Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 6;64(Pt 3):o561. doi: 10.1107/S1600536808003486

N′-tert-Butyl-5-(4-chloro­phen­yl)furan-2-carbohydrazide

Xi-Chen Li a, Ying Li a, Zi-Ning Cui a, Xin-Ling Yang a, Yun Ling a,*
PMCID: PMC2960804  PMID: 21201904

Abstract

In the title mol­ecule, C15H17ClN2O2, the furan and benzene rings form a dihedral angle of 15.35 (8)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains extended in the [010] direction.

Related literature

For general background, see: Wing (1988); Wing et al. (1988); Dhadialla et al. (1998); Heller et al. (1992); Mao et al. (2004). For details of some monoacyl­hydrazines and diacyl­hydrazines containing furan, see: Yang et al. (2002); Li et al. (2006).graphic file with name e-64-0o561-scheme1.jpg

Experimental

Crystal data

  • C15H17ClN2O2

  • M r = 292.76

  • Orthorhombic, Inline graphic

  • a = 9.3770 (7) Å

  • b = 9.7861 (7) Å

  • c = 16.0119 (12) Å

  • V = 1469.32 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 113 (2) K

  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.921, T max = 0.949

  • 13814 measured reflections

  • 3496 independent reflections

  • 2754 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.056

  • S = 0.96

  • 3496 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1490 Friedel pairs

  • Flack parameter: 0.00 (4)

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003486/cv2380sup1.cif

e-64-0o561-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003486/cv2380Isup2.hkl

e-64-0o561-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.882 (15) 2.026 (16) 2.8744 (15) 160.9 (14)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the National Basic Research Programme of China (grant No. 2003CB114405), the National Natural Science Foundation of China (grant No. 20672138) and the National High Technology Research and Development Programme of China (grant No. 2006AA10A201). The authors also thank the State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, People’s Republic of China.

supplementary crystallographic information

Comment

As one of molting hormone analogs, symmetrical N'-tert-butyl-N,N'-dibenzoylhydrazine (RH-5849) was first found to be a nonsteroidal ecdysone agonist in 1988 (Wing, 1988; Wing et al., 1988). Afterward, several diacylhydrazine compounds were commercially developed as insect growth regulators (IGRs) which were widely used in agriculture (Dhadialla et al., 1998; Heller et al., 1992; Mao et al., 2004). Recently, we synthesized a series of di- or mono- acylhydrazines containing furan for further study on the structure-activity relationship between monoacylhydrazines and diacylhydrazines. It was found that they both had good insecticidal activities (Yang et al., 2002; Li et al., 2006). In order to study the structural character and conformation of the monoacylhydrazine containing furan, the crystal structure of the title compound, (I), has been determined.

In (I) (Fig. 1), the benzene (C1—C6) and furan (O1/C7—C10) rings form a dihedral angle of 15.35 (8)°. The carbonyl group attached to the furan ring is almost coplanar with it. In the crystal, the intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains extended in direction [010].

Experimental

The title compound, (I), was synthesized by the reaction of 5-(4-chlorophenyl)furan-2-carbonyl chloride (0.96 g, 4 mmol) with tert-butylhydrazine hydrochloride (1.99 g, 16 mmol) using sodium hydroxide (10%, 8.0 g, 20 mmol) as the acid-binding agent. The mixture was stirred at room temperature for 5 h and filtered to obtain a yellow solution. Then the organic phase was separated and dried with anhydrous magnesium sulfate overnight. After removal of the solvent, the residue was purified by vacuum column chromatography on silica gel with petroleum ether and ethyl acetate as the eluent (V petroleum ether: V ethyl acetate = 3:1) and then recrystallized from hexane–ethyl acetate (Vhexane: Vethyl acetate= 1:1) to give colourless crystals suitable for X-ray diffraction (Li et al., 2006).

Refinement

Atoms H1A and H2A were located on a difference map and isotropically refined. The rest H atoms were positioned geometrically (C—H = 0.95–0.98 Å), and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C15H17ClN2O2 Dx = 1.323 Mg m3
Mr = 292.76 Mo Kα radiation λ = 0.71070 Å
Orthorhombic, P212121 Cell parameters from 3053 reflections
a = 9.3770 (7) Å θ = 2.5–25.0º
b = 9.7861 (7) Å µ = 0.26 mm1
c = 16.0119 (12) Å T = 113 (2) K
V = 1469.32 (19) Å3 Prism, colourless
Z = 4 0.32 × 0.24 × 0.20 mm
F000 = 616

Data collection

Rigaku Saturn diffractometer 3496 independent reflections
Radiation source: rotating anode 2754 reflections with I > 2σ(I)
Monochromator: confocal Rint = 0.039
Detector resolution: 7.31 pixels mm-1 θmax = 27.9º
T = 113(2) K θmin = 2.4º
ω scans h = −12→12
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005) k = −12→12
Tmin = 0.921, Tmax = 0.949 l = −21→21
13814 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027   w = 1/[σ2(Fo2) + (0.0232P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056 (Δ/σ)max = 0.001
S = 0.96 Δρmax = 0.22 e Å3
3496 reflections Δρmin = −0.21 e Å3
192 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1490 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.00 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.32887 (4) 0.17773 (4) 1.09957 (2) 0.02303 (9)
O1 1.13067 (10) 0.70996 (9) 0.86903 (6) 0.0151 (2)
O2 0.98638 (10) 0.97666 (9) 0.74249 (6) 0.0174 (2)
N1 0.91782 (13) 0.75551 (12) 0.76336 (7) 0.0151 (3)
N2 0.80263 (13) 0.76074 (12) 0.70613 (7) 0.0146 (3)
C1 1.30520 (15) 0.33360 (15) 1.04901 (8) 0.0159 (3)
C2 1.17767 (16) 0.35872 (14) 1.00795 (8) 0.0168 (3)
H2 1.1040 0.2921 1.0078 0.020*
C3 1.15907 (16) 0.48241 (13) 0.96720 (8) 0.0159 (3)
H3 1.0720 0.5002 0.9389 0.019*
C4 1.26701 (15) 0.58168 (15) 0.96708 (9) 0.0149 (3)
C5 1.39448 (15) 0.55382 (14) 1.00941 (8) 0.0176 (3)
H5 1.4685 0.6201 1.0100 0.021*
C6 1.41381 (15) 0.43007 (14) 1.05056 (9) 0.0175 (3)
H6 1.5003 0.4117 1.0794 0.021*
C7 1.24400 (15) 0.71056 (14) 0.92346 (8) 0.0153 (3)
C8 1.30641 (15) 0.83596 (15) 0.92271 (8) 0.0175 (3)
H8 1.3868 0.8635 0.9547 0.021*
C9 1.22900 (14) 0.91848 (15) 0.86505 (9) 0.0165 (3)
H9 1.2472 1.0113 0.8515 0.020*
C10 1.12421 (14) 0.83819 (14) 0.83345 (8) 0.0137 (3)
C11 1.00485 (15) 0.86322 (14) 0.77523 (8) 0.0138 (3)
C12 0.66234 (15) 0.78352 (14) 0.74892 (9) 0.0163 (3)
C13 0.65461 (17) 0.92221 (15) 0.79274 (9) 0.0240 (4)
H13A 0.7283 0.9270 0.8360 0.036*
H13B 0.5604 0.9333 0.8184 0.036*
H13C 0.6701 0.9952 0.7518 0.036*
C14 0.55159 (16) 0.77717 (16) 0.67895 (10) 0.0241 (4)
H14A 0.5713 0.8491 0.6380 0.036*
H14B 0.4561 0.7906 0.7025 0.036*
H14C 0.5563 0.6877 0.6516 0.036*
C15 0.63850 (16) 0.66767 (15) 0.81165 (9) 0.0230 (3)
H15A 0.6501 0.5795 0.7834 0.035*
H15B 0.5419 0.6742 0.8347 0.035*
H15C 0.7083 0.6751 0.8570 0.035*
H2A 0.8186 (15) 0.8364 (13) 0.6731 (8) 0.012 (4)*
H1A 0.9484 (16) 0.6722 (16) 0.7743 (9) 0.029 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02355 (19) 0.02007 (19) 0.0255 (2) 0.00437 (17) −0.00042 (17) 0.00723 (17)
O1 0.0162 (5) 0.0122 (5) 0.0169 (5) 0.0000 (4) −0.0040 (4) 0.0010 (4)
O2 0.0205 (5) 0.0104 (5) 0.0214 (5) −0.0001 (4) −0.0019 (5) 0.0019 (4)
N1 0.0154 (6) 0.0107 (7) 0.0192 (7) 0.0012 (5) −0.0047 (5) 0.0004 (5)
N2 0.0145 (7) 0.0146 (7) 0.0146 (6) 0.0003 (5) −0.0032 (5) 0.0022 (5)
C1 0.0218 (8) 0.0154 (7) 0.0105 (7) 0.0048 (7) 0.0022 (6) 0.0016 (6)
C2 0.0168 (7) 0.0180 (8) 0.0157 (7) −0.0019 (6) 0.0012 (7) −0.0011 (6)
C3 0.0146 (7) 0.0187 (8) 0.0144 (7) 0.0016 (6) −0.0031 (6) −0.0010 (6)
C4 0.0157 (7) 0.0162 (8) 0.0128 (7) 0.0021 (6) −0.0004 (6) −0.0034 (6)
C5 0.0180 (8) 0.0172 (8) 0.0177 (8) −0.0014 (6) −0.0022 (6) −0.0043 (6)
C6 0.0157 (8) 0.0225 (8) 0.0144 (8) 0.0045 (7) −0.0029 (6) −0.0021 (6)
C7 0.0125 (7) 0.0185 (8) 0.0150 (8) 0.0015 (6) −0.0024 (6) −0.0025 (6)
C8 0.0137 (7) 0.0185 (7) 0.0202 (8) −0.0026 (6) −0.0021 (6) −0.0018 (6)
C9 0.0169 (7) 0.0129 (7) 0.0196 (8) −0.0008 (6) 0.0022 (6) 0.0011 (6)
C10 0.0157 (7) 0.0106 (7) 0.0149 (7) 0.0023 (6) 0.0015 (6) 0.0004 (6)
C11 0.0139 (7) 0.0139 (8) 0.0137 (7) 0.0019 (6) 0.0041 (6) −0.0023 (6)
C12 0.0134 (7) 0.0168 (7) 0.0187 (8) 0.0007 (6) −0.0017 (7) 0.0000 (6)
C13 0.0207 (9) 0.0222 (8) 0.0292 (9) 0.0024 (7) −0.0007 (7) −0.0052 (7)
C14 0.0209 (8) 0.0245 (9) 0.0270 (9) 0.0008 (7) −0.0075 (7) 0.0012 (7)
C15 0.0224 (8) 0.0230 (8) 0.0237 (8) −0.0003 (8) −0.0005 (7) 0.0029 (7)

Geometric parameters (Å, °)

Cl1—C1 1.7411 (14) C6—H6 0.9500
O1—C7 1.3744 (15) C7—C8 1.360 (2)
O1—C10 1.3795 (16) C8—C9 1.4252 (19)
O2—C11 1.2398 (15) C8—H8 0.9500
N1—C11 1.3465 (17) C9—C10 1.3561 (18)
N1—N2 1.4174 (16) C9—H9 0.9500
N1—H1A 0.882 (15) C10—C11 1.4771 (19)
N2—C12 1.4999 (18) C12—C14 1.5289 (19)
N2—H2A 0.922 (13) C12—C13 1.5296 (18)
C1—C2 1.3866 (19) C12—C15 1.5311 (18)
C1—C6 1.3889 (19) C13—H13A 0.9800
C2—C3 1.3861 (17) C13—H13B 0.9800
C2—H2 0.9500 C13—H13C 0.9800
C3—C4 1.4029 (19) C14—H14A 0.9800
C3—H3 0.9500 C14—H14B 0.9800
C4—C5 1.4009 (18) C14—H14C 0.9800
C4—C7 1.4578 (19) C15—H15A 0.9800
C5—C6 1.3906 (19) C15—H15B 0.9800
C5—H5 0.9500 C15—H15C 0.9800
C7—O1—C10 106.97 (10) C10—C9—H9 126.8
C11—N1—N2 121.66 (12) C8—C9—H9 126.8
C11—N1—H1A 119.9 (10) C9—C10—O1 109.95 (12)
N2—N1—H1A 114.2 (10) C9—C10—C11 133.51 (13)
N1—N2—C12 112.24 (10) O1—C10—C11 116.41 (12)
N1—N2—H2A 106.0 (9) O2—C11—N1 123.82 (13)
C12—N2—H2A 106.6 (9) O2—C11—C10 121.41 (13)
C2—C1—C6 121.36 (13) N1—C11—C10 114.74 (12)
C2—C1—Cl1 119.06 (11) N2—C12—C14 104.77 (11)
C6—C1—Cl1 119.58 (11) N2—C12—C13 112.52 (12)
C3—C2—C1 119.11 (13) C14—C12—C13 109.88 (12)
C3—C2—H2 120.4 N2—C12—C15 108.52 (11)
C1—C2—H2 120.4 C14—C12—C15 110.58 (12)
C2—C3—C4 120.97 (14) C13—C12—C15 110.44 (12)
C2—C3—H3 119.5 C12—C13—H13A 109.5
C4—C3—H3 119.5 C12—C13—H13B 109.5
C5—C4—C3 118.69 (13) H13A—C13—H13B 109.5
C5—C4—C7 121.77 (13) C12—C13—H13C 109.5
C3—C4—C7 119.54 (13) H13A—C13—H13C 109.5
C6—C5—C4 120.66 (13) H13B—C13—H13C 109.5
C6—C5—H5 119.7 C12—C14—H14A 109.5
C4—C5—H5 119.7 C12—C14—H14B 109.5
C1—C6—C5 119.20 (13) H14A—C14—H14B 109.5
C1—C6—H6 120.4 C12—C14—H14C 109.5
C5—C6—H6 120.4 H14A—C14—H14C 109.5
C8—C7—O1 109.33 (12) H14B—C14—H14C 109.5
C8—C7—C4 136.18 (13) C12—C15—H15A 109.5
O1—C7—C4 114.49 (12) C12—C15—H15B 109.5
C7—C8—C9 107.33 (13) H15A—C15—H15B 109.5
C7—C8—H8 126.3 C12—C15—H15C 109.5
C9—C8—H8 126.3 H15A—C15—H15C 109.5
C10—C9—C8 106.41 (13) H15B—C15—H15C 109.5
C11—N1—N2—C12 −101.13 (14) O1—C7—C8—C9 −0.05 (16)
C6—C1—C2—C3 0.5 (2) C4—C7—C8—C9 −179.46 (15)
Cl1—C1—C2—C3 −179.57 (10) C7—C8—C9—C10 −0.42 (16)
C1—C2—C3—C4 0.0 (2) C8—C9—C10—O1 0.73 (16)
C2—C3—C4—C5 −0.3 (2) C8—C9—C10—C11 176.25 (14)
C2—C3—C4—C7 179.88 (13) C7—O1—C10—C9 −0.77 (15)
C3—C4—C5—C6 0.2 (2) C7—O1—C10—C11 −177.14 (11)
C7—C4—C5—C6 180.00 (13) N2—N1—C11—O2 5.2 (2)
C2—C1—C6—C5 −0.6 (2) N2—N1—C11—C10 −176.72 (11)
Cl1—C1—C6—C5 179.45 (10) C9—C10—C11—O2 1.9 (2)
C4—C5—C6—C1 0.3 (2) O1—C10—C11—O2 177.18 (12)
C10—O1—C7—C8 0.49 (14) C9—C10—C11—N1 −176.21 (15)
C10—O1—C7—C4 −179.95 (11) O1—C10—C11—N1 −0.92 (17)
C5—C4—C7—C8 −15.6 (3) N1—N2—C12—C14 −176.55 (11)
C3—C4—C7—C8 164.26 (16) N1—N2—C12—C13 64.11 (15)
C5—C4—C7—O1 165.04 (12) N1—N2—C12—C15 −58.41 (14)
C3—C4—C7—O1 −15.13 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.882 (15) 2.026 (16) 2.8744 (15) 160.9 (14)

Symmetry codes: (i) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2380).

References

  1. Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998). Annu. Rev. Entomol.43, 545–569. [DOI] [PubMed]
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Heller, J. J., Mattioda, H., Klein, E. & Sagenmuller, A. (1992). Brighton Crop. Prot. Conf. Pests. Dis.1, 59–66.
  4. Li, X. C., Yang, X. L., Kai, Z. P. & Ling, Y. (2006). Huaxue Tongbao, 69, 668–673.
  5. Mao, C. H., Wang, Q. M., Huang, R. Q., Bi, F. C., Chen, L., Liu, Y. X. & Shang, J. (2004). J. Agric. Food Chem.52, 6737–6741. [DOI] [PubMed]
  6. Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wing, K. D. (1988). Science, 241, 467–469. [DOI] [PubMed]
  9. Wing, K. D., Slawecki, R. A. & Carlson, G. R. (1988). Science, 241, 470–472. [DOI] [PubMed]
  10. Yang, X. L., Qian, J. H., Chen, F. H. & Wang, D. Q. (2002). CN Patent No. 1370405.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808003486/cv2380sup1.cif

e-64-0o561-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003486/cv2380Isup2.hkl

e-64-0o561-Isup2.hkl (171.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES