Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 15;64(Pt 3):o594. doi: 10.1107/S1600536808004029

Methyl 4-acet­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Matloob Ahmad a, Hamid Latif Siddiqui a,*, Saeed Ahmad b, Muhammad Irfan Ashiq a, Graham John Tizzard c
PMCID: PMC2960850  PMID: 21201932

Abstract

In the title compound, C13H13NO6S, the thia­zine ring adopts a distorted half-chair conformation. Each mol­ecule is linked to its neighbour through inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Fabiola et al. (1998); Golič & Leban (1987); Kojić-Prodić & Rużić-Toroš (1982); Rajagopal & Seshadri (1990); Reck et al. (1988); Rehman et al. (2005, 2006); Turck et al. (1996).graphic file with name e-64-0o594-scheme1.jpg

Experimental

Crystal data

  • C13H13NO6S

  • M r = 311.30

  • Monoclinic, Inline graphic

  • a = 6.8917 (5) Å

  • b = 24.1814 (17) Å

  • c = 8.2861 (5) Å

  • β = 97.876 (4)°

  • V = 1367.86 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.902, T max = 0.949

  • 12265 measured reflections

  • 3032 independent reflections

  • 2183 reflections with I > 2σ(I)

  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.145

  • S = 1.03

  • 3032 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Pearce & Watkin, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004029/kp2156sup1.cif

e-64-0o594-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004029/kp2156Isup2.hkl

e-64-0o594-Isup2.hkl (145.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O4i 0.98 2.48 3.387 (3) 153
C5—H5⋯O1i 0.95 2.48 3.349 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Higher Education Commission of Pakistan and the University of the Punjab, Lahore.

supplementary crystallographic information

Comment

Among the vast class of benzothiazines, 1,2-benzothiazine1,1-dioxides are the most versatile compounds due to their applications in various fields such as pharmaceuticals (Turck et al., 1996), dyes (Rajagopal & Seshadri, 1990) and fungicides. In continuation of our investigation of the chemistry of 1,2-benzothiazine 1,1-dioxide derivatives (Rehman et al., 2005; Rehman et al., 2006) we have synthesized the title compound (I) and its crystal structure is reported here.

In (I) (Fig. 1), the benzene ring of the benzothiazine nucleus is planar (the maximum least square deviation from the plane of the atoms involved is 0.01 Å) while the thiazine ring adopts a distorted half chair conformation. N1 has a pyramidal geometry projecting the methyl group approximately perpendicular to the thiazine ring. Atoms O1, O3 and O5 lie approximately in the plane of the ring while O2 lies almost perpendicular to it.

The C7—O3 bond length in (I) is longer [1.389 (3)] than in the related molecules having no substitution at O3 [1.352 (9) Å; Golič & Leban, 1987; 1.350 (9) Å; Reck et al., 1988].

C9—O4 bond length [1.201 (13) Å] is observed to be shorter than in its previously reported non acylated analogue [1.262 (10) Å; Golič & Leban, 1987] due to no involvement of O4 electrons in the hydrogen bonding. O4 lies almost perpendicular to the thiazine ring and the bond angle C7—C8—C9 [127.3 (2) Å] is greater than observed in the related hydrogen bonded oxicams [121.0 (3) Å; Kojić-Prodić & Rużić-Toroš, 1982; 120.9 (2) Å, Fabiola et al., 1998]. Molecules are linked by C—H···O hydrogen bonds (Table1) forming a chain along a axis.

Experimental

Acetyl chloride (1.57 g; 10 mmol) was slowly added to a mixture of methyl 4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylate1,1-dioxide (1.345 g; 5 mmol), triethylamine (0.71 g; 7 mmol) and carbon tetrachloride (25 ml) under nitrogen atmosphere at 273 K. The mixture was stirred for a period of three hours at room temperature and the solvent was evaporated under vacuum. A residue was poured over ice-water mixture to get the white coloured product which was washed with cold water and recrystallized from chloroform-methanol mixture (1:1). Yield 1.31 g; 84°; m.p. 422 K.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. Dashed lines denote hydrogen bonds.

Crystal data

C13H13NO6S F(000) = 648
Mr = 311.30 Dx = 1.512 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15145 reflections
a = 6.8917 (5) Å θ = 2.9–27.5°
b = 24.1814 (17) Å µ = 0.26 mm1
c = 8.2861 (5) Å T = 120 K
β = 97.876 (4)° Block, colourless
V = 1367.86 (16) Å3 0.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Nonius CCD camera on κ-goniostat diffractometer 3032 independent reflections
Radiation source: Bruker Nonius FR591 Rotating Anode 2183 reflections with I > 2σ(I)
graphite Rint = 0.057
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ and ω scans to fill the asymmetric unit h = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) k = −31→30
Tmin = 0.902, Tmax = 0.949 l = −10→9
12265 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.6225P] where P = (Fo2 + 2Fc2)/3
3032 reflections (Δ/σ)max = 0.001
193 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Experimental. SADABS was used to perform the Absorption correction Estimated minimum and maximum transmission: 0.6195 0.7456 The given Tmin and Tmax were generated using the SHELX SIZE command
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5172 (4) 0.43090 (10) 0.7387 (3) 0.0183 (5)
C2 0.7043 (4) 0.45347 (10) 0.7686 (3) 0.0213 (6)
H2 0.7629 0.4616 0.8766 0.026*
C3 0.8032 (4) 0.46376 (10) 0.6369 (3) 0.0213 (5)
H3 0.9315 0.4790 0.6544 0.026*
C4 0.7153 (4) 0.45192 (10) 0.4788 (3) 0.0219 (6)
H4 0.7836 0.4597 0.3893 0.026*
C5 0.5299 (4) 0.42895 (9) 0.4508 (3) 0.0183 (5)
H5 0.4719 0.4211 0.3425 0.022*
C6 0.4276 (4) 0.41729 (9) 0.5809 (3) 0.0167 (5)
C7 0.2364 (3) 0.39001 (9) 0.5570 (3) 0.0162 (5)
C8 0.1613 (4) 0.36162 (10) 0.6749 (3) 0.0181 (5)
C9 −0.0253 (4) 0.32911 (10) 0.6577 (3) 0.0202 (6)
C10 −0.2808 (4) 0.28845 (11) 0.4788 (3) 0.0301 (6)
H10A −0.2544 0.2510 0.5215 0.045*
H10B −0.3298 0.2865 0.3622 0.045*
H10C −0.3793 0.3061 0.5364 0.045*
C11 0.3594 (4) 0.30948 (11) 0.8954 (3) 0.0294 (7)
H11A 0.2711 0.2784 0.8643 0.044*
H11B 0.3914 0.3107 1.0143 0.044*
H11C 0.4800 0.3048 0.8464 0.044*
C12 0.1291 (4) 0.35858 (10) 0.2862 (3) 0.0207 (6)
C13 −0.0222 (4) 0.37189 (12) 0.1456 (3) 0.0307 (7)
H13A −0.0128 0.3455 0.0572 0.046*
H13B −0.0008 0.4094 0.1073 0.046*
H13C −0.1526 0.3695 0.1796 0.046*
N1 0.2622 (3) 0.36187 (8) 0.8366 (2) 0.0185 (5)
O1 0.4912 (3) 0.41115 (8) 1.04687 (19) 0.0263 (4)
O2 0.2249 (3) 0.46261 (7) 0.8823 (2) 0.0234 (4)
O3 0.1272 (2) 0.39845 (6) 0.40526 (18) 0.0184 (4)
O4 −0.0967 (3) 0.31203 (8) 0.7727 (2) 0.0353 (5)
O5 −0.1014 (3) 0.32064 (7) 0.5028 (2) 0.0266 (4)
O6 0.2420 (3) 0.32061 (7) 0.3014 (2) 0.0282 (5)
S1 0.37225 (9) 0.42031 (2) 0.89441 (7) 0.0197 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0191 (13) 0.0190 (12) 0.0169 (12) 0.0010 (10) 0.0030 (10) 0.0017 (9)
C2 0.0201 (14) 0.0197 (12) 0.0222 (13) −0.0006 (10) −0.0035 (10) −0.0003 (10)
C3 0.0138 (13) 0.0196 (12) 0.0302 (14) −0.0010 (10) 0.0021 (10) 0.0026 (11)
C4 0.0205 (14) 0.0207 (12) 0.0260 (13) 0.0023 (10) 0.0082 (10) 0.0032 (10)
C5 0.0193 (14) 0.0183 (12) 0.0175 (12) 0.0029 (10) 0.0034 (10) 0.0009 (9)
C6 0.0162 (13) 0.0149 (11) 0.0182 (12) 0.0021 (9) −0.0003 (10) 0.0017 (9)
C7 0.0146 (12) 0.0198 (12) 0.0135 (11) 0.0019 (10) −0.0006 (9) −0.0019 (9)
C8 0.0204 (14) 0.0183 (12) 0.0151 (11) 0.0004 (10) 0.0009 (9) −0.0017 (9)
C9 0.0214 (14) 0.0197 (12) 0.0201 (13) 0.0000 (10) 0.0047 (10) −0.0040 (10)
C10 0.0250 (16) 0.0325 (15) 0.0320 (15) −0.0132 (12) 0.0013 (12) −0.0068 (12)
C11 0.0372 (17) 0.0243 (14) 0.0257 (14) 0.0046 (12) 0.0006 (12) 0.0038 (11)
C12 0.0186 (14) 0.0267 (13) 0.0175 (12) −0.0040 (11) 0.0046 (10) −0.0015 (10)
C13 0.0280 (16) 0.0437 (17) 0.0190 (13) −0.0027 (13) −0.0015 (11) −0.0039 (12)
N1 0.0192 (12) 0.0202 (10) 0.0157 (10) −0.0012 (8) 0.0013 (8) 0.0007 (8)
O1 0.0243 (11) 0.0390 (11) 0.0141 (9) −0.0034 (8) −0.0023 (7) 0.0010 (8)
O2 0.0248 (10) 0.0230 (9) 0.0223 (9) 0.0011 (7) 0.0031 (7) −0.0041 (7)
O3 0.0176 (9) 0.0218 (9) 0.0152 (8) 0.0003 (7) −0.0003 (7) −0.0008 (7)
O4 0.0386 (13) 0.0458 (12) 0.0225 (10) −0.0196 (10) 0.0080 (9) 0.0008 (9)
O5 0.0222 (10) 0.0351 (10) 0.0223 (9) −0.0119 (8) 0.0020 (7) −0.0044 (8)
O6 0.0308 (11) 0.0284 (10) 0.0259 (10) 0.0028 (8) 0.0054 (8) −0.0049 (8)
S1 0.0207 (4) 0.0234 (3) 0.0147 (3) −0.0017 (2) 0.0014 (2) −0.0012 (2)

Geometric parameters (Å, °)

C1—C2 1.391 (3) C10—O5 1.451 (3)
C1—C6 1.407 (3) C10—H10A 0.9800
C1—S1 1.755 (3) C10—H10B 0.9800
C2—C3 1.386 (4) C10—H10C 0.9800
C2—H2 0.9500 C11—N1 1.484 (3)
C3—C4 1.396 (3) C11—H11A 0.9800
C3—H3 0.9500 C11—H11B 0.9800
C4—C5 1.384 (3) C11—H11C 0.9800
C4—H4 0.9500 C12—O6 1.199 (3)
C5—C6 1.396 (3) C12—O3 1.380 (3)
C5—H5 0.9500 C12—C13 1.488 (3)
C6—C7 1.463 (3) C13—H13A 0.9800
C7—C8 1.353 (3) C13—H13B 0.9800
C7—O3 1.389 (3) C13—H13C 0.9800
C8—N1 1.422 (3) N1—S1 1.644 (2)
C8—C9 1.498 (3) O1—S1 1.4258 (17)
C9—O4 1.203 (3) O2—S1 1.4354 (18)
C9—O5 1.334 (3)
C2—C1—C6 122.4 (2) O5—C10—H10C 109.5
C2—C1—S1 122.25 (18) H10A—C10—H10C 109.5
C6—C1—S1 115.33 (18) H10B—C10—H10C 109.5
C3—C2—C1 118.3 (2) N1—C11—H11A 109.5
C3—C2—H2 120.8 N1—C11—H11B 109.5
C1—C2—H2 120.8 H11A—C11—H11B 109.5
C2—C3—C4 120.4 (2) N1—C11—H11C 109.5
C2—C3—H3 119.8 H11A—C11—H11C 109.5
C4—C3—H3 119.8 H11B—C11—H11C 109.5
C5—C4—C3 120.8 (2) O6—C12—O3 121.9 (2)
C5—C4—H4 119.6 O6—C12—C13 128.5 (2)
C3—C4—H4 119.6 O3—C12—C13 109.5 (2)
C4—C5—C6 120.3 (2) C12—C13—H13A 109.5
C4—C5—H5 119.9 C12—C13—H13B 109.5
C6—C5—H5 119.9 H13A—C13—H13B 109.5
C5—C6—C1 117.9 (2) C12—C13—H13C 109.5
C5—C6—C7 121.9 (2) H13A—C13—H13C 109.5
C1—C6—C7 120.2 (2) H13B—C13—H13C 109.5
C8—C7—O3 121.0 (2) C8—N1—C11 116.50 (18)
C8—C7—C6 123.9 (2) C8—N1—S1 115.14 (15)
O3—C7—C6 114.97 (19) C11—N1—S1 117.95 (17)
C7—C8—N1 119.5 (2) C12—O3—C7 119.17 (18)
C7—C8—C9 127.3 (2) C9—O5—C10 115.4 (2)
N1—C8—C9 113.2 (2) O1—S1—O2 119.20 (10)
O4—C9—O5 124.0 (2) O1—S1—N1 108.13 (11)
O4—C9—C8 123.0 (2) O2—S1—N1 107.37 (10)
O5—C9—C8 113.0 (2) O1—S1—C1 110.97 (12)
O5—C10—H10A 109.5 O2—S1—C1 108.25 (11)
O5—C10—H10B 109.5 N1—S1—C1 101.39 (11)
H10A—C10—H10B 109.5
C6—C1—C2—C3 1.3 (4) C7—C8—N1—C11 −108.8 (3)
S1—C1—C2—C3 −175.79 (18) C9—C8—N1—C11 72.3 (3)
C1—C2—C3—C4 0.4 (4) C7—C8—N1—S1 35.6 (3)
C2—C3—C4—C5 −1.1 (4) C9—C8—N1—S1 −143.34 (17)
C3—C4—C5—C6 0.1 (4) O6—C12—O3—C7 −10.5 (3)
C4—C5—C6—C1 1.6 (3) C13—C12—O3—C7 170.6 (2)
C4—C5—C6—C7 −176.3 (2) C8—C7—O3—C12 −86.4 (3)
C2—C1—C6—C5 −2.3 (3) C6—C7—O3—C12 98.0 (2)
S1—C1—C6—C5 175.01 (17) O4—C9—O5—C10 −0.2 (4)
C2—C1—C6—C7 175.6 (2) C8—C9—O5—C10 178.9 (2)
S1—C1—C6—C7 −7.1 (3) C8—N1—S1—O1 −170.76 (17)
C5—C6—C7—C8 157.1 (2) C11—N1—S1—O1 −27.0 (2)
C1—C6—C7—C8 −20.7 (4) C8—N1—S1—O2 59.42 (19)
C5—C6—C7—O3 −27.4 (3) C11—N1—S1—O2 −156.78 (18)
C1—C6—C7—O3 154.8 (2) C8—N1—S1—C1 −54.01 (19)
O3—C7—C8—N1 −169.13 (19) C11—N1—S1—C1 89.79 (19)
C6—C7—C8—N1 6.2 (4) C2—C1—S1—O1 −28.5 (2)
O3—C7—C8—C9 9.6 (4) C6—C1—S1—O1 154.23 (17)
C6—C7—C8—C9 −175.1 (2) C2—C1—S1—O2 104.1 (2)
C7—C8—C9—O4 −168.4 (3) C6—C1—S1—O2 −73.2 (2)
N1—C8—C9—O4 10.4 (3) C2—C1—S1—N1 −143.1 (2)
C7—C8—C9—O5 12.4 (4) C6—C1—S1—N1 39.6 (2)
N1—C8—C9—O5 −168.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O4i 0.98 2.49 3.387 (3) 153
C5—H5···O1i 0.95 2.48 3.349 (3) 151

Symmetry codes: (i) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2156).

References

  1. Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.
  2. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  3. Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.
  4. Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.
  5. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Pearce, L. J. & Watkin, D. J. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  8. Rajagopal, R. & Seshadri, S. (1990). Dyes Pigments, 13, 93–99.
  9. Reck, G., Dietz, G., Laban, G., Gunter, W., Bannier, G. & Hohne, E. (1988). Pharmazie, 43, 477–481. [PubMed]
  10. Rehman, M. Z., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1171–1175.
  11. Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [DOI] [PubMed]
  12. Sheldrick, G. M. (2007). SADABS Version 2007/2. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). Clin. Pharm.36, 79–84. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808004029/kp2156sup1.cif

e-64-0o594-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004029/kp2156Isup2.hkl

e-64-0o594-Isup2.hkl (145.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES