Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 29;64(Pt 3):m505–m506. doi: 10.1107/S1600536808005540

Diaqua­bis(4-chloro­benzoato-κO)bis­(N,N-diethyl­nicotinamide-κN 1)manganese(II)

Tuncer Hökelek a,*, Nagihan Çaylak b, Hacali Necefoğlu c
PMCID: PMC2960864  PMID: 21201885

Abstract

The title compound, [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], is a monomeric complex with the MnII atom lying on an inversion center. It contains two 4-chloro­benzoate and two diethyl­nicotinamide ligands and two water mol­ecules, all of which are monodentate. The four O atoms in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while the distorted octa­hedral geometry is completed by two N atoms in the axial positions. In the crystal structure, O—H⋯O hydrogen bonds link the mol­ecules into an infinite chain.

Related literature

For general background, see: Adiwidjaja et al. (1978); Amiraslanov et al. (1979); Antolini et al. (1982); Antsyshkina et al. (1980); Nadzhafov et al. (1981); Shnulin et al. (1981). For related structures, see: Hökelek et al. (1995, 1997); Hökelek et al. (2007); Hökelek & Necefoğlu (1996, 1997, 2007).graphic file with name e-64-0m505-scheme1.jpg

Experimental

Crystal data

  • [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2]

  • M r = 758.54

  • Triclinic, Inline graphic

  • a = 7.3552 (1) Å

  • b = 8.6465 (2) Å

  • c = 15.9847 (3) Å

  • α = 84.500 (16)°

  • β = 78.616 (17)°

  • γ = 68.154 (17)°

  • V = 924.73 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 294 (2) K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.902, T max = 0.950

  • 4010 measured reflections

  • 3752 independent reflections

  • 2604 reflections with I > 2σ(I)

  • R int = 0.062

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.080

  • wR(F 2) = 0.254

  • S = 1.04

  • 3752 reflections

  • 225 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.26 e Å−3

  • Δρmin = −1.31 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005540/hy2120sup1.cif

e-64-0m505-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005540/hy2120Isup2.hkl

e-64-0m505-Isup2.hkl (103.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn—O1 2.141 (3)
Mn—O4 2.205 (4)
Mn—N1 2.281 (4)
O1i—Mn—O4 90.38 (14)
O1—Mn—O4 89.62 (14)
O1—Mn—N1i 92.23 (14)
O4—Mn—N1i 92.72 (14)
O1—Mn—N1 87.77 (14)
O4—Mn—N1 87.28 (14)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.99 (4) 1.71 (5) 2.670 (6) 162 (7)
O4—H42⋯O3ii 0.93 (5) 1.85 (5) 2.766 (6) 168 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the purchase of a CAD-4 diffractometer under grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

supplementary crystallographic information

Comment

Transition metal complexes with biochemical molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). The structural functions and coordination relationships of the arylcarboxylate ions in manganese(II) complexes of benzoic acid derivatives may be changed, depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the medium of the synthesis (Adiwidjaja et al., 1978; Amiraslanov et al., 1979; Antsyshkina et al., 1980; Nadzhafov et al., 1981; Shnulin et al., 1981).

N,N-Diethylnicotinamide (DENA) is an important respiratory stimulant. The structures of several complexes obtained by reacting divalent transition metal ions with DENA have been determined in our laboratory, including those of Cu2(DENA)2(C6H5COO)4, (II), (Hökelek et al., 1995), [Zn2(DENA)2(C7H5O3)4].2H2O, (III), (Hökelek & Necefoğlu, 1996), [Co(DENA)2(C7H5O3)2(H2O)2], (IV), (Hökelek & Necefoğlu, 1997), [Cu(DENA)2(C7H4NO4)2(H2O)2], (V), (Hökelek et al., 1997) and [Zn(DENA)2(C7H4FO2)2(H2O)2], (VI), (Hökelek et al., 2007). The structure determination of the title compound, (I), a manganese(II) complex with two chlorobenzoate (CB), two DENA ligands and two water molecules, was undertaken in order to determine the properties of the CB and DENA ligands and also to compare the results obtained with those reported previously.

Compound (I) is a monomeric complex, with the Mn atom lying on a center of symmetry. It contains two CB, two DENA ligands and two water molecules (Fig. 1). All ligands are monodentate. The four O atoms (O1, O4, and their symmetry-related atoms) in the equatorial plane around the Mn atom form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination geometry is completed by the two N atoms of the DENA ligands in the axial positions (Table 1 and Fig. 1).

The near equality of the C1—O1 [1.256 (6) Å] and C1—O2 [1.245 (6) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds, and may be compared with the corresponding distances: 1.259 (9) and 1.273 (9) Å in (II), 1.279 (4) and 1.246 (4) Å in (III), 1.251 (6) and 1.254 (7) Å in (IV), 1.278 (3) and 1.246 (3) Å in (V) and 1.265 (6) and 1.275 (6) Å in [Mn(C9H10NO2)2(H2O)4].2H2O, (VII), (Hökelek & Necefoğlu, 2007). This may be due to the intramolecular O—H···O hydrogen bond involving the carboxylate O atom (Table 2). In (I), the average Mn—O bond length is 2.173 (3) Å. The Mn atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.890 (1) Å; this is reported as 2.185 (4) and 1.365 (3) Å, respectively, in (VII). The dihedral angle between the planar carboxylate group and the benzene ring A (C2 to C7) is 3.0 (4)°, while that between rings A and B (N1/C8 to C12) is 81.0 (4)°.

As can be seen from the packing diagram (Fig. 2), the Mn atoms are located at the corners of the unit cell and the molecules of (I) are linked into infinite chains along the a-axis by intermolecular O—H···O hydrogen bonds (Table 2).

Experimental

The title compound was prepared by the reaction of Mn(NO3)2 (1.79 g, 10 mmol) in H2O (25 ml) and DENA (3.56 g, 20 mmol) in H2O (25 ml) with sodium p-chlorobenzoate (3.57 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement

H atoms of the water molecule were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.96 Å (methyl) and with Uiso(H) = xUeq(C), where x = 1.0 for H atoms of C15 methyl, 1.5 for H atoms of C17 methyl, and 1.2 for other H atoms. The restrains on the C14—C15 bond length and O—H bond lengths and H—O—H bond angle of water molecule were applied. The highest residual electron density was found 0.92 Å from H15B and the deepest hole 0.14 Å from C15.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level. Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 2 - y, -z.]

Fig. 2.

Fig. 2.

A packing diagram of the title compound, viewed down the a-axis, showing hydrogen bonds (dashed lines) linking the molecules into chains. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

[Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2] Z = 1
Mr = 758.54 F000 = 395
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.3552 (1) Å Cell parameters from 25 reflections
b = 8.6465 (2) Å θ = 5.2–11.6º
c = 15.9847 (3) Å µ = 0.56 mm1
α = 84.500 (16)º T = 294 (2) K
β = 78.616 (17)º Block, colorless
γ = 68.154 (17)º 0.30 × 0.15 × 0.10 mm
V = 924.73 (12) Å3

Data collection

Enraf–Nonius TurboCAD-4 diffractometer Rint = 0.062
Radiation source: fine-focus sealed tube θmax = 26.3º
Monochromator: graphite θmin = 3.0º
T = 294(2) K h = −8→9
ω scans k = 0→10
Absorption correction: ψ scan(North et al., 1968) l = −19→19
Tmin = 0.902, Tmax = 0.950 3 standard reflections
4010 measured reflections every 120 min
3752 independent reflections intensity decay: 1%
2604 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.080 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.254   w = 1/[σ2(Fo2) + (0.1471P)2 + 1.5562P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3752 reflections Δρmax = 1.26 e Å3
225 parameters Δρmin = −1.31 e Å3
5 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn 0.0000 1.0000 0.0000 0.0323 (3)
Cl −0.7397 (3) 0.8445 (3) 0.46709 (13) 0.0925 (7)
O1 −0.1119 (5) 0.8758 (4) 0.1086 (2) 0.0408 (8)
O2 0.0744 (5) 0.8690 (5) 0.2036 (3) 0.0508 (10)
O3 −0.8388 (6) 1.3270 (5) 0.1267 (3) 0.0576 (11)
O4 −0.2247 (6) 0.9829 (5) −0.0681 (2) 0.0463 (9)
H41 −0.195 (10) 1.042 (7) −0.122 (2) 0.07 (2)*
H42 −0.221 (12) 0.880 (5) −0.083 (4) 0.08 (2)*
N1 −0.2326 (6) 1.2447 (5) 0.0532 (3) 0.0360 (9)
N2 −0.8349 (8) 1.4183 (8) 0.2506 (4) 0.0649 (15)
C1 −0.0808 (7) 0.8688 (6) 0.1836 (3) 0.0366 (11)
C2 −0.2462 (7) 0.8636 (5) 0.2547 (3) 0.0350 (10)
C3 −0.4206 (7) 0.8580 (6) 0.2372 (3) 0.0381 (11)
H3 −0.4358 0.8589 0.1807 0.046*
C4 −0.5733 (8) 0.8509 (7) 0.3024 (4) 0.0487 (13)
H4 −0.6898 0.8463 0.2904 0.058*
C5 −0.5477 (9) 0.8509 (8) 0.3850 (4) 0.0525 (14)
C6 −0.3789 (9) 0.8586 (8) 0.4047 (4) 0.0533 (14)
H6 −0.3655 0.8585 0.4613 0.064*
C7 −0.2282 (8) 0.8665 (7) 0.3392 (3) 0.0434 (12)
H7 −0.1138 0.8739 0.3520 0.052*
C8 −0.2050 (7) 1.3893 (6) 0.0424 (3) 0.0390 (11)
H8 −0.0855 1.3917 0.0107 0.047*
C9 −0.3452 (8) 1.5356 (6) 0.0760 (4) 0.0461 (13)
H9 −0.3203 1.6343 0.0676 0.055*
C10 −0.5227 (8) 1.5332 (6) 0.1223 (4) 0.0442 (13)
H10 −0.6197 1.6304 0.1458 0.053*
C11 −0.5554 (7) 1.3848 (6) 0.1334 (3) 0.0359 (11)
C12 −0.4080 (7) 1.2446 (6) 0.0965 (3) 0.0380 (11)
H12 −0.4315 1.1453 0.1020 0.046*
C13 −0.7519 (7) 1.3715 (6) 0.1710 (3) 0.0413 (12)
C14 −0.7427 (13) 1.4762 (10) 0.3087 (5) 0.080 (2)
H14A −0.6247 1.4935 0.2770 0.096*
H14B −0.8350 1.5823 0.3318 0.096*
C15 −0.6883 (17) 1.3572 (14) 0.3785 (7) 0.132
H15A −0.6290 1.3989 0.4151 0.132*
H15B −0.5949 1.2527 0.3558 0.132*
H15C −0.8052 1.3412 0.4106 0.132*
C16 −1.0402 (11) 1.4197 (10) 0.2815 (6) 0.080 (2)
H16A −1.1031 1.4942 0.3291 0.096*
H16B −1.1177 1.4616 0.2362 0.096*
C17 −1.0391 (16) 1.2541 (11) 0.3085 (7) 0.107 (3)
H17A −1.1734 1.2589 0.3272 0.160*
H17B −0.9659 1.2137 0.3546 0.160*
H17C −0.9773 1.1802 0.2614 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn 0.0261 (5) 0.0275 (5) 0.0373 (6) −0.0030 (4) −0.0004 (4) −0.0107 (4)
Cl 0.0696 (12) 0.144 (2) 0.0638 (12) −0.0517 (13) 0.0190 (9) −0.0096 (12)
O1 0.043 (2) 0.0384 (19) 0.0390 (19) −0.0133 (16) −0.0033 (15) −0.0072 (14)
O2 0.034 (2) 0.061 (3) 0.057 (2) −0.0162 (18) −0.0097 (17) −0.0010 (19)
O3 0.043 (2) 0.066 (3) 0.070 (3) −0.022 (2) −0.0078 (19) −0.022 (2)
O4 0.043 (2) 0.046 (2) 0.054 (2) −0.0195 (17) −0.0090 (17) −0.0081 (18)
N1 0.030 (2) 0.026 (2) 0.046 (2) −0.0054 (16) −0.0002 (17) −0.0086 (16)
N2 0.052 (3) 0.079 (4) 0.061 (3) −0.026 (3) 0.011 (2) −0.024 (3)
C1 0.031 (2) 0.022 (2) 0.049 (3) −0.0010 (18) −0.007 (2) −0.0055 (19)
C2 0.034 (2) 0.022 (2) 0.044 (3) −0.0032 (18) −0.006 (2) −0.0050 (18)
C3 0.037 (3) 0.033 (3) 0.043 (3) −0.012 (2) −0.007 (2) −0.005 (2)
C4 0.036 (3) 0.058 (3) 0.055 (3) −0.021 (3) −0.005 (2) −0.005 (3)
C5 0.044 (3) 0.055 (3) 0.051 (3) −0.015 (3) 0.005 (3) −0.005 (3)
C6 0.055 (3) 0.064 (4) 0.038 (3) −0.018 (3) −0.006 (2) −0.001 (3)
C7 0.036 (3) 0.045 (3) 0.047 (3) −0.010 (2) −0.008 (2) −0.008 (2)
C8 0.032 (2) 0.032 (2) 0.051 (3) −0.009 (2) −0.005 (2) −0.009 (2)
C9 0.042 (3) 0.030 (3) 0.066 (4) −0.012 (2) −0.007 (3) −0.009 (2)
C10 0.040 (3) 0.027 (2) 0.059 (3) −0.003 (2) −0.005 (2) −0.018 (2)
C11 0.031 (2) 0.032 (2) 0.040 (3) −0.0040 (19) −0.0066 (19) −0.0103 (19)
C12 0.030 (2) 0.028 (2) 0.050 (3) −0.0054 (19) 0.000 (2) −0.010 (2)
C13 0.031 (2) 0.038 (3) 0.051 (3) −0.007 (2) −0.003 (2) −0.013 (2)
C14 0.085 (5) 0.078 (5) 0.072 (5) −0.029 (4) −0.002 (4) −0.009 (4)
C15 0.180 0.156 0.138 −0.130 −0.127 0.126
C16 0.060 (4) 0.067 (5) 0.098 (6) −0.015 (4) 0.018 (4) −0.026 (4)
C17 0.116 (8) 0.071 (6) 0.112 (7) −0.031 (5) 0.030 (6) −0.014 (5)

Geometric parameters (Å, °)

Mn—O1i 2.141 (3) C7—C6 1.383 (8)
Mn—O1 2.141 (3) C7—H7 0.9300
Mn—O4 2.205 (4) C8—H8 0.9300
Mn—O4i 2.205 (4) C9—C8 1.376 (7)
Mn—N1i 2.281 (4) C9—H9 0.9300
Mn—N1 2.281 (4) C10—C9 1.373 (8)
Cl—C5 1.741 (6) C10—H10 0.9300
O1—C1 1.256 (6) C11—C12 1.378 (6)
O2—C1 1.245 (6) C11—C10 1.380 (7)
O3—C13 1.214 (6) C12—H12 0.9300
O4—H41 0.99 (4) C13—N2 1.328 (7)
O4—H42 0.93 (5) C13—C11 1.494 (7)
N1—C8 1.330 (6) C14—C15 1.453 (9)
N1—C12 1.339 (6) C14—H14A 0.9700
N2—C14 1.471 (10) C14—H14B 0.9700
N2—C16 1.489 (9) C15—H15A 0.9600
C2—C3 1.384 (7) C15—H15B 0.9600
C2—C7 1.387 (7) C15—H15C 0.9600
C2—C1 1.502 (7) C16—C17 1.453 (11)
C3—H3 0.9300 C16—H16A 0.9700
C4—C5 1.369 (8) C16—H16B 0.9700
C4—C3 1.388 (7) C17—H17A 0.9600
C4—H4 0.9300 C17—H17B 0.9600
C5—C6 1.366 (9) C17—H17C 0.9600
C6—H6 0.9300
O1i—Mn—O1 180.000 (1) C6—C7—H7 119.7
O1i—Mn—O4 90.38 (14) C2—C7—H7 119.7
O1—Mn—O4 89.62 (14) N1—C8—C9 122.9 (5)
O1i—Mn—O4i 89.62 (14) N1—C8—H8 118.5
O1—Mn—O4i 90.38 (14) C9—C8—H8 118.5
O4—Mn—O4i 180.00 (16) C10—C9—C8 118.8 (5)
O1i—Mn—N1i 87.77 (14) C10—C9—H9 120.6
O1—Mn—N1i 92.23 (14) C8—C9—H9 120.6
O4—Mn—N1i 92.72 (14) C9—C10—C11 119.2 (4)
O4i—Mn—N1i 87.28 (14) C9—C10—H10 120.4
O1i—Mn—N1 92.23 (14) C11—C10—H10 120.4
O1—Mn—N1 87.77 (14) C12—C11—C10 118.2 (5)
O4—Mn—N1 87.28 (14) C12—C11—C13 117.2 (4)
O4i—Mn—N1 92.72 (14) C10—C11—C13 123.8 (4)
N1i—Mn—N1 180.0 N1—C12—C11 123.0 (5)
C1—O1—Mn 127.5 (3) N1—C12—H12 118.5
Mn—O4—H41 100 (4) C11—C12—H12 118.5
Mn—O4—H42 121 (5) O3—C13—N2 120.8 (5)
H41—O4—H42 107 (4) O3—C13—C11 119.4 (5)
C8—N1—C12 117.7 (4) N2—C13—C11 119.7 (5)
C8—N1—Mn 123.5 (3) C15—C14—N2 111.7 (7)
C12—N1—Mn 118.8 (3) C15—C14—H14A 109.3
C13—N2—C14 124.8 (6) N2—C14—H14A 109.3
C13—N2—C16 117.3 (6) C15—C14—H14B 109.3
C14—N2—C16 117.8 (6) N2—C14—H14B 109.3
O2—C1—O1 125.2 (5) H14A—C14—H14B 107.9
O2—C1—C2 117.6 (5) C14—C15—H15A 109.5
O1—C1—C2 117.1 (4) C14—C15—H15B 109.5
C3—C2—C7 118.6 (5) H15A—C15—H15B 109.5
C3—C2—C1 120.8 (5) C14—C15—H15C 109.5
C7—C2—C1 120.6 (5) H15A—C15—H15C 109.5
C2—C3—C4 121.2 (5) H15B—C15—H15C 109.5
C2—C3—H3 119.4 C17—C16—N2 111.5 (7)
C4—C3—H3 119.4 C17—C16—H16A 109.3
C5—C4—C3 118.2 (5) N2—C16—H16A 109.3
C5—C4—H4 120.9 C17—C16—H16B 109.3
C3—C4—H4 120.9 N2—C16—H16B 109.3
C6—C5—C4 122.2 (5) H16A—C16—H16B 108.0
C6—C5—Cl 119.3 (5) C16—C17—H17A 109.5
C4—C5—Cl 118.5 (5) C16—C17—H17B 109.5
C5—C6—C7 119.1 (5) H17A—C17—H17B 109.5
C5—C6—H6 120.5 C16—C17—H17C 109.5
C7—C6—H6 120.5 H17A—C17—H17C 109.5
C6—C7—C2 120.6 (5) H17B—C17—H17C 109.5
O4—Mn—O1—C1 −164.0 (4) C7—C2—C1—O2 2.8 (7)
O4i—Mn—O1—C1 16.0 (4) C3—C2—C1—O1 3.3 (6)
N1i—Mn—O1—C1 103.3 (4) C7—C2—C1—O1 −175.9 (4)
N1—Mn—O1—C1 −76.7 (4) C7—C2—C3—C4 −1.7 (7)
O1i—Mn—N1—C8 −32.0 (4) C1—C2—C3—C4 179.1 (5)
O1—Mn—N1—C8 148.0 (4) C5—C4—C3—C2 0.5 (8)
O4—Mn—N1—C8 −122.3 (4) C3—C4—C5—C6 0.4 (9)
O4i—Mn—N1—C8 57.7 (4) C3—C4—C5—Cl 179.2 (4)
O1i—Mn—N1—C12 146.8 (4) C4—C5—C6—C7 −0.1 (10)
O1—Mn—N1—C12 −33.2 (4) Cl—C5—C6—C7 −178.9 (5)
O4—Mn—N1—C12 56.6 (4) C2—C7—C6—C5 −1.2 (9)
O4i—Mn—N1—C12 −123.4 (4) C10—C9—C8—N1 −0.6 (9)
Mn—O1—C1—O2 −31.6 (7) C11—C10—C9—C8 −0.2 (8)
Mn—O1—C1—C2 146.9 (3) C12—C11—C10—C9 −0.7 (8)
Mn—N1—C8—C9 −178.9 (4) C13—C11—C10—C9 −170.7 (5)
C12—N1—C8—C9 2.2 (8) C10—C11—C12—N1 2.4 (8)
C8—N1—C12—C11 −3.2 (8) C13—C11—C12—N1 173.1 (5)
Mn—N1—C12—C11 177.9 (4) O3—C13—N2—C14 −179.1 (6)
C13—N2—C14—C15 −111.0 (9) C11—C13—N2—C14 −3.4 (10)
C16—N2—C14—C15 72.0 (10) O3—C13—N2—C16 −2.2 (9)
C13—N2—C16—C17 81.2 (9) C11—C13—N2—C16 173.5 (5)
C14—N2—C16—C17 −101.6 (9) O3—C13—C11—C10 114.1 (6)
C3—C2—C7—C6 2.0 (8) N2—C13—C11—C10 −61.6 (8)
C1—C2—C7—C6 −178.8 (5) O3—C13—C11—C12 −55.9 (7)
C3—C2—C1—O2 −178.0 (4) N2—C13—C11—C12 128.3 (6)

Symmetry codes: (i) −x, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H41···O2i 0.99 (4) 1.71 (5) 2.670 (6) 162 (7)
O4—H42···O3ii 0.93 (5) 1.85 (5) 2.766 (6) 168 (7)

Symmetry codes: (i) −x, −y+2, −z; (ii) −x−1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2120).

References

  1. Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim.20, 1075–1080.
  4. Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem.21, 1391–1395.
  5. Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim.15, 1098–1103.
  6. Enraf–Nonius (1989). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  10. Hökelek, T., Budak, K. & Necefoglu, H. (1997). Acta Cryst. C53, 1049–1051.
  11. Hökelek, T., Çaylak, N. & Necefoğlu, H. (2007). Acta Cryst. E63, m2561–m2562.
  12. Hökelek, T. & Necefouglu, H. (1996). Acta Cryst. C52, 1128–1131.
  13. Hökelek, T. & Necefouglu, H. (1997). Acta Cryst. C53, 187–189.
  14. Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.
  15. Hökelek, T., Necefouglu, H. & Balcı, M. (1995). Acta Cryst. C51, 2020–2023.
  16. Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim.22, 124–128.
  17. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim.7, 1409–1416.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005540/hy2120sup1.cif

e-64-0m505-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005540/hy2120Isup2.hkl

e-64-0m505-Isup2.hkl (103.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES