Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 12;64(Pt 4):m533–m534. doi: 10.1107/S1600536808006260

(2,2′-Bipyridine)bis­(triphenyl­phosphine)copper(I) nitrate chloro­form solvate hemihydrate

Maribel Navarro a, Oscar A Corona a, Teresa González a, Mario V Capparelli b,*
PMCID: PMC2960891  PMID: 21201995

Abstract

In the title compound, [Cu(C10H8N2)(C18H15P)2]NO2·CHCl3·0.5H2O, the Cu atom is tetra­hedrally coordinated by a bidentate 2,2′-bipyridine ligand and two PPh3 ligands. The Cu—N and Cu—P distances are similar to those observed in similar compounds. The range of coordination angles shows a moderate distortion from ideal tetra­hedral geometry. The bipyridine ligand is twisted [14.2 (4)°] about the ring–ring C—C bond. The nitrate anion and the water and chloro­form mol­ecules of solvation are disordered. In the crystal structure, there are O(water)—H⋯O(nitrate), C—H⋯O(water) and C—H⋯O(nitrate) hydrogen bonds.

Related literature

For related literature, see: Allen et al. (1987); Engelhardt et al. (1985); Hirshfeld (1976); Navarro et al. (2003). graphic file with name e-64-0m533-scheme1.jpg

Experimental

Crystal data

  • [Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2O

  • M r = 934.65

  • Triclinic, Inline graphic

  • a = 10.754 (2) Å

  • b = 12.672 (3) Å

  • c = 17.464 (4) Å

  • α = 99.100 (5)°

  • β = 99.279 (4)°

  • γ = 101.229 (5)°

  • V = 2259.4 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.78 mm−1

  • T = 296 (2) K

  • 0.56 × 0.51 × 0.40 mm

Data collection

  • Rigaku AFC7S Mercury diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) T min = 0.584, T max = 0.733

  • 25842 measured reflections

  • 8576 independent reflections

  • 6719 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.136

  • S = 1.06

  • 8576 reflections

  • 549 parameters

  • 20 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006260/bg2166sup1.cif

e-64-0m533-sup1.cif (34.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006260/bg2166Isup2.hkl

e-64-0m533-Isup2.hkl (411KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—N1 2.070 (2)
Cu1—N12 2.103 (3)
Cu1—P2 2.2600 (9)
Cu1—P1 2.2659 (9)
N1—Cu1—N12 79.71 (10)
N1—Cu1—P2 111.18 (8)
N12—Cu1—P2 111.86 (7)
N1—Cu1—P1 111.46 (8)
N12—Cu1—P1 108.68 (7)
P2—Cu1—P1 124.89 (3)
N1—C6—C7—N12 14.2 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3Si 0.93 2.56 3.317 (9) 139
C5—H5⋯O1Wi 0.93 2.34 3.182 (15) 151
C8—H8⋯O2Sii 0.93 2.38 3.242 (11) 155
C45—H45⋯O3S 0.93 2.59 3.493 (10) 163
C1S—H1S⋯O1Siii 0.98 2.25 3.204 (7) 165
O1W⋯O2Siv     2.663 (19)  
O1W⋯O2Sv     2.667 (19)  

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

Financial support from the Fondo Nacional de Ciencia, Tecnología e Investigación (FONACIT) of Venezuela, project Lab-199700821, is gratefully acknowledged.

supplementary crystallographic information

Comment

The title compound (I) was prepared within our program of studies of copper complexes containing N-bidentated aromatic ligands, focused on the search for drugs with biological activity, especially against parasitic diseases (Navarro et al., 2003).

The structure analysis showed that, in addition to the complex cation and the (partially disordered) nitrate anion the crystals contain disordered molecules of water and chloroform of solvation.

In the cation (Fig. 1), the metal atom is tetrahedrally coordinated to a bidentated 2,2'-bipyridine (bipy) ligand and to two PPh3 moieties. The Cu—N and Cu—P (Table 1) distances are comparable to Cu—N, 2.056 (8), 2.113 (9) Å and Cu—P, 2.246 (3), 2.256 (3) Å observed in the same cation in [Cu(PPh3)2(bipy)]ClO4 (Engelhardt et al., 1985). All bond lengths and angles in the organic ligands are within normal values (Allen et al., 1987).

The range of coordination angles (Table 1) shows a moderate distortion from the ideal tetrahedral geometry. As expected, the bite angle is the smaller one, while the P—Cu—P angle is the largest, due to the bulkiness of the PPh3 moieties. The five-member metallacycle, Cu1—N1—C6—C7—N2, can be described as an envelope on C6, albeit a flat one [C6 is 0.148 (4) Å out of the plane]. The bipy ligand is twisted about C6—C7 (Table 1); the dihedral angle between both heterocycles is 17.0 (2)°.

Although the water's H atoms could not be located (see Refinement Section), short contacts with the nitrate anion [O1w···O2s(1 + x, y, z), 2.663 (19) Å; O1w···O2s(1 - x, 2 - y, -z), 2.667 (19) Å] indicate hydrogen bonds between these two groups. Further evidence of the feasibility of these links is given by the corresponding O2s···O1w···O2s angle [146.7 (5)°]. Several C—H···O bonds may also contribute to the crystal packing (Fig. 2 and Supplementary material).

Experimental

The title compound (I) was synthesized by the reaction of copper nitrate with bipyridine. To a solution of Cu(PPh3)2NO3 (100 mg, 0.15 mmol) in dichloromethane (10 ml) was added 2,2'-bipyridine (24 mg, 0.15 mmol). The solution, initially transparent, became yellow. It was stirred for 1 h at room temperature and then was added to hexane (50 ml). The light yellow solid formed was filtered and dried (122 mg, 98%). All operations were carried out under inert atmosphere. Crystals suitable for X-ray analysis were obtained by slow evaporation of a chloroform solution.

Refinement

The hydrogen atoms were placed in calculated positions using a riding atom model with fixed C—H distances [0.93 Å for C(sp2), 0.98 Å for C(sp3) in CHCl3] and Uiso = 1.2 Ueq(parent atom).

The nitrate anion and the water and chloroform molecules of solvation were found to be disordered. The NO3- showed severe disorder, difficult to model satisfactorily; in the final refinement the four largest residual electron density peaks were close (0.64–1.07 e/Å3) to NO3 atoms. O2s and O3s were split in two positions, with complementary occupancies, and refined isotropically to final occupancies of 0.505 (14) and 0.719 (12) respectively. To obtain better geometries, restraints were applied: SADI to all N—O bonds and to all O···O distances, and FLAT to both NO3 groups. An attempt at splitting N1s, as suggested by its elongated ADP, gave meaningless results. The O1w atom of the water molecule was given an occupancy of 1/2, since it is disordered between two centrosymmetrically related positions, which are mutually exclusive [O1w···O1w(2 - x, 2 - y, -x), 1.53 (3) Å]. The corresponding H atoms could not be found. Each of the Cl atoms of chloroform was split in two alternative positions, with complementary occupancies. The main positions [final occupancy 0.911 (6) for all three] were refined anisotropically, while the alternative ones were given isotropic displacement parameters.

Both Cu—P bonds, with ΔU/σ = 7.21 for Cu1—P1 and 7.13 for Cu1—P2, failed to pass the standard rigid-bond test (e.g.: ΔU/σ≤ 5, Spek, 1998; Hirshfeld, 1976) even after applying a DELU restraint (Sheldrick, 2008). This was probably due to an unfavorable specimen morphology which caused a poor absorption correction.

Figures

Fig. 1.

Fig. 1.

Structure of the complex cation [Cu(PPh3)2(bipy)]+ showing the atomic numbering. Displacement parameters are drawn at 50% probability level.

Fig. 2.

Fig. 2.

Crystal structure of (I). For clarity, alternative positions for disordered atoms and H atoms were omitted. Possible hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C10H8N2)(C18H15P)2]NO3·CHCl3·0.5H2O Z = 2
Mr = 934.65 F000 = 962
Triclinic, P1 Dx = 1.374 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71070 Å
a = 10.754 (2) Å Cell parameters from 15269 reflections
b = 12.672 (3) Å θ = 1.7–28.0º
c = 17.464 (4) Å µ = 0.78 mm1
α = 99.100 (5)º T = 296 (2) K
β = 99.279 (4)º Irregular, green
γ = 101.229 (5)º 0.56 × 0.51 × 0.40 mm
V = 2259.4 (9) Å3

Data collection

Rigaku AFC7S Mercury diffractometer 8576 independent reflections
Radiation source: fine-focus sealed tube 6719 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
Detector resolution: 14.63 pixels mm-1 θmax = 28.0º
T = 296(2) K θmin = 1.2º
ω scans h = −13→13
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2005) k = −16→15
Tmin = 0.584, Tmax = 0.733 l = −21→21
25842 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.136   w = 1/[σ2(Fo2) + (0.0572P)2 + 1.3813P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
8576 reflections Δρmax = 0.49 e Å3
549 parameters Δρmin = −0.52 e Å3
20 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refinement details for disordered atoms are given in the Refimnement section.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.56159 (3) 0.26669 (3) 0.22887 (2) 0.04336 (12)
P1 0.40007 (8) 0.34553 (6) 0.18315 (5) 0.04467 (19)
P2 0.61841 (7) 0.24899 (6) 0.35575 (4) 0.04036 (18)
N1 0.5630 (3) 0.1260 (2) 0.15089 (15) 0.0517 (6)
C2 0.4854 (4) 0.0263 (3) 0.1418 (2) 0.0661 (10)
H2 0.4128 0.0195 0.1648 0.079*
C3 0.5102 (5) −0.0673 (3) 0.0989 (3) 0.0839 (13)
H3 0.4550 −0.1356 0.0934 0.101*
C4 0.6161 (6) −0.0569 (4) 0.0654 (3) 0.0951 (15)
H4 0.6346 −0.1187 0.0372 0.114*
C5 0.6960 (5) 0.0441 (4) 0.0730 (2) 0.0810 (12)
H5 0.7687 0.0517 0.0500 0.097*
C6 0.6661 (3) 0.1351 (3) 0.11567 (19) 0.0555 (8)
C7 0.7456 (3) 0.2477 (3) 0.12513 (19) 0.0549 (8)
C8 0.8316 (4) 0.2757 (4) 0.0758 (2) 0.0813 (12)
H8 0.8441 0.2222 0.0367 0.098*
C9 0.8968 (4) 0.3815 (5) 0.0854 (3) 0.0913 (14)
H9 0.9547 0.4007 0.0531 0.110*
C10 0.8769 (4) 0.4593 (4) 0.1426 (3) 0.0830 (13)
H10 0.9203 0.5322 0.1495 0.100*
C11 0.7911 (3) 0.4281 (3) 0.1902 (2) 0.0625 (9)
H11 0.7791 0.4811 0.2299 0.075*
N12 0.7239 (2) 0.3238 (2) 0.18134 (15) 0.0496 (6)
C21 0.3703 (3) 0.3373 (3) 0.07633 (18) 0.0506 (7)
C22 0.2493 (4) 0.3103 (3) 0.0274 (2) 0.0727 (10)
H22 0.1753 0.2938 0.0484 0.087*
C23 0.2388 (5) 0.3081 (4) −0.0532 (2) 0.0900 (14)
H23 0.1573 0.2884 −0.0859 0.108*
C24 0.3442 (5) 0.3339 (3) −0.0849 (2) 0.0841 (13)
H24 0.3351 0.3340 −0.1387 0.101*
C25 0.4636 (5) 0.3597 (3) −0.0381 (2) 0.0769 (11)
H25 0.5364 0.3766 −0.0601 0.092*
C26 0.4774 (4) 0.3610 (3) 0.0419 (2) 0.0605 (9)
H26 0.5599 0.3780 0.0733 0.073*
C31 0.2417 (3) 0.2894 (3) 0.20327 (19) 0.0506 (7)
C32 0.1871 (3) 0.1791 (3) 0.1751 (2) 0.0676 (10)
H32 0.2279 0.1370 0.1431 0.081*
C33 0.0709 (4) 0.1305 (4) 0.1943 (3) 0.0825 (12)
H33 0.0345 0.0563 0.1753 0.099*
C34 0.0109 (4) 0.1929 (5) 0.2412 (3) 0.0854 (14)
H34 −0.0662 0.1608 0.2544 0.103*
C35 0.0637 (4) 0.3019 (4) 0.2687 (3) 0.0831 (13)
H35 0.0221 0.3438 0.3001 0.100*
C36 0.1787 (3) 0.3507 (3) 0.2502 (2) 0.0633 (9)
H36 0.2140 0.4251 0.2694 0.076*
C41 0.4297 (3) 0.4929 (2) 0.22167 (19) 0.0509 (7)
C42 0.5256 (4) 0.5401 (3) 0.2877 (2) 0.0698 (10)
H42 0.5735 0.4964 0.3119 0.084*
C43 0.5515 (5) 0.6512 (4) 0.3184 (3) 0.0949 (15)
H43 0.6155 0.6819 0.3633 0.114*
C44 0.4819 (5) 0.7157 (4) 0.2822 (3) 0.0934 (14)
H44 0.5004 0.7907 0.3022 0.112*
C45 0.3853 (5) 0.6713 (3) 0.2168 (3) 0.0797 (12)
H45 0.3376 0.7158 0.1934 0.096*
C46 0.3594 (4) 0.5600 (3) 0.1862 (2) 0.0618 (9)
H46 0.2947 0.5298 0.1417 0.074*
C51 0.4918 (3) 0.1884 (2) 0.40385 (17) 0.0422 (6)
C52 0.3641 (3) 0.1788 (3) 0.3692 (2) 0.0585 (9)
H52 0.3439 0.2004 0.3211 0.070*
C53 0.2666 (4) 0.1371 (4) 0.4059 (3) 0.0776 (12)
H53 0.1810 0.1313 0.3824 0.093*
C54 0.2936 (4) 0.1043 (3) 0.4756 (2) 0.0666 (10)
H54 0.2268 0.0769 0.4999 0.080*
C55 0.4182 (4) 0.1115 (3) 0.5100 (2) 0.0630 (9)
H55 0.4366 0.0882 0.5576 0.076*
C56 0.5182 (3) 0.1533 (3) 0.4745 (2) 0.0583 (8)
H56 0.6034 0.1578 0.4983 0.070*
C61 0.6926 (3) 0.3802 (2) 0.42251 (17) 0.0446 (7)
C62 0.8032 (3) 0.4444 (3) 0.4071 (2) 0.0597 (9)
H62 0.8394 0.4181 0.3652 0.072*
C63 0.8595 (4) 0.5465 (3) 0.4535 (3) 0.0743 (11)
H63 0.9344 0.5877 0.4434 0.089*
C64 0.8059 (4) 0.5877 (3) 0.5145 (3) 0.0793 (12)
H64 0.8435 0.6570 0.5453 0.095*
C65 0.6963 (4) 0.5260 (3) 0.5297 (2) 0.0742 (11)
H65 0.6595 0.5539 0.5708 0.089*
C66 0.6399 (3) 0.4228 (3) 0.4846 (2) 0.0575 (8)
H66 0.5660 0.3817 0.4960 0.069*
C71 0.7379 (3) 0.1653 (2) 0.37355 (18) 0.0444 (7)
C72 0.7141 (3) 0.0629 (3) 0.3242 (2) 0.0583 (8)
H72 0.6405 0.0402 0.2843 0.070*
C73 0.7991 (4) −0.0051 (3) 0.3339 (2) 0.0678 (10)
H73 0.7824 −0.0733 0.3005 0.081*
C74 0.9088 (3) 0.0279 (3) 0.3931 (2) 0.0657 (10)
H74 0.9666 −0.0173 0.3993 0.079*
C75 0.9312 (3) 0.1275 (3) 0.4421 (2) 0.0645 (9)
H75 1.0039 0.1494 0.4827 0.077*
C76 0.8469 (3) 0.1965 (3) 0.4323 (2) 0.0558 (8)
H76 0.8643 0.2646 0.4659 0.067*
C1S −0.0946 (4) 0.2653 (3) 0.6980 (3) 0.0822 (12)
H1S −0.1093 0.2748 0.7524 0.099*
Cl1S 0.07297 (19) 0.27094 (17) 0.69940 (16) 0.1137 (7) 0.911 (6)
Cl2S −0.18878 (19) 0.13990 (18) 0.64402 (13) 0.1167 (7) 0.911 (6)
Cl3S −0.1396 (2) 0.37078 (17) 0.65417 (17) 0.1141 (9) 0.911 (6)
Cl1T 0.0416 (19) 0.2325 (18) 0.7246 (11) 0.094 (6)* 0.089 (6)
Cl2T −0.162 (2) 0.191 (3) 0.6233 (15) 0.130 (8)* 0.089 (6)
Cl3T −0.0968 (14) 0.3998 (12) 0.7051 (13) 0.083 (5)* 0.089 (6)
N1S 0.1383 (10) 0.8269 (6) 0.1199 (3) 0.157 (3)
O1S 0.1002 (5) 0.7275 (5) 0.1184 (3) 0.1440 (16)
O2S 0.0559 (12) 0.8453 (8) 0.0668 (6) 0.146 (5)* 0.505 (14)
O2S' 0.1575 (9) 0.9082 (8) 0.0846 (5) 0.123 (4)* 0.495 (14)
O3S 0.2184 (9) 0.8712 (7) 0.1718 (6) 0.182 (4)* 0.719 (12)
O3S' 0.0415 (18) 0.8635 (15) 0.1616 (12) 0.162 (9)* 0.281 (12)
O1W 0.9283 (12) 0.9778 (13) −0.0008 (10) 0.240 (6)* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0457 (2) 0.0458 (2) 0.0419 (2) 0.01544 (16) 0.01346 (16) 0.00713 (15)
P1 0.0477 (4) 0.0513 (4) 0.0405 (4) 0.0202 (3) 0.0129 (3) 0.0096 (3)
P2 0.0363 (4) 0.0465 (4) 0.0409 (4) 0.0123 (3) 0.0109 (3) 0.0093 (3)
N1 0.0652 (17) 0.0463 (14) 0.0434 (15) 0.0186 (13) 0.0071 (13) 0.0042 (11)
C2 0.080 (2) 0.052 (2) 0.059 (2) 0.0102 (18) 0.0028 (19) 0.0029 (16)
C3 0.116 (4) 0.049 (2) 0.074 (3) 0.016 (2) −0.004 (3) 0.0004 (18)
C4 0.136 (4) 0.068 (3) 0.084 (3) 0.048 (3) 0.018 (3) −0.006 (2)
C5 0.109 (3) 0.081 (3) 0.065 (3) 0.052 (3) 0.027 (2) 0.003 (2)
C6 0.070 (2) 0.062 (2) 0.0399 (18) 0.0328 (17) 0.0117 (16) 0.0060 (14)
C7 0.0579 (19) 0.070 (2) 0.0459 (19) 0.0287 (17) 0.0176 (15) 0.0137 (15)
C8 0.089 (3) 0.107 (3) 0.067 (3) 0.040 (3) 0.042 (2) 0.022 (2)
C9 0.082 (3) 0.117 (4) 0.090 (3) 0.019 (3) 0.045 (3) 0.041 (3)
C10 0.073 (3) 0.085 (3) 0.097 (3) 0.005 (2) 0.026 (2) 0.044 (3)
C11 0.059 (2) 0.059 (2) 0.069 (2) 0.0074 (17) 0.0163 (18) 0.0153 (17)
N12 0.0491 (14) 0.0550 (15) 0.0500 (16) 0.0185 (12) 0.0147 (12) 0.0125 (12)
C21 0.062 (2) 0.0529 (17) 0.0414 (18) 0.0228 (15) 0.0111 (15) 0.0106 (13)
C22 0.068 (2) 0.101 (3) 0.057 (2) 0.035 (2) 0.0095 (19) 0.023 (2)
C23 0.095 (3) 0.121 (4) 0.052 (3) 0.034 (3) −0.010 (2) 0.021 (2)
C24 0.128 (4) 0.083 (3) 0.049 (2) 0.035 (3) 0.015 (3) 0.022 (2)
C25 0.105 (3) 0.077 (3) 0.059 (2) 0.023 (2) 0.031 (2) 0.027 (2)
C26 0.071 (2) 0.067 (2) 0.049 (2) 0.0191 (18) 0.0166 (17) 0.0155 (16)
C31 0.0467 (17) 0.063 (2) 0.0479 (19) 0.0194 (15) 0.0093 (14) 0.0190 (15)
C32 0.058 (2) 0.078 (3) 0.066 (2) 0.0139 (19) 0.0105 (18) 0.0127 (19)
C33 0.063 (2) 0.086 (3) 0.091 (3) −0.003 (2) 0.005 (2) 0.031 (2)
C34 0.053 (2) 0.132 (4) 0.084 (3) 0.020 (3) 0.021 (2) 0.051 (3)
C35 0.071 (3) 0.123 (4) 0.080 (3) 0.044 (3) 0.037 (2) 0.042 (3)
C36 0.061 (2) 0.080 (2) 0.063 (2) 0.0306 (19) 0.0269 (18) 0.0231 (18)
C41 0.0577 (19) 0.0502 (17) 0.0527 (19) 0.0214 (15) 0.0208 (15) 0.0117 (14)
C42 0.079 (3) 0.060 (2) 0.066 (2) 0.0253 (19) 0.006 (2) −0.0021 (18)
C43 0.106 (4) 0.073 (3) 0.090 (3) 0.025 (3) 0.001 (3) −0.015 (2)
C44 0.124 (4) 0.058 (2) 0.098 (4) 0.025 (3) 0.036 (3) −0.002 (2)
C45 0.110 (3) 0.066 (2) 0.091 (3) 0.045 (2) 0.053 (3) 0.031 (2)
C46 0.072 (2) 0.063 (2) 0.063 (2) 0.0302 (18) 0.0256 (18) 0.0188 (17)
C51 0.0431 (15) 0.0408 (15) 0.0455 (17) 0.0129 (12) 0.0112 (13) 0.0100 (12)
C52 0.0426 (17) 0.075 (2) 0.063 (2) 0.0106 (16) 0.0104 (15) 0.0297 (18)
C53 0.0441 (19) 0.102 (3) 0.095 (3) 0.010 (2) 0.022 (2) 0.043 (3)
C54 0.061 (2) 0.067 (2) 0.081 (3) 0.0106 (18) 0.035 (2) 0.0257 (19)
C55 0.077 (3) 0.066 (2) 0.054 (2) 0.0147 (19) 0.0265 (19) 0.0225 (17)
C56 0.0505 (18) 0.075 (2) 0.053 (2) 0.0146 (17) 0.0109 (15) 0.0230 (17)
C61 0.0445 (16) 0.0490 (16) 0.0411 (16) 0.0137 (13) 0.0068 (13) 0.0091 (13)
C62 0.0518 (19) 0.064 (2) 0.059 (2) 0.0031 (16) 0.0134 (16) 0.0092 (16)
C63 0.065 (2) 0.064 (2) 0.081 (3) −0.0072 (19) 0.009 (2) 0.009 (2)
C64 0.083 (3) 0.056 (2) 0.082 (3) 0.003 (2) 0.001 (2) −0.003 (2)
C65 0.081 (3) 0.065 (2) 0.071 (3) 0.022 (2) 0.016 (2) −0.0115 (19)
C66 0.0544 (19) 0.0541 (18) 0.063 (2) 0.0131 (15) 0.0170 (16) 0.0014 (15)
C71 0.0399 (15) 0.0529 (17) 0.0478 (18) 0.0174 (13) 0.0156 (13) 0.0164 (13)
C72 0.0558 (19) 0.0559 (19) 0.065 (2) 0.0204 (16) 0.0077 (17) 0.0125 (16)
C73 0.079 (3) 0.056 (2) 0.078 (3) 0.0294 (19) 0.022 (2) 0.0162 (18)
C74 0.055 (2) 0.071 (2) 0.093 (3) 0.0326 (18) 0.030 (2) 0.041 (2)
C75 0.0427 (18) 0.080 (3) 0.079 (3) 0.0223 (17) 0.0105 (17) 0.030 (2)
C76 0.0440 (17) 0.064 (2) 0.061 (2) 0.0180 (15) 0.0082 (15) 0.0113 (16)
C1S 0.106 (3) 0.072 (3) 0.070 (3) 0.032 (2) 0.015 (2) 0.008 (2)
Cl1S 0.1039 (12) 0.0881 (11) 0.1527 (17) 0.0357 (9) 0.0224 (11) 0.0201 (11)
Cl2S 0.1263 (13) 0.0855 (12) 0.1194 (14) 0.0151 (10) 0.0038 (10) −0.0035 (10)
Cl3S 0.1557 (17) 0.1091 (12) 0.123 (2) 0.0812 (12) 0.0695 (16) 0.0501 (12)
N1S 0.281 (9) 0.163 (6) 0.063 (3) 0.120 (6) 0.025 (5) 0.049 (4)
O1S 0.138 (4) 0.184 (5) 0.110 (3) 0.059 (4) 0.013 (3) 0.012 (3)

Geometric parameters (Å, °)

Cu1—N1 2.070 (2) C42—C43 1.381 (5)
Cu1—N12 2.103 (3) C42—H42 0.9300
Cu1—P2 2.2600 (9) C43—C44 1.370 (7)
Cu1—P1 2.2659 (9) C43—H43 0.9300
P1—C21 1.824 (3) C44—C45 1.373 (6)
P1—C31 1.825 (3) C44—H44 0.9300
P1—C41 1.828 (3) C45—C46 1.383 (5)
P2—C51 1.821 (3) C45—H45 0.9300
P2—C61 1.825 (3) C46—H46 0.9300
P2—C71 1.839 (3) C51—C52 1.382 (4)
N1—C2 1.341 (4) C51—C56 1.382 (4)
N1—C6 1.347 (4) C52—C53 1.377 (5)
C2—C3 1.395 (5) C52—H52 0.9300
C2—H2 0.9300 C53—C54 1.353 (5)
C3—C4 1.356 (7) C53—H53 0.9300
C3—H3 0.9300 C54—C55 1.357 (5)
C4—C5 1.370 (6) C54—H54 0.9300
C4—H4 0.9300 C55—C56 1.385 (5)
C5—C6 1.393 (5) C55—H55 0.9300
C5—H5 0.9300 C56—H56 0.9300
C6—C7 1.483 (5) C61—C66 1.386 (4)
C7—N12 1.345 (4) C61—C62 1.394 (4)
C7—C8 1.396 (5) C62—C63 1.379 (5)
C8—C9 1.357 (6) C62—H62 0.9300
C8—H8 0.9300 C63—C64 1.371 (6)
C9—C10 1.362 (7) C63—H63 0.9300
C9—H9 0.9300 C64—C65 1.370 (6)
C10—C11 1.382 (5) C64—H64 0.9300
C10—H10 0.9300 C65—C66 1.382 (5)
C11—N12 1.349 (4) C65—H65 0.9300
C11—H11 0.9300 C66—H66 0.9300
C21—C22 1.384 (5) C71—C76 1.373 (4)
C21—C26 1.388 (5) C71—C72 1.392 (4)
C22—C23 1.389 (5) C72—C73 1.382 (5)
C22—H22 0.9300 C72—H72 0.9300
C23—C24 1.347 (6) C73—C74 1.383 (5)
C23—H23 0.9300 C73—H73 0.9300
C24—C25 1.355 (6) C74—C75 1.363 (5)
C24—H24 0.9300 C74—H74 0.9300
C25—C26 1.378 (5) C75—C76 1.386 (5)
C25—H25 0.9300 C75—H75 0.9300
C26—H26 0.9300 C76—H76 0.9300
C31—C32 1.382 (5) C1S—H1S 0.9800
C31—C36 1.384 (5) C1S—Cl1S 1.786 (5)
C32—C33 1.398 (5) C1S—Cl2S 1.741 (4)
C32—H32 0.9300 C1S—Cl3S 1.750 (4)
C33—C34 1.371 (6) C1S—Cl1t 1.617 (19)
C33—H33 0.9300 C1S—Cl2t 1.47 (3)
C34—C35 1.363 (6) C1S—Cl3t 1.694 (15)
C34—H34 0.9300 N1S—O3S 1.131 (10)
C35—C36 1.382 (5) N1S—O1S 1.241 (8)
C35—H35 0.9300 N1S—O2S 1.259 (12)
C36—H36 0.9300 N1S—O2S' 1.282 (10)
C41—C42 1.382 (5) N1S—O3S' 1.47 (2)
C41—C46 1.394 (5)
N1—Cu1—N12 79.71 (10) C42—C41—C46 118.5 (3)
N1—Cu1—P2 111.18 (8) C42—C41—P1 119.2 (3)
N12—Cu1—P2 111.86 (7) C46—C41—P1 122.2 (3)
N1—Cu1—P1 111.46 (8) C43—C42—C41 121.0 (4)
N12—Cu1—P1 108.68 (7) C43—C42—H42 119.5
P2—Cu1—P1 124.89 (3) C41—C42—H42 119.5
C21—P1—C31 104.14 (15) C44—C43—C42 119.4 (4)
C21—P1—C41 102.77 (14) C44—C43—H43 120.3
C31—P1—C41 104.43 (15) C42—C43—H43 120.3
C21—P1—Cu1 114.07 (11) C43—C44—C45 121.1 (4)
C31—P1—Cu1 115.68 (10) C43—C44—H44 119.5
C41—P1—Cu1 114.29 (11) C45—C44—H44 119.5
C51—P2—C61 103.12 (13) C44—C45—C46 119.4 (4)
C51—P2—C71 101.93 (13) C44—C45—H45 120.3
C61—P2—C71 103.69 (14) C46—C45—H45 120.3
C51—P2—Cu1 118.06 (10) C45—C46—C41 120.5 (4)
C61—P2—Cu1 112.74 (10) C45—C46—H46 119.7
C71—P2—Cu1 115.48 (10) C41—C46—H46 119.7
C2—N1—C6 118.3 (3) C52—C51—C56 118.5 (3)
C2—N1—Cu1 127.0 (2) C52—C51—P2 118.9 (2)
C6—N1—Cu1 113.9 (2) C56—C51—P2 122.6 (2)
N1—C2—C3 122.1 (4) C53—C52—C51 120.0 (3)
N1—C2—H2 118.9 C53—C52—H52 120.0
C3—C2—H2 118.9 C51—C52—H52 120.0
C4—C3—C2 118.7 (4) C54—C53—C52 121.0 (4)
C4—C3—H3 120.6 C54—C53—H53 119.5
C2—C3—H3 120.6 C52—C53—H53 119.5
C3—C4—C5 120.3 (4) C53—C54—C55 119.9 (3)
C3—C4—H4 119.8 C53—C54—H54 120.0
C5—C4—H4 119.8 C55—C54—H54 120.0
C4—C5—C6 118.7 (4) C54—C55—C56 120.3 (3)
C4—C5—H5 120.7 C54—C55—H55 119.8
C6—C5—H5 120.7 C56—C55—H55 119.8
N1—C6—C5 121.8 (3) C51—C56—C55 120.2 (3)
N1—C6—C7 116.0 (3) C51—C56—H56 119.9
C5—C6—C7 122.2 (3) C55—C56—H56 119.9
N12—C7—C8 121.4 (3) C66—C61—C62 118.1 (3)
N12—C7—C6 115.8 (3) C66—C61—P2 123.4 (2)
C8—C7—C6 122.7 (3) C62—C61—P2 118.4 (2)
C9—C8—C7 119.6 (4) C63—C62—C61 120.7 (3)
C9—C8—H8 120.2 C63—C62—H62 119.7
C7—C8—H8 120.2 C61—C62—H62 119.7
C8—C9—C10 119.7 (4) C64—C63—C62 120.5 (4)
C8—C9—H9 120.1 C64—C63—H63 119.7
C10—C9—H9 120.1 C62—C63—H63 119.7
C9—C10—C11 118.8 (4) C65—C64—C63 119.4 (3)
C9—C10—H10 120.6 C65—C64—H64 120.3
C11—C10—H10 120.6 C63—C64—H64 120.3
N12—C11—C10 122.7 (4) C64—C65—C66 120.8 (4)
N12—C11—H11 118.6 C64—C65—H65 119.6
C10—C11—H11 118.6 C66—C65—H65 119.6
C7—N12—C11 117.7 (3) C65—C66—C61 120.5 (3)
C7—N12—Cu1 113.2 (2) C65—C66—H66 119.8
C11—N12—Cu1 128.0 (2) C61—C66—H66 119.8
C22—C21—C26 117.8 (3) C76—C71—C72 118.5 (3)
C22—C21—P1 125.0 (3) C76—C71—P2 124.5 (2)
C26—C21—P1 117.2 (3) C72—C71—P2 117.0 (2)
C21—C22—C23 119.7 (4) C73—C72—C71 120.5 (3)
C21—C22—H22 120.1 C73—C72—H72 119.7
C23—C22—H22 120.1 C71—C72—H72 119.7
C24—C23—C22 121.3 (4) C72—C73—C74 120.2 (4)
C24—C23—H23 119.3 C72—C73—H73 119.9
C22—C23—H23 119.3 C74—C73—H73 119.9
C23—C24—C25 119.8 (4) C75—C74—C73 119.3 (3)
C23—C24—H24 120.1 C75—C74—H74 120.3
C25—C24—H24 120.1 C73—C74—H74 120.3
C24—C25—C26 120.3 (4) C74—C75—C76 120.8 (3)
C24—C25—H25 119.9 C74—C75—H75 119.6
C26—C25—H25 119.9 C76—C75—H75 119.6
C25—C26—C21 121.0 (4) C71—C76—C75 120.7 (3)
C25—C26—H26 119.5 C71—C76—H76 119.7
C21—C26—H26 119.5 C75—C76—H76 119.7
C32—C31—C36 118.8 (3) Cl2S—C1S—Cl1S 110.6 (2)
C32—C31—P1 118.3 (3) Cl2S—C1S—Cl3S 109.0 (3)
C36—C31—P1 122.7 (3) Cl3S—C1S—Cl1S 109.3 (3)
C31—C32—C33 120.4 (4) Cl1S—C1S—H1S 109.3
C31—C32—H32 119.8 Cl2S—C1S—H1S 109.3
C33—C32—H32 119.8 Cl3S—C1S—H1S 109.3
C34—C33—C32 119.6 (4) Cl2t—C1S—Cl1t 107.6 (12)
C34—C33—H33 120.2 Cl2t—C1S—Cl3t 117.1 (11)
C32—C33—H33 120.2 Cl3t—C1S—Cl1t 118.8 (9)
C35—C34—C33 120.2 (4) Cl1t—C1S—H1S 91.7
C35—C34—H34 119.9 Cl2t—C1S—H1S 134.5
C33—C34—H34 119.9 Cl3t—C1S—H1S 85.6
C34—C35—C36 120.6 (4) O3S—N1S—O1S 114.4 (7)
C34—C35—H35 119.7 O3S—N1S—O2S 141.2 (10)
C36—C35—H35 119.7 O1S—N1S—O2S 103.1 (9)
C35—C36—C31 120.4 (4) O1S—N1S—O2S' 151.1 (7)
C35—C36—H36 119.8 O1S—N1S—O3S' 96.4 (10)
C31—C36—H36 119.8 O2S'—N1S—O3S' 96.0 (9)
N1—Cu1—P1—C21 −37.02 (14) C21—P1—C31—C32 67.5 (3)
N12—Cu1—P1—C21 48.98 (14) C41—P1—C31—C32 175.0 (3)
P2—Cu1—P1—C21 −175.39 (11) Cu1—P1—C31—C32 −58.5 (3)
N1—Cu1—P1—C31 83.75 (15) C21—P1—C31—C36 −117.3 (3)
N12—Cu1—P1—C31 169.75 (14) C41—P1—C31—C36 −9.8 (3)
P2—Cu1—P1—C31 −54.62 (13) Cu1—P1—C31—C36 116.7 (3)
N1—Cu1—P1—C41 −154.89 (14) C36—C31—C32—C33 −0.5 (5)
N12—Cu1—P1—C41 −68.88 (14) P1—C31—C32—C33 174.9 (3)
P2—Cu1—P1—C41 66.75 (12) C31—C32—C33—C34 0.1 (6)
N1—Cu1—P2—C51 −87.33 (13) C32—C33—C34—C35 0.4 (6)
N12—Cu1—P2—C51 −174.41 (13) C33—C34—C35—C36 −0.5 (7)
P1—Cu1—P2—C51 51.13 (11) C34—C35—C36—C31 0.2 (6)
N1—Cu1—P2—C61 152.51 (14) C32—C31—C36—C35 0.3 (5)
N12—Cu1—P2—C61 65.43 (13) P1—C31—C36—C35 −174.8 (3)
P1—Cu1—P2—C61 −69.03 (11) C21—P1—C41—C42 −140.2 (3)
N1—Cu1—P2—C71 33.56 (14) C31—P1—C41—C42 111.3 (3)
N12—Cu1—P2—C71 −53.51 (13) Cu1—P1—C41—C42 −16.1 (3)
P1—Cu1—P2—C71 172.03 (11) C21—P1—C41—C46 39.2 (3)
N12—Cu1—N1—C2 174.9 (3) C31—P1—C41—C46 −69.3 (3)
P2—Cu1—N1—C2 65.3 (3) Cu1—P1—C41—C46 163.3 (2)
P1—Cu1—N1—C2 −79.0 (3) C46—C41—C42—C43 0.2 (6)
N12—Cu1—N1—C6 5.6 (2) P1—C41—C42—C43 179.6 (3)
P2—Cu1—N1—C6 −104.0 (2) C41—C42—C43—C44 −0.8 (7)
P1—Cu1—N1—C6 111.7 (2) C42—C43—C44—C45 1.3 (8)
C6—N1—C2—C3 1.6 (5) C43—C44—C45—C46 −1.2 (7)
Cu1—N1—C2—C3 −167.3 (3) C44—C45—C46—C41 0.6 (6)
N1—C2—C3—C4 0.0 (6) C42—C41—C46—C45 −0.2 (5)
C2—C3—C4—C5 −0.8 (7) P1—C41—C46—C45 −179.6 (3)
C3—C4—C5—C6 0.2 (7) C61—P2—C51—C52 110.3 (3)
C2—N1—C6—C5 −2.3 (5) C71—P2—C51—C52 −142.3 (3)
Cu1—N1—C6—C5 168.0 (3) Cu1—P2—C51—C52 −14.7 (3)
C2—N1—C6—C7 177.7 (3) C61—P2—C51—C56 −68.6 (3)
Cu1—N1—C6—C7 −12.0 (3) C71—P2—C51—C56 38.8 (3)
C4—C5—C6—N1 1.4 (6) Cu1—P2—C51—C56 166.4 (2)
C4—C5—C6—C7 −178.5 (4) C56—C51—C52—C53 1.4 (5)
N1—C6—C7—N12 14.2 (4) P2—C51—C52—C53 −177.6 (3)
C5—C6—C7—N12 −165.8 (3) C51—C52—C53—C54 −0.5 (6)
N1—C6—C7—C8 −161.7 (3) C52—C53—C54—C55 −0.6 (6)
C5—C6—C7—C8 18.3 (5) C53—C54—C55—C56 0.7 (6)
N12—C7—C8—C9 1.2 (6) C52—C51—C56—C55 −1.2 (5)
C6—C7—C8—C9 176.8 (4) P2—C51—C56—C55 177.7 (3)
C7—C8—C9—C10 −0.5 (7) C54—C55—C56—C51 0.2 (6)
C8—C9—C10—C11 0.6 (7) C51—P2—C61—C66 −10.6 (3)
C9—C10—C11—N12 −1.4 (6) C71—P2—C61—C66 −116.6 (3)
C8—C7—N12—C11 −1.9 (5) Cu1—P2—C61—C66 117.8 (3)
C6—C7—N12—C11 −177.9 (3) C51—P2—C61—C62 173.9 (3)
C8—C7—N12—Cu1 167.0 (3) C71—P2—C61—C62 67.9 (3)
C6—C7—N12—Cu1 −9.0 (4) Cu1—P2—C61—C62 −57.7 (3)
C10—C11—N12—C7 2.0 (5) C66—C61—C62—C63 1.2 (5)
C10—C11—N12—Cu1 −164.9 (3) P2—C61—C62—C63 176.9 (3)
N1—Cu1—N12—C7 2.2 (2) C61—C62—C63—C64 −1.5 (6)
P2—Cu1—N12—C7 111.0 (2) C62—C63—C64—C65 0.8 (7)
P1—Cu1—N12—C7 −107.2 (2) C63—C64—C65—C66 0.3 (7)
N1—Cu1—N12—C11 169.6 (3) C64—C65—C66—C61 −0.6 (6)
P2—Cu1—N12—C11 −81.5 (3) C62—C61—C66—C65 −0.1 (5)
P1—Cu1—N12—C11 60.3 (3) P2—C61—C66—C65 −175.6 (3)
C31—P1—C21—C22 9.1 (3) C51—P2—C71—C76 −99.3 (3)
C41—P1—C21—C22 −99.6 (3) C61—P2—C71—C76 7.6 (3)
Cu1—P1—C21—C22 136.1 (3) Cu1—P2—C71—C76 131.4 (2)
C31—P1—C21—C26 −171.6 (3) C51—P2—C71—C72 79.9 (3)
C41—P1—C21—C26 79.7 (3) C61—P2—C71—C72 −173.2 (2)
Cu1—P1—C21—C26 −44.6 (3) Cu1—P2—C71—C72 −49.4 (3)
C26—C21—C22—C23 −0.1 (6) C76—C71—C72—C73 −0.5 (5)
P1—C21—C22—C23 179.1 (3) P2—C71—C72—C73 −179.8 (3)
C21—C22—C23—C24 −1.4 (7) C71—C72—C73—C74 0.1 (5)
C22—C23—C24—C25 1.9 (7) C72—C73—C74—C75 0.8 (6)
C23—C24—C25—C26 −0.8 (7) C73—C74—C75—C76 −1.3 (5)
C24—C25—C26—C21 −0.7 (6) C72—C71—C76—C75 0.0 (5)
C22—C21—C26—C25 1.1 (5) P2—C71—C76—C75 179.2 (3)
P1—C21—C26—C25 −178.2 (3) C74—C75—C76—C71 0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O3Si 0.93 2.56 3.317 (9) 139
C5—H5···O1Wi 0.93 2.34 3.182 (15) 151
C8—H8···O2Sii 0.93 2.38 3.242 (11) 155
C45—H45···O3S 0.93 2.59 3.493 (10) 163
C1S—H1S···O1Siii 0.98 2.25 3.204 (7) 165
O1W—?···O2Siv ? ? 2.663 (19) ?
O1W—?···O2Sv ? ? 2.667 (19) ?

Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) x+1, y, z+1; (v) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2166).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Engelhardt, L. M., Pakawatchai, C., White, A. H. & Healy, P. C. (1985). J. Chem. Soc. Dalton Trans. pp. 125–133.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Hirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.
  6. Navarro, M., Cisneros-Fajardo, E., Fernandez-Mestre, M., Arriechi, D. & Marchan, E. (2003). J. Inorg. Biochem.97, 364–369. [DOI] [PubMed]
  7. Rigaku/MSC (2005). CrystalClear Rigaku/MSC., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006260/bg2166sup1.cif

e-64-0m533-sup1.cif (34.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006260/bg2166Isup2.hkl

e-64-0m533-Isup2.hkl (411KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES