Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Feb 13;64(Pt 3):o578–o579. doi: 10.1107/S1600536808003899

4-Hydr­oxy-5-(4-methoxy­phen­yl)pyrrolidin-2-one

M Fazli Mohammat a, Zurina Shaameri a, A Sazali Hamzah a, Hoong-Kun Fun b,*, Suchada Chantrapromma c,
PMCID: PMC2960887  PMID: 21201918

Abstract

In the title compound, C11H13NO3, the pyrrolidin-2-one ring is in an envelope conformation with the hydroxyl and 4-methoxy­phenyl substituents mutually cis. The methoxy group is slighty twisted away from the mean plane of the attached benzene ring. The mol­ecules are arranged into screw chains along the c axis. These chains are inter­connected via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into sheets parallel to the ac plane. The crystal structure is further stabilized by weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For details of ring conformations, see: Cremer & Pople (1975). For the biological properties of pyrrolidine alkaloids, see for example: Iida et al. (1986); Royles (1996). For the syntheses of compounds containing the tetra­mic acid ring, see for example: Chandrasekhar et al. (2006); Gurjar et al. (2006); Yoda et al. (1996). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-0o578-scheme1.jpg

Experimental

Crystal data

  • C11H13NO3

  • M r = 207.22

  • Orthorhombic, Inline graphic

  • a = 11.9862 (6) Å

  • b = 11.6251 (6) Å

  • c = 7.1539 (4) Å

  • V = 996.83 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100.0 (1) K

  • 0.43 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.958, T max = 0.983

  • 8681 measured reflections

  • 1562 independent reflections

  • 1218 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.109

  • S = 1.09

  • 1562 reflections

  • 145 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003899/sj2463sup1.cif

e-64-0o578-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003899/sj2463Isup2.hkl

e-64-0o578-Isup2.hkl (77KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.88 (4) 2.05 (4) 2.917 (3) 167 (4)
O2—H1O2⋯O3ii 0.90 (4) 1.98 (4) 2.800 (2) 152 (3)
C3—H3A⋯O1iii 0.98 2.33 3.193 (3) 146
C11—H11A⋯O1iv 0.96 2.49 3.395 (3) 158
C6—H6ACg1v 0.93 2.81 3.514 (3) 133
C9—H9ACg1vi 0.93 2.68 3.554 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge the generous support of both the Universiti Teknologi MARA and Universiti Sains Malaysia as well as the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

Many naturally occurring compounds containing a tetramic acid ring system such as radicamine, fuligorobin and codonopsinine possess potent antibiotic, antiviral, antifungal, cytotoxic (Royles, 1996) as well as hypotensive activities (Iida et al., 1986). The title compound, C11H13NO3, can act as an essential intermediate in the synthesis of such tetramic acid derivatives (Chandrasekhar et al., 2006; Gurjar et al., 2006; Yoda et al., 1996), which eventually can be used as a template in multi-step syntheses of biologically active natural products. We have synthesized the title compound (I) and its structure is reported here, Fig. 1.

In (I), the pyrrolidine-2-one ring adopts an envelope conformation with atom C3 displaced from the C1/C2/C3/N1 plane by 0.219 (3) Å, and with puckering parameters (Cremer & Pople, 1975) Q = 0.357 (3) Å and φ = 117.9 (4)°. The bond angles around C1 atom are indicative of sp2 hybridization. The hydroxyl and 4-methoxyphenyl substituents are attached to the pyrrolidin-2-one ring at atom C3 and C4, respectively and is in cis-configuration (Fig. 1). The methoxy group is slightly twisted away from the mean plane of the phenyl ring as shown by the torsion angle C11–O3–C8–C7 = -5.2 (4)° All bond lengths and angles show normal values (Allen et al., 1987)

In the crystal packing of the title compound (Fig. 2), the molecules are arranged into screw chains along the c direction. These chains are interconnected via intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) into sheets parallel to the ac plane. The crystal is further stabilized by weak intermolecular C—H···O and C—H···π interactions; C6—H6A···Cg1 (symmetry code: 3/2 - x, y, 1/2 + z) and C9—H9A··· Cg1 (symmetry code: 2 - x, 1 - y, -1/2 + z), Cg1 is the centroid of C5–C10 phenyl ring.

Experimental

The synthetic approach to the title compound began with the esterification of p-hydroxyphenylglycine (10.00 g, 60.10 mmol) and thionyl chloride in methanol to give the ester product (10.30 g, 95%). Amine protection (10.00 g, 54.9 mmol) was then carried out using tert-butoxycarbonyl (Boc2O) and triethylamine (Et3N) in tetrahydrofuran (THF) to give the N-Boc protected product in 85% yield (13.12 g). The hydroxyl functional group (13.01 g, 46.66 mmol) was protected by converting it to the methyl ether using potassium carbonate and methyl iodide (12.72 g, 93%). Condensation between the N-Boc methyl ester (8.30 g, 28.30 mmol) and methyl malonyl chloride in equimolar amounts furnished an intermediate diester (10.60 g, 95%). Dieckmann cyclization of this intermediate diester (5.50 g, 13.99 mmol) with potassium tert-butoxide (t-BuOK) in toluene gave the carbon skeleton β,β diketoester in 45% yield (1.65 g). Demethoxycarbonylation of the β,β diketoester (0.30 g, 1.1 mmol) was successfully carried out by refluxing in 50 ml acetonitrile to give the basic pyrrolidinone ring skeleton (0.23 g, 99%). Reduction of this diketone (0.16 g, 0.77 mmol) was then carried out in sodium borohydride/methanol at 273 K to give the title compound (0.04 g, 24%). Single crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethyl acetate-petroleum ether (2:1 v/v) solution after several days.

Refinement

H atoms attached to O and N atoms were located in a difference Fourier map and were refined isotropically. H atoms bound to C were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms. A rotating group model was used for the methyl groups. A total of 1121 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the b axis. Hydrogen bonds were drawn as dashed lines.

Crystal data

C11H13NO3 F000 = 440
Mr = 207.22 Dx = 1.381 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1562 reflections
a = 11.9862 (6) Å θ = 1.8–30.0º
b = 11.6251 (6) Å µ = 0.10 mm1
c = 7.1539 (4) Å T = 100.0 (1) K
V = 996.83 (9) Å3 Block, colorless
Z = 4 0.43 × 0.20 × 0.17 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 1562 independent reflections
Radiation source: fine-focus sealed tube 1218 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.066
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 1.8º
ω scans h = −16→13
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −16→16
Tmin = 0.958, Tmax = 0.983 l = −10→9
8681 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109   w = 1/[σ2(Fo2) + (0.0466P)2 + 0.0367P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
1562 reflections Δρmax = 0.22 e Å3
145 parameters Δρmin = −0.24 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.69354 (13) 1.02873 (16) 1.1878 (3) 0.0282 (5)
O2 0.93282 (14) 0.80442 (16) 1.3464 (3) 0.0238 (4)
H1O2 0.977 (3) 0.742 (3) 1.345 (6) 0.045 (10)*
O3 0.87847 (13) 0.33500 (15) 0.8900 (3) 0.0239 (4)
N1 0.76602 (18) 0.86418 (18) 1.0604 (3) 0.0228 (5)
H1N1 0.704 (3) 0.838 (3) 1.009 (6) 0.043 (10)*
C1 0.7727 (2) 0.9651 (2) 1.1524 (4) 0.0223 (6)
C2 0.89395 (19) 0.9844 (2) 1.2029 (5) 0.0243 (6)
H2A 0.9012 1.0105 1.3311 0.029*
H2B 0.9279 1.0408 1.1206 0.029*
C3 0.94736 (19) 0.8665 (2) 1.1771 (4) 0.0222 (6)
H3A 1.0262 0.8725 1.1423 0.027*
C4 0.8761 (2) 0.8158 (2) 1.0169 (4) 0.0207 (6)
H4A 0.9018 0.8495 0.8989 0.025*
C5 0.8762 (2) 0.6876 (2) 0.9962 (4) 0.0199 (6)
C6 0.79693 (19) 0.6171 (2) 1.0788 (4) 0.0221 (6)
H6A 0.7435 0.6497 1.1568 0.027*
C7 0.79523 (19) 0.4993 (2) 1.0483 (4) 0.0229 (6)
H7A 0.7403 0.4538 1.1030 0.028*
C8 0.8756 (2) 0.4503 (2) 0.9363 (4) 0.0214 (6)
C9 0.95804 (18) 0.5175 (2) 0.8550 (4) 0.0226 (6)
H9A 1.0130 0.4839 0.7812 0.027*
C10 0.95734 (19) 0.6345 (2) 0.8850 (4) 0.0220 (6)
H10A 1.0124 0.6796 0.8298 0.026*
C11 0.7980 (2) 0.2604 (2) 0.9764 (5) 0.0287 (7)
H11A 0.8057 0.1841 0.9266 0.043*
H11B 0.7242 0.2885 0.9512 0.043*
H11C 0.8103 0.2588 1.1089 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0208 (9) 0.0270 (10) 0.0367 (12) 0.0068 (8) −0.0016 (9) −0.0014 (9)
O2 0.0184 (8) 0.0253 (10) 0.0276 (11) 0.0048 (8) −0.0014 (8) 0.0003 (9)
O3 0.0211 (8) 0.0217 (9) 0.0288 (11) 0.0006 (7) 0.0017 (8) −0.0027 (8)
N1 0.0133 (10) 0.0230 (11) 0.0321 (14) 0.0000 (9) −0.0023 (10) −0.0027 (10)
C1 0.0202 (12) 0.0228 (12) 0.0238 (16) 0.0016 (10) −0.0008 (10) 0.0026 (12)
C2 0.0194 (12) 0.0219 (13) 0.0317 (16) −0.0007 (10) −0.0029 (11) −0.0019 (12)
C3 0.0137 (11) 0.0240 (13) 0.0289 (14) 0.0009 (10) 0.0009 (11) −0.0020 (12)
C4 0.0179 (12) 0.0200 (13) 0.0242 (14) 0.0006 (10) −0.0001 (10) −0.0017 (11)
C5 0.0137 (11) 0.0218 (13) 0.0243 (15) 0.0006 (10) 0.0000 (10) 0.0009 (11)
C6 0.0170 (11) 0.0255 (13) 0.0239 (14) 0.0016 (9) 0.0024 (11) −0.0013 (12)
C7 0.0167 (12) 0.0243 (13) 0.0278 (15) −0.0008 (10) 0.0027 (11) 0.0001 (12)
C8 0.0178 (12) 0.0212 (13) 0.0251 (15) 0.0021 (10) −0.0030 (10) −0.0015 (11)
C9 0.0173 (12) 0.0254 (13) 0.0252 (14) 0.0029 (9) 0.0040 (11) −0.0021 (12)
C10 0.0170 (12) 0.0239 (13) 0.0251 (14) −0.0011 (9) 0.0024 (11) 0.0013 (13)
C11 0.0250 (13) 0.0263 (15) 0.0346 (18) −0.0003 (11) 0.0035 (12) 0.0030 (14)

Geometric parameters (Å, °)

O1—C1 1.229 (3) C4—H4A 0.9800
O2—C3 1.420 (3) C5—C6 1.387 (4)
O2—H1O2 0.90 (3) C5—C10 1.399 (4)
O3—C8 1.381 (3) C6—C7 1.387 (4)
O3—C11 1.437 (3) C6—H6A 0.9300
N1—C1 1.347 (3) C7—C8 1.376 (4)
N1—C4 1.468 (3) C7—H7A 0.9300
N1—H1N1 0.88 (4) C8—C9 1.387 (3)
C1—C2 1.515 (3) C9—C10 1.378 (4)
C2—C3 1.524 (4) C9—H9A 0.9300
C2—H2A 0.9700 C10—H10A 0.9300
C2—H2B 0.9700 C11—H11A 0.9600
C3—C4 1.547 (4) C11—H11B 0.9600
C3—H3A 0.9800 C11—H11C 0.9600
C4—C5 1.498 (3)
C3—O2—H1O2 109 (3) C3—C4—H4A 108.2
C8—O3—C11 117.8 (2) C6—C5—C10 117.2 (2)
C1—N1—C4 112.6 (2) C6—C5—C4 123.0 (2)
C1—N1—H1N1 123 (2) C10—C5—C4 119.7 (2)
C4—N1—H1N1 123 (2) C7—C6—C5 121.8 (2)
O1—C1—N1 125.4 (2) C7—C6—H6A 119.1
O1—C1—C2 127.0 (2) C5—C6—H6A 119.1
N1—C1—C2 107.6 (2) C8—C7—C6 119.3 (2)
C1—C2—C3 103.9 (2) C8—C7—H7A 120.3
C1—C2—H2A 111.0 C6—C7—H7A 120.3
C3—C2—H2A 111.0 C7—C8—O3 124.0 (2)
C1—C2—H2B 111.0 C7—C8—C9 120.7 (2)
C3—C2—H2B 111.0 O3—C8—C9 115.3 (2)
H2A—C2—H2B 109.0 C10—C9—C8 119.1 (2)
O2—C3—C2 107.6 (2) C10—C9—H9A 120.5
O2—C3—C4 111.8 (2) C8—C9—H9A 120.5
C2—C3—C4 101.6 (2) C9—C10—C5 121.9 (2)
O2—C3—H3A 111.8 C9—C10—H10A 119.1
C2—C3—H3A 111.8 C5—C10—H10A 119.1
C4—C3—H3A 111.8 O3—C11—H11A 109.5
N1—C4—C5 113.8 (2) O3—C11—H11B 109.5
N1—C4—C3 101.1 (2) H11A—C11—H11B 109.5
C5—C4—C3 116.9 (2) O3—C11—H11C 109.5
N1—C4—H4A 108.2 H11A—C11—H11C 109.5
C5—C4—H4A 108.2 H11B—C11—H11C 109.5
C4—N1—C1—O1 172.0 (3) N1—C4—C5—C10 154.0 (2)
C4—N1—C1—C2 −8.0 (3) C3—C4—C5—C10 −88.6 (3)
O1—C1—C2—C3 164.1 (3) C10—C5—C6—C7 −2.1 (4)
N1—C1—C2—C3 −15.8 (3) C4—C5—C6—C7 176.1 (3)
C1—C2—C3—O2 −86.1 (3) C5—C6—C7—C8 1.4 (4)
C1—C2—C3—C4 31.4 (3) C6—C7—C8—O3 −176.9 (2)
C1—N1—C4—C5 154.0 (2) C6—C7—C8—C9 0.3 (4)
C1—N1—C4—C3 27.9 (3) C11—O3—C8—C7 −5.2 (4)
O2—C3—C4—N1 79.4 (2) C11—O3—C8—C9 177.4 (2)
C2—C3—C4—N1 −35.1 (2) C7—C8—C9—C10 −1.2 (4)
O2—C3—C4—C5 −44.7 (3) O3—C8—C9—C10 176.3 (2)
C2—C3—C4—C5 −159.2 (2) C8—C9—C10—C5 0.4 (4)
N1—C4—C5—C6 −24.2 (4) C6—C5—C10—C9 1.2 (4)
C3—C4—C5—C6 93.2 (3) C4—C5—C10—C9 −177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O2i 0.88 (4) 2.05 (4) 2.917 (3) 167 (4)
O2—H1O2···O3ii 0.90 (4) 1.98 (4) 2.800 (2) 152 (3)
C3—H3A···O1iii 0.98 2.33 3.193 (3) 146
C11—H11A···O1iv 0.96 2.49 3.395 (3) 158
C6—H6A···Cg1v 0.93 2.81 3.514 (3) 133
C9—H9A···Cg1vi 0.93 2.68 3.554 (3) 157

Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) −x+2, −y+1, z+1/2; (iii) x+1/2, −y+2, z; (iv) −x+3/2, y−1, z−1/2; (v) x+3/2, −y, z; (vi) −x+2, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2463).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandrasekhar, S., Saritha, B., Jagadeshwar, V. & Prakash, S. J. (2006). Tetrahedron Asymmetry, 17, 1380–1386.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Gurjar, M. K., Borhade, R. G., Puranik, V. G. & Ramana, C. V. (2006). Tetrahedron Lett., 47, 6979–6981.
  6. Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett.27, 5393–5396.
  7. Royles, B. J. L. (1996). Chem. Rev.95, 1961–2001.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Yoda, H., Nakajima, T. & Takabe, K. (1996). Tetrahedron Lett.31, 5531–5534.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808003899/sj2463sup1.cif

e-64-0o578-sup1.cif (16.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808003899/sj2463Isup2.hkl

e-64-0o578-Isup2.hkl (77KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES