Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 13;64(Pt 3):o584. doi: 10.1107/S160053680800398X

5-Phenyl-2-(4-pyrid­yl)pyrimidine

Marie-Pierre C Santoni a,*, Siu Hong Yu a, Garry S Hanan a, Anna Proust b, Bernold Hasenknopf b
PMCID: PMC2960877  PMID: 21201923

Abstract

The title compound, C15H11N3, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the phenyl and pyridine rings in each mol­ecule are 53.48 (5) and 50.80 (5)°. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds connect mol­ecules into one-dimensional chains. In addition, the crystal structure is stabilized by weak C—H⋯π(arene) inter­actions.

Related literature

For related literature, see: Fang et al. (2002, 2007); Medlycott & Hanan (2005, 2006); Spek (2003).graphic file with name e-64-0o584-scheme1.jpg

Experimental

Crystal data

  • C15H11N3

  • M r = 233.27

  • Triclinic, Inline graphic

  • a = 9.2813 (5) Å

  • b = 9.3609 (5) Å

  • c = 13.9001 (7) Å

  • α = 71.462 (2)°

  • β = 86.957 (2)°

  • γ = 75.788 (3)°

  • V = 1109.54 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 100 (2) K

  • 0.40 × 0.38 × 0.08 mm

Data collection

  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.734, T max = 0.947

  • 15167 measured reflections

  • 3967 independent reflections

  • 3226 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.139

  • S = 1.00

  • 3967 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (local program).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800398X/lh2593sup1.cif

e-64-0o584-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800398X/lh2593Isup2.hkl

e-64-0o584-Isup2.hkl (194.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N5i 0.95 2.55 3.3818 (18) 147
C9—H9⋯N6ii 0.95 2.56 3.4027 (18) 148
C22—H22⋯N2i 0.95 2.54 3.3784 (18) 147
C24—H24⋯N3ii 0.95 2.56 3.4049 (19) 149
C1—H1⋯Cg3iii 0.95 2.91 3.5925 (15) 129
C4—H4⋯Cg3 0.95 2.72 3.4163 (15) 130
C12—H12⋯Cg1i 0.95 2.89 3.5844 (15) 131
C15—H15⋯Cg1iv 0.95 2.92 3.5202 (15) 122
C17—H17⋯Cg6v 0.95 2.84 3.5561 (16) 133
C20—H20⋯Cg6ii 0.95 2.85 3.5251 (15) 129
C26—H26⋯Cg5 0.95 2.86 3.5242 (15) 128
C29—H29⋯Cg5vi 0.95 2.77 3.4451 (15) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1 is the centroid of the N1/C1-C5 ring, Cg3 is the centroid of the N4/C16–C20 ring, Cg5 is the centroid of the C10–C15 ring and Cg6 is the centroid of the C25–C30 ring.

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada, the Ministère de l’Education du Québec and the Université de Montréal for financial support. The authors gratefully acknowledge Mme Françine Bélanger-Gariépy (Laboratoire de diffraction des rayons X, Université de Montréal, Canada) for the teaching of crystallography to MPS. Yuan-Qing Fang is acknowledged for help and guidance with the synthesis.

supplementary crystallographic information

Comment

Ruthenium polypyridyl complexes have long attracted attention due to their exceptional photophysical properties which makes them suitable as chromophores in light-harvesting devices (Medlycott & Hanan, 2005, 2006). Recently, we have reported new pyrimidine-substituted terpyridine ligands and their Ru(II) polypyridyl complexes (Fang et al., 2002, 2007). Introduction of the pyrimidine motif on a terpyridine unit leads to planarization of the system through hydrogen bonds, thus extending pi-delocalization in the acceptor ligand of the metal-to-ligand charge transfer (MLCT) emitting excited-states, which improves the photophysical properties of the complexes. The title compound C15H11N3 (3) [see Fig. 3] was designed for the enhanced π-acceptor character of pyridyl-type ligands for coordination and supramolecular chemistry.

The title compound crystallizes with two molecules per asymmetric unit. The assignment of the nitrogen atoms was confirmed by comparing the observed and expected torsion angles and bond lengths. Ligand (3) is less planar than the terpyridyl analogue (Fang et al., 2007) despite weak intramolecular C—H···lone pair (N) interactions. All non-bonded N···H distances are shorter than 2.75 Å [N2···H2 = 2.57 Å, N3···H4 = 2.57 Å, N5···H17 = 2.62 Å, N6···H19 = 2.51 Å]. The dihedral angles between the phenyl and pyridine rings in each molecule are 53.48 (5)° and 50.80 (5)°. These deviations from planarity, in part, may be influenced by weak intermolecular C—H···N hydrogen bonds connecting molecules into one-dimensional chains and in addition, by the crystal structure being stabilized by weak C—H···π stacking interactions between "head-to-tail" molecules.

Experimental

4-Pyridylamidine hydrochloride (1) (10,0 g, 63.5 mmol), 2-phenyl-1,3-bis(dimethylamino)trimethinium hexafluorophosphate (2) (1 eq, 22.1 g, 63.5 mmol) and NaOMe (1.2 eq, 4.13 g, 76.5 mmol) were dissolved in anhydrous MeOH (500 ml). The resulting yellow solution was refluxed for 15 h under N2. The white solid was isolated by filtration and dried under vacuum to give white shiny micro-crystals (11.0 g, 74%) of pure title compound (3). These crystals were suitable for X-ray diffraction measurements, m.p. 477.8–478.5 K. Anal Calcd for C15H11N3 (233.3): C, 77.23; H, 4.75; N, 18.01. Found: C, 77.04; H, 4.69; N, 17.86.

Refinement

H atoms were generated geometrically (C—H = 0.95 Å) and were included in the refinement in the riding model approximation; their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent site. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit with thermal ellipsoids shown at 50% probability levels. H atoms have been omitted.

Fig. 2.

Fig. 2.

Part of the crystal structure of (3). Hydrogen bonds are shown as dashed lines. Ellipsoids are shown at the 30% probabilty level.

Fig. 3.

Fig. 3.

The reaction scheme for the title compound.

Crystal data

C15H11N3 Z = 4
Mr = 233.27 F(000) = 488
Triclinic, P1 Dx = 1.396 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54178 Å
a = 9.2813 (5) Å Cell parameters from 5655 reflections
b = 9.3609 (5) Å θ = 3.4–68.9°
c = 13.9001 (7) Å µ = 0.68 mm1
α = 71.462 (2)° T = 100 K
β = 86.957 (2)° Block, colourless
γ = 75.788 (3)° 0.40 × 0.38 × 0.08 mm
V = 1109.54 (10) Å3

Data collection

Bruker SMART 6000 diffractometer 3967 independent reflections
Radiation source: Rotating anode 3226 reflections with I > 2σ(I)
Montel 200 optics Rint = 0.046
Detector resolution: 5.5 pixels mm-1 θmax = 68.9°, θmin = 3.4°
ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −11→11
Tmin = 0.734, Tmax = 0.947 l = −16→16
15167 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.1892P] where P = (Fo2 + 2Fc2)/3
3967 reflections (Δ/σ)max = 0.001
325 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.09769 (12) 0.44347 (13) 1.42209 (9) 0.0235 (3)
N2 −0.12326 (12) 0.79515 (13) 1.05916 (8) 0.0215 (3)
N3 0.10382 (12) 0.60327 (13) 1.06789 (9) 0.0230 (3)
C28 0.60351 (14) 1.04795 (15) 0.59991 (10) 0.0230 (3)
H28 0.6235 1.0980 0.5313 0.028*
C24 0.59612 (14) 0.67217 (15) 0.96148 (10) 0.0211 (3)
H24 0.6697 0.6196 0.9262 0.025*
C22 0.40977 (14) 0.89133 (15) 0.96659 (10) 0.0210 (3)
H22 0.3519 0.9935 0.9349 0.025*
C1 −0.20867 (14) 0.54005 (15) 1.35782 (10) 0.0222 (3)
H1 −0.3061 0.5581 1.3835 0.027*
C2 −0.18962 (14) 0.61497 (15) 1.25624 (10) 0.0206 (3)
H2 −0.2717 0.6841 1.2144 0.025*
C3 −0.04783 (14) 0.58719 (14) 1.21624 (10) 0.0188 (3)
C4 0.06828 (14) 0.48702 (15) 1.28198 (10) 0.0204 (3)
H4 0.1664 0.4647 1.2580 0.025*
C5 0.03846 (14) 0.42042 (15) 1.38280 (10) 0.0218 (3)
H5 0.1193 0.3543 1.4270 0.026*
C6 −0.02146 (13) 0.66572 (15) 1.10832 (10) 0.0190 (3)
C7 −0.09684 (14) 0.86669 (15) 0.96277 (10) 0.0207 (3)
H7 −0.1671 0.9585 0.9265 0.025*
C8 0.02937 (13) 0.81303 (14) 0.91253 (10) 0.0191 (3)
C9 0.12654 (14) 0.67759 (15) 0.97125 (10) 0.0224 (3)
H9 0.2138 0.6359 0.9407 0.027*
C10 0.05403 (13) 0.89220 (15) 0.80502 (10) 0.0192 (3)
C11 0.00409 (13) 1.05394 (15) 0.76275 (10) 0.0203 (3)
H11 −0.0429 1.1139 0.8045 0.024*
C12 0.02259 (14) 1.12719 (15) 0.66058 (10) 0.0217 (3)
H12 −0.0111 1.2368 0.6330 0.026*
C13 0.09030 (14) 1.04032 (16) 0.59868 (10) 0.0223 (3)
H13 0.1021 1.0903 0.5287 0.027*
C14 0.14063 (14) 0.88000 (15) 0.63960 (10) 0.0227 (3)
H14 0.1872 0.8206 0.5974 0.027*
C15 0.12309 (13) 0.80658 (15) 0.74159 (10) 0.0202 (3)
H15 0.1582 0.6971 0.7689 0.024*
C29 0.71673 (14) 0.94102 (15) 0.66453 (10) 0.0221 (3)
H29 0.8144 0.9178 0.6400 0.027*
C30 0.68821 (13) 0.86809 (15) 0.76430 (10) 0.0197 (3)
H30 0.7664 0.7944 0.8077 0.024*
C25 0.54460 (14) 0.90173 (15) 0.80227 (10) 0.0186 (3)
C26 0.43120 (14) 1.00916 (15) 0.73613 (10) 0.0203 (3)
H26 0.3332 1.0326 0.7601 0.024*
C27 0.46033 (15) 1.08163 (15) 0.63604 (10) 0.0230 (3)
H27 0.3825 1.1545 0.5919 0.028*
C23 0.51637 (13) 0.82266 (15) 0.90904 (10) 0.0184 (3)
N6 0.57446 (11) 0.59835 (13) 1.05838 (8) 0.0210 (3)
C21 0.46901 (13) 0.67626 (15) 1.10567 (10) 0.0187 (3)
N5 0.38525 (12) 0.82082 (12) 1.06340 (8) 0.0211 (3)
C18 0.44441 (13) 0.59364 (15) 1.21314 (10) 0.0186 (3)
C19 0.49348 (13) 0.43229 (15) 1.25172 (10) 0.0203 (3)
H19 0.5441 0.3745 1.2097 0.024*
C20 0.46761 (14) 0.35763 (15) 1.35169 (10) 0.0215 (3)
H20 0.4998 0.2476 1.3760 0.026*
N4 0.39970 (12) 0.43088 (13) 1.41673 (8) 0.0238 (3)
C16 0.35492 (14) 0.58659 (16) 1.37925 (10) 0.0231 (3)
H16 0.3079 0.6415 1.4238 0.028*
C17 0.37312 (13) 0.67179 (16) 1.27954 (10) 0.0207 (3)
H17 0.3377 0.7816 1.2568 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0246 (6) 0.0248 (6) 0.0228 (6) −0.0064 (5) −0.0001 (5) −0.0092 (5)
N2 0.0197 (5) 0.0236 (6) 0.0209 (6) −0.0007 (5) −0.0027 (4) −0.0095 (5)
N3 0.0199 (5) 0.0226 (6) 0.0238 (6) −0.0003 (5) 0.0001 (5) −0.0071 (5)
C28 0.0266 (7) 0.0257 (7) 0.0181 (7) −0.0088 (6) 0.0001 (5) −0.0070 (6)
C24 0.0192 (6) 0.0235 (7) 0.0211 (7) −0.0017 (5) −0.0004 (5) −0.0104 (6)
C22 0.0198 (6) 0.0187 (6) 0.0229 (7) −0.0011 (5) −0.0013 (5) −0.0068 (5)
C1 0.0192 (6) 0.0252 (7) 0.0250 (7) −0.0050 (5) 0.0014 (5) −0.0119 (6)
C2 0.0174 (6) 0.0218 (7) 0.0243 (7) −0.0032 (5) −0.0030 (5) −0.0102 (6)
C3 0.0191 (6) 0.0176 (6) 0.0215 (7) −0.0033 (5) −0.0019 (5) −0.0090 (5)
C4 0.0173 (6) 0.0208 (6) 0.0254 (7) −0.0033 (5) −0.0016 (5) −0.0108 (6)
C5 0.0205 (6) 0.0209 (6) 0.0234 (7) −0.0029 (5) −0.0046 (5) −0.0070 (6)
C6 0.0165 (6) 0.0191 (6) 0.0225 (7) −0.0019 (5) −0.0035 (5) −0.0094 (6)
C7 0.0199 (6) 0.0213 (7) 0.0197 (7) −0.0001 (5) −0.0047 (5) −0.0078 (5)
C8 0.0182 (6) 0.0194 (7) 0.0212 (7) −0.0025 (5) −0.0035 (5) −0.0094 (6)
C9 0.0180 (6) 0.0250 (7) 0.0225 (7) −0.0012 (5) 0.0010 (5) −0.0080 (6)
C10 0.0135 (6) 0.0229 (7) 0.0225 (7) −0.0037 (5) −0.0025 (5) −0.0090 (6)
C11 0.0171 (6) 0.0225 (7) 0.0230 (7) −0.0028 (5) −0.0029 (5) −0.0106 (6)
C12 0.0194 (6) 0.0208 (6) 0.0247 (7) −0.0041 (5) −0.0049 (5) −0.0064 (6)
C13 0.0211 (6) 0.0283 (7) 0.0191 (7) −0.0085 (6) −0.0010 (5) −0.0075 (6)
C14 0.0187 (6) 0.0285 (7) 0.0257 (7) −0.0066 (5) 0.0013 (5) −0.0145 (6)
C15 0.0160 (6) 0.0193 (6) 0.0256 (7) −0.0026 (5) −0.0017 (5) −0.0085 (6)
C29 0.0200 (6) 0.0279 (7) 0.0228 (7) −0.0077 (6) 0.0017 (5) −0.0128 (6)
C30 0.0167 (6) 0.0221 (7) 0.0206 (7) −0.0016 (5) −0.0044 (5) −0.0089 (5)
C25 0.0182 (6) 0.0188 (6) 0.0213 (7) −0.0040 (5) −0.0016 (5) −0.0096 (5)
C26 0.0166 (6) 0.0211 (6) 0.0242 (7) −0.0030 (5) −0.0008 (5) −0.0093 (6)
C27 0.0224 (7) 0.0215 (7) 0.0239 (7) −0.0032 (5) −0.0061 (5) −0.0059 (6)
C23 0.0143 (6) 0.0211 (7) 0.0211 (7) −0.0030 (5) −0.0025 (5) −0.0092 (6)
N6 0.0197 (5) 0.0231 (6) 0.0197 (6) −0.0008 (5) −0.0017 (4) −0.0090 (5)
C21 0.0154 (6) 0.0209 (7) 0.0214 (7) −0.0029 (5) −0.0031 (5) −0.0094 (6)
N5 0.0195 (5) 0.0203 (6) 0.0214 (6) −0.0014 (5) 0.0000 (4) −0.0063 (5)
C18 0.0135 (6) 0.0232 (7) 0.0202 (7) −0.0038 (5) −0.0024 (5) −0.0081 (6)
C19 0.0170 (6) 0.0229 (7) 0.0230 (7) −0.0031 (5) −0.0034 (5) −0.0104 (6)
C20 0.0181 (6) 0.0217 (7) 0.0231 (7) −0.0030 (5) −0.0051 (5) −0.0054 (6)
N4 0.0208 (6) 0.0288 (6) 0.0214 (6) −0.0051 (5) −0.0024 (5) −0.0076 (5)
C16 0.0203 (6) 0.0288 (7) 0.0223 (7) −0.0043 (6) −0.0002 (5) −0.0119 (6)
C17 0.0173 (6) 0.0228 (7) 0.0229 (7) −0.0026 (5) −0.0022 (5) −0.0097 (6)

Geometric parameters (Å, °)

N1—C1 1.3429 (18) C11—C12 1.3890 (18)
N1—C5 1.3451 (17) C11—H11 0.95
N2—C7 1.3338 (17) C12—C13 1.3904 (18)
N2—C6 1.3445 (17) C12—H12 0.95
N3—C9 1.3344 (17) C13—C14 1.3911 (19)
N3—C6 1.3474 (16) C13—H13 0.95
C28—C29 1.3874 (19) C14—C15 1.3854 (18)
C28—C27 1.3935 (19) C14—H14 0.95
C28—H28 0.95 C15—H15 0.95
C24—N6 1.3341 (17) C29—C30 1.3810 (18)
C24—C23 1.3987 (19) C29—H29 0.95
C24—H24 0.95 C30—C25 1.4068 (18)
C22—N5 1.3321 (17) C30—H30 0.95
C22—C23 1.4010 (18) C25—C26 1.3998 (19)
C22—H22 0.95 C25—C23 1.4746 (18)
C1—C2 1.3861 (18) C26—C27 1.3853 (18)
C1—H1 0.95 C26—H26 0.95
C2—C3 1.3982 (18) C27—H27 0.95
C2—H2 0.95 N6—C21 1.3446 (16)
C3—C4 1.3924 (19) C21—N5 1.3442 (17)
C3—C6 1.4829 (18) C21—C18 1.4825 (18)
C4—C5 1.3847 (18) C18—C19 1.3962 (19)
C4—H4 0.95 C18—C17 1.3970 (18)
C5—H5 0.95 C19—C20 1.3808 (18)
C7—C8 1.3998 (18) C19—H19 0.95
C7—H7 0.95 C20—N4 1.3440 (17)
C8—C9 1.3949 (19) C20—H20 0.95
C8—C10 1.4757 (18) N4—C16 1.3458 (18)
C9—H9 0.95 C16—C17 1.3871 (19)
C10—C15 1.4027 (18) C16—H16 0.95
C10—C11 1.4039 (19) C17—H17 0.95
C1—N1—C5 116.27 (12) C12—C13—C14 119.78 (13)
C7—N2—C6 116.84 (11) C12—C13—H13 120.1
C9—N3—C6 116.34 (11) C14—C13—H13 120.1
C29—C28—C27 119.71 (12) C15—C14—C13 120.31 (12)
C29—C28—H28 120.1 C15—C14—H14 119.8
C27—C28—H28 120.1 C13—C14—H14 119.8
N6—C24—C23 123.58 (11) C14—C15—C10 120.70 (12)
N6—C24—H24 118.2 C14—C15—H15 119.6
C23—C24—H24 118.2 C10—C15—H15 119.6
N5—C22—C23 123.44 (12) C30—C29—C28 120.36 (12)
N5—C22—H22 118.3 C30—C29—H29 119.8
C23—C22—H22 118.3 C28—C29—H29 119.8
N1—C1—C2 123.93 (12) C29—C30—C25 120.69 (12)
N1—C1—H1 118 C29—C30—H30 119.7
C2—C1—H1 118 C25—C30—H30 119.7
C1—C2—C3 119.00 (12) C26—C25—C30 118.38 (12)
C1—C2—H2 120.5 C26—C25—C23 121.73 (11)
C3—C2—H2 120.5 C30—C25—C23 119.88 (11)
C4—C3—C2 117.68 (12) C27—C26—C25 120.69 (12)
C4—C3—C6 121.26 (11) C27—C26—H26 119.7
C2—C3—C6 121.03 (12) C25—C26—H26 119.7
C5—C4—C3 118.96 (12) C26—C27—C28 120.18 (12)
C5—C4—H4 120.5 C26—C27—H27 119.9
C3—C4—H4 120.5 C28—C27—H27 119.9
N1—C5—C4 124.14 (12) C24—C23—C22 114.48 (12)
N1—C5—H5 117.9 C24—C23—C25 122.19 (11)
C4—C5—H5 117.9 C22—C23—C25 123.33 (12)
N2—C6—N3 125.23 (12) C24—N6—C21 116.46 (11)
N2—C6—C3 117.34 (11) N5—C21—N6 125.40 (12)
N3—C6—C3 117.42 (11) N5—C21—C18 118.22 (11)
N2—C7—C8 123.18 (12) N6—C21—C18 116.37 (11)
N2—C7—H7 118.4 C22—N5—C21 116.63 (11)
C8—C7—H7 118.4 C19—C18—C17 117.45 (12)
C9—C8—C7 114.70 (12) C19—C18—C21 120.29 (11)
C9—C8—C10 123.20 (11) C17—C18—C21 122.26 (12)
C7—C8—C10 122.08 (12) C20—C19—C18 119.28 (12)
N3—C9—C8 123.71 (11) C20—C19—H19 120.4
N3—C9—H9 118.1 C18—C19—H19 120.4
C8—C9—H9 118.1 N4—C20—C19 124.09 (12)
C15—C10—C11 118.38 (12) N4—C20—H20 118
C15—C10—C8 120.59 (12) C19—C20—H20 118
C11—C10—C8 120.99 (11) C20—N4—C16 116.18 (12)
C12—C11—C10 120.74 (12) N4—C16—C17 124.03 (12)
C12—C11—H11 119.6 N4—C16—H16 118
C10—C11—H11 119.6 C17—C16—H16 118
C11—C12—C13 120.08 (12) C16—C17—C18 118.96 (12)
C11—C12—H12 120 C16—C17—H17 120.5
C13—C12—H12 120 C18—C17—H17 120.5
C5—N1—C1—C2 −0.23 (18) C27—C28—C29—C30 −0.06 (19)
N1—C1—C2—C3 1.52 (19) C28—C29—C30—C25 −0.50 (18)
C1—C2—C3—C4 −1.28 (18) C29—C30—C25—C26 0.86 (18)
C1—C2—C3—C6 −179.38 (11) C29—C30—C25—C23 −179.99 (11)
C2—C3—C4—C5 −0.09 (18) C30—C25—C26—C27 −0.67 (18)
C6—C3—C4—C5 178.00 (11) C23—C25—C26—C27 −179.80 (11)
C1—N1—C5—C4 −1.28 (19) C25—C26—C27—C28 0.13 (18)
C3—C4—C5—N1 1.46 (19) C29—C28—C27—C26 0.25 (19)
C7—N2—C6—N3 −0.15 (18) N6—C24—C23—C22 −0.22 (18)
C7—N2—C6—C3 178.6 (1) N6—C24—C23—C25 179.12 (11)
C9—N3—C6—N2 −0.02 (19) N5—C22—C23—C24 0.14 (18)
C9—N3—C6—C3 −178.77 (11) N5—C22—C23—C25 −179.20 (11)
C4—C3—C6—N2 −158.60 (12) C26—C25—C23—C24 148.58 (13)
C2—C3—C6—N2 19.42 (17) C30—C25—C23—C24 −30.54 (17)
C4—C3—C6—N3 20.25 (17) C26—C25—C23—C22 −32.13 (18)
C2—C3—C6—N3 −161.73 (12) C30—C25—C23—C22 148.75 (13)
C6—N2—C7—C8 0.11 (18) C23—C24—N6—C21 0.22 (18)
N2—C7—C8—C9 0.08 (18) C24—N6—C21—N5 −0.14 (18)
N2—C7—C8—C10 178.41 (11) C24—N6—C21—C18 179.6 (1)
C6—N3—C9—C8 0.23 (19) C23—C22—N5—C21 −0.07 (18)
C7—C8—C9—N3 −0.26 (19) N6—C21—N5—C22 0.07 (19)
C10—C8—C9—N3 −178.57 (11) C18—C21—N5—C22 −179.67 (11)
C9—C8—C10—C15 33.47 (18) N5—C21—C18—C19 160.88 (12)
C7—C8—C10—C15 −144.72 (13) N6—C21—C18—C19 −18.89 (17)
C9—C8—C10—C11 −148.99 (13) N5—C21—C18—C17 −19.43 (18)
C7—C8—C10—C11 32.82 (18) N6—C21—C18—C17 160.81 (12)
C15—C10—C11—C12 0.05 (18) C17—C18—C19—C20 1.14 (18)
C8—C10—C11—C12 −177.54 (11) C21—C18—C19—C20 −179.15 (10)
C10—C11—C12—C13 0.43 (18) C18—C19—C20—N4 −1.45 (19)
C11—C12—C13—C14 −0.57 (19) C19—C20—N4—C16 0.40 (18)
C12—C13—C14—C15 0.24 (19) C20—N4—C16—C17 0.95 (19)
C13—C14—C15—C10 0.25 (18) N4—C16—C17—C18 −1.19 (19)
C11—C10—C15—C14 −0.39 (18) C19—C18—C17—C16 0.08 (18)
C8—C10—C15—C14 177.20 (11) C21—C18—C17—C16 −179.62 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···N5i 0.95 2.55 3.3818 (18) 147
C9—H9···N6ii 0.95 2.56 3.4027 (18) 148
C22—H22···N2i 0.95 2.54 3.3784 (18) 147
C24—H24···N3ii 0.95 2.56 3.4049 (19) 149
C1—H1···Cg3iii 0.95 2.91 3.5925 (15) 129.
C4—H4···Cg3 0.95 2.72 3.4163 (15) 130.
C12—H12···Cg1i 0.95 2.89 3.5844 (15) 131.
C15—H15···Cg1iv 0.95 2.92 3.5202 (15) 122.
C17—H17···Cg6v 0.95 2.84 3.5561 (16) 133.
C20—H20···Cg6ii 0.95 2.85 3.5251 (15) 129.
C26—H26···Cg5 0.95 2.86 3.5242 (15) 128.
C29—H29···Cg5vi 0.95 2.77 3.4451 (15) 129.

Symmetry codes: (i) −x, −y+2, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z; (iv) −x, −y+1, −z+2; (v) −x+1, −y+2, −z+2; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2593).

References

  1. Bruker (1999). SAINT Release 7.06A. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). SMART Release 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc.124, 7912–7913. [DOI] [PubMed]
  4. Fang, Y.-Q., Taylor, N. J., Laverdière, F., Hanan, G. S., Loiseau, F., Nastasi, F., Campagna, S., Nierengarten, H., Leize-Wagner, E. & Van Dorsselaer, A. (2007). Inorg. Chem.46, 2854–2863. [DOI] [PubMed]
  5. Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev.34, 133–142. [DOI] [PubMed]
  6. Medlycott, E. A. & Hanan, G. S. (2006). Coord. Chem. Rev.250, 1763–1782.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800398X/lh2593sup1.cif

e-64-0o584-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800398X/lh2593Isup2.hkl

e-64-0o584-Isup2.hkl (194.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES