) C10—C9—C14—C13 0.1 (4)
C6—C1—N2—C3 −98.6 (2) C1—C9—C14—C13 175.0 (2)
C15—N2—C3—C4 −165.7 (2) C12—C13—C14—C9 0.3 (4)
C1—N2—C3—C4 9.0 (3) C3—N2—C15—O16 164.8 (2)
N2—C3—C4—C5 −31.7 (3) C1—N2—C15—O16 −9.1 (3)
C3—C4—C5—C1 43.1 (2) C3—N2—C15—C17 −16.3 (3)
N2—C1—C5—C4 −36.6 (2) C1—N2—C15—C17 169.74 (19)
C9—C1—C5—C4 −158.09 (19) O16—C15—C17—C18 −48.8 (3)
C6—C1—C5—C4 79.8 (2) N2—C15—C17—C18 132.3 (2)
N2—C1—C6—O8 125.4 (2) O16—C15—C17—C22 125.0 (3)
C9—C1—C6—O8 −107.4 (2) N2—C15—C17—C22 −53.9 (3)
C5—C1—C6—O8 15.1 (3) C22—C17—C18—C19 1.0 (4)
N2—C1—C6—N7 −55.3 (3) C15—C17—C18—C19 174.9 (2)
C9—C1—C6—N7 71.9 (3) C17—C18—C19—C20 −0.6 (4)
C5—C1—C6—N7 −165.6 (2) C18—C19—C20—C21 −0.5 (4)
N2—C1—C9—C10 −23.9 (3) C18—C19—C20—Br1 −179.2 (2)
C5—C1—C9—C10 89.4 (3) C19—C20—C21—C22 1.2 (4)
C6—C1—C9—C10 −149.0 (2) Br1—C20—C21—C22 179.9 (2)
N2—C1—C9—C14 161.4 (2) C20—C21—C22—C17 −0.8 (4)
C5—C1—C9—C14 −85.3 (3) C18—C17—C22—C21 −0.3 (4)
C6—C1—C9—C14 36.3 (3) C15—C17—C22—C21 −174.0 (2)
C14—C9—C10—C11 −0.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N7—H7b···O16 0.83 (2) 1.95 (3) 2.726 (3) 155 (3)
N7—H7a···O8i 0.86 (3) 2.00 (3) 2.861 (3) 176 (3)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2386).

References

  1. De Clercq, E. (1996). Rev. Med. Virol.6, 97–117. [DOI] [PubMed]
  2. Enraf–Nonius (1988). CAD-4 Manual. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  3. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  4. Karapetyan, H., Tamazyan, R., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o399–o401. [DOI] [PubMed]
  5. Martirosyan, A. O., Gasparyan, S. P., Oganesyan, V. E., Mndzhoyan, Sh. L., Alexanyan, M. L., Nikishchenko, M. N. & Babayan, G. Sh. (2000). Chem. Heterocycl. Compd, 36, 416–419.
  6. Martirosyan, A. O., Hovhannesyan, V. E., Gasparyan, S. P., Karapetyan, H. A., Panosyan, G. A. & Martirosyan, V. O. (2004). Chem. Heterocycl. Compd, 40, 1007–1008.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (1997). HELENA University of Utrecht, The Netherlands.
  9. Tamazyan, R., Ayvazyan, A., Martirosyan, A., Martirosyan, V. & Schinazi, R. (2007). Acta Cryst. E63, o3967.
  10. Tamazyan, R., Karapetyan, H., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o386–o388. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003954/cv2386sup1.cif

e-64-0o580-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003954/cv2386Isup2.hkl

e-64-0o580-Isup2.hkl (204.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES