Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):o714. doi: 10.1107/S1600536808006387

4-Nitro­phenyl α-l-rhamnopyran­oside hemihydrate1

Jianbo Zhang a,*, Jie Fu a, Xuan Chen a, Yijun Gu b, Jie Tang a
PMCID: PMC2960897  PMID: 21202105

Abstract

The absolute configuration of the title compound, C12H15NO7·0.5H2O, was assigned from the synthesis. There are two rhamnoside mol­ecules and one water mol­ecule in the asymmetric unit, displaying O—H⋯O hydrogen bonding. One of the nitro groups does not conjugate efficiently with the benzene ring.

Related literature

For related literature, see: Garegg & Norberg (1983); Garegg et al. (1978); Martearena et al. (2003); Nishio et al. (2004); Temeriusz et al. (2005); Flack (1983); Flack & Bernardinelli (2000).graphic file with name e-64-0o714-scheme1.jpg

Experimental

Crystal data

  • C12H15NO7·0.5H2O

  • M r = 294.26

  • Monoclinic, Inline graphic

  • a = 10.6189 (10) Å

  • b = 6.9002 (7) Å

  • c = 18.9318 (18) Å

  • β = 100.909 (2)°

  • V = 1362.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.51 × 0.49 × 0.31 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.802, T max = 1.000 (expected range = 0.772–0.963)

  • 8073 measured reflections

  • 3220 independent reflections

  • 2745 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.092

  • S = 0.97

  • 3220 reflections

  • 405 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SMART; data reduction: SAINT (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006387/av2007sup1.cif

e-64-0o714-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006387/av2007Isup2.hkl

e-64-0o714-Isup2.hkl (157.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O15i 0.87 (4) 1.83 (4) 2.697 (3) 171 (4)
O3—H3A⋯O4ii 0.87 (4) 1.78 (4) 2.652 (3) 179 (3)
O4—H4A⋯O10 0.829 (19) 1.98 (2) 2.799 (3) 168 (3)
O9—H9A⋯O11iii 0.80 (4) 1.96 (4) 2.724 (3) 161 (3)
O10—H10⋯O3ii 0.828 (19) 2.18 (2) 2.993 (3) 166 (3)
O11—H11A⋯O3ii 0.816 (19) 1.92 (2) 2.668 (3) 153 (3)
O15—H15A⋯O9 0.89 (2) 2.04 (2) 2.909 (3) 165 (5)
O15—H15B⋯O2ii 0.88 (2) 1.96 (2) 2.820 (3) 167 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The X-ray data were collected at Shanghai Institute of Organic Chemistry with the kind help of Dr Jie Sun. Financial support from the Shanghai Rising Star Program (grant No. 06QA14018), Shanghai Pujiang Program (grant No. 05PJ14315), Natural Science Foundation of Shanghai (grant No. 04ZR14042) and DAXIA Science Research Foundation of East China Normal University (grant No. KY2005-017) is gratefully acknowledged

supplementary crystallographic information

Comment

Para-nitrophenyl-α-L-rhamnoside is an important substrate in the studies on α-L-rhamnosidase, for its chromogenic property of the released para-nitrophenol (Garegg et al., 1978). It also serves as synthetic intermediate for glycosidic compounds (Martearena et al., 2003).

In order to develop a greener synthetic method, a series of approaches have been carried out in this lab. A fairly convenient route was found finally, in which the title compound was synthesized in only two steps. First, L-rhamnose (1) was acetylated and chlorinated to yield 2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl chloride (2) in the presence of acetyl chloride; then it was converted to the target molecule (3) in the condition of phase transfer catalyst (Scheme 1). The synthetic route was more concise compared with published methods (Garegg & Norberg, 1983). Additionally, the bioactivity of the synthetic compound was confirmed by enzymatic assay (Nishio et al., 2004)

Suitable crystals of target product were obtained by slow crystallization from 95% ethanol. The crystal structure was determined in order to ascertain its stereochemistry and solid-state conformation. These data are consistent with the proton and carbon NMR studies. Due to the absence of heavy atoms, refinement of the Flack parameter was not possible, and the absolute configurations could not be determined directly. Instead, they were assigned based on the knowledge of stereochemistry of the synthetic precursors and the mechanisms of synthesis. The crystal of rhamnoside has two molecules and one water molecule in the independent part of the unit cell. The configuration, conformation and atom numbering are shown in Fig. 1.

Similar to the known structures of the nitrophenyl glycopyranosides, the analyzed rhamnopyranoside (3) crystallizes in the P 21 space group. Besides, one of the nitro groups is slightly rotated with respect to the phenyl fragments. The angles between the best planes of the phenyl ring and the nitro groups are 13.3° and 0.5°, respectively. This finding partly supports the earlier opinion that the nitro group does not conjugate effectively with the benzene ring (Temeriusz et al., 2005). The sugar moieties adopt 4C1 conformations. Fig. 2 shows the intermolecular interactions in the crystal lattice. The crystal structure of (3) consists of molecular sheets lying perpendicular to the b axis (Fig. 2), in which the molecules are linked by short hydrogen bonds (Table 1).

For related literature, see [type here to add references to related literature].

Experimental

Para-nitrophenyl-α-L-rhamnoside (3) was obtained upon one-pot reaction combined with glycosylation and deacetylation, using 10%NaOH aqueous and cetyl alkyl trimethyl ammonium bromide from 2,3,4-tri-O-acetyl-α-L-rhamnosyl chloride and para-nitrophenol. A yield of 37% of the title compound was obtained after purification by flash column chromatography on silica gel with petroleum ether–ethyl acetate (1:3) as solvent. The compound was then recrystallized via solvent evaporation (ethanol) at room temperature, appearing as colorless blocks. Analysis: Mp: 179–180°C, [α]D20 -158.7° (c 1.0, EtOH) Rf 0.49 (dichloromethane/ methanol, 8:1, silica-gel plate 60 F254); 1H-NMR (CD3OD, 500 MHz, p.p.m.): δ 8.22(2H, aromatic H), 7.25(2H, aromatic H), 5.60(d, 1H, J1, 2=2 Hz, H-1), 4.03(m, 1H, H-2), 3.84(dd, 1H, H-3), 3.56–3.36(m, 2H, H-4, H-5), 1.22(d, 3H, CH3); 13 C-NMR (125 MHz, CD3OD): δ 150.83, 141.85, 124.75, 115.62(aromatic C), 98.01(C-1), 71.62, 70.15, 69.75, 69.34(C-2, C-3, C-4, C-5), 16.07(C-6).

Refinement

In the absence of any significant anomalous scattering, the Flack (1983) parameter was indeterminable (Flack & Bernardinelli, 2000). Hence, the Friedel equivalents were merged prior to the final refinements, and the absolute structure was set by reference to the known chirality of the enantiopure starting sugar employed.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.

Fig. 2.

Fig. 2.

Packing diagram of (3) viewed down the b axis. Hydrogen bonds are displayed with dashed lines.

Fig. 3.

Fig. 3.

Scheme 1. The two-step synthesis of (3), with phase transfer catalysis.

Crystal data

C12H15NO7·0.5H2O F000 = 620
Mr = 294.26 Dx = 1.435 Mg m3
Monoclinic, P21 Melting point: 453 K
Hall symbol: P 2yb Mo Kα radiation λ = 0.71073 Å
a = 10.6189 (10) Å Cell parameters from 3190 reflections
b = 6.9002 (7) Å θ = 4.8–5.7º
c = 18.9318 (18) Å µ = 0.12 mm1
β = 100.909 (2)º T = 293 (2) K
V = 1362.1 (2) Å3 Prismatic, colourless
Z = 4 0.51 × 0.49 × 0.31 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3220 independent reflections
Radiation source: fine-focus sealed tube 2745 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.087
T = 293(2) K θmax = 27.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→13
Tmin = 0.802, Tmax = 1.000 k = −8→7
8073 measured reflections l = −23→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042   w = 1/[σ2(Fo2) + (0.037P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092 (Δ/σ)max = 0.004
S = 0.97 Δρmax = 0.20 e Å3
3220 reflections Δρmin = −0.21 e Å3
405 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraints Extinction coefficient: 0.0202 (19)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983)
Secondary atom site location: difference Fourier map

Special details

Experimental. Para-nitrophenyl-α-L-rhamnoside(3) was obtained upon one-pot reaction combined with glycosylation and deacetylation, using 10% NaOH aqueous and cetyl alkyl trimethyl ammonium bromide from 2,3,4-tri-O-acetyl-α-L-rhamnosyl chloride and para-nitrophenol. A yield of 37% of the title compound was obtained after purification by flash column chromatography on silica gel with Petroleum ether – Ethyl acetate (1:3) as solvent. The compound was then recrystallized via solvent evaporation (ethanol) at room temperature, appearing as colorless blocks. Analysis: Rf 0.49 (Dichloromethane/ methanol, 8:1, silica-gel plate 60 F254); 1H-NMR (CD3OD, 500 MHz, p.p.m.): δ 8.22(2H, aromatic H), 7.25(2H, aromatic H), 5.60(d, 1H, J1, 2=2 Hz, H-1), 4.03(m, 1H, H-2), 3.84(dd, 1H, H-3), 3.56–3.36(m, 2H, H-4, H-5), 1.22(d, 3H, CH3); 13 C-NMR (125 MHz, CD3OD): δ 150.83, 141.85, 124.75, 115.62(aromatic C), 98.01(C-1), 71.62, 70.15, 69.75, 69.34(C-2, C-3, C-4, C-5), 16.07(C-6).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19455 (17) 1.0324 (2) 0.33890 (9) 0.0398 (4)
O2 0.1174 (2) 0.9293 (3) 0.47272 (10) 0.0457 (5)
O3 0.33922 (18) 0.7408 (3) 0.52541 (9) 0.0415 (4)
O4 0.51029 (17) 0.9318 (3) 0.44976 (10) 0.0411 (4)
O5 0.16218 (18) 0.7063 (2) 0.30768 (9) 0.0425 (4)
O6 0.0339 (3) 0.8596 (5) −0.02333 (13) 0.0908 (9)
O7 0.1729 (2) 0.6342 (4) −0.01726 (11) 0.0666 (7)
O8 0.82087 (17) 0.6288 (2) 0.22589 (9) 0.0403 (4)
O9 0.7702 (2) 0.8782 (3) 0.33951 (12) 0.0528 (6)
O10 0.6155 (2) 0.6111 (3) 0.39139 (10) 0.0482 (5)
O11 0.7502 (2) 0.2697 (2) 0.35244 (11) 0.0468 (5)
O12 0.60585 (18) 0.6789 (3) 0.17194 (10) 0.0471 (5)
O13 0.4597 (3) 0.6372 (5) −0.16104 (13) 0.0842 (8)
O14 0.6635 (3) 0.6568 (6) −0.14965 (14) 0.1026 (11)
O15 0.8807 (2) 0.8258 (3) 0.49102 (14) 0.0577 (6)
N1 0.1080 (2) 0.7455 (4) 0.01055 (13) 0.0540 (7)
N2 0.5671 (3) 0.6494 (4) −0.12425 (14) 0.0606 (7)
C1 0.1293 (2) 0.8625 (4) 0.34999 (14) 0.0378 (6)
H1 0.0367 0.8859 0.3373 0.045*
C2 0.1625 (2) 0.7922 (4) 0.42766 (14) 0.0358 (5)
H2 0.1225 0.6659 0.4321 0.043*
C3 0.3070 (2) 0.7757 (4) 0.45007 (12) 0.0331 (5)
H3 0.3366 0.6660 0.4247 0.040*
C4 0.3743 (2) 0.9566 (4) 0.43259 (12) 0.0312 (5)
H4 0.3514 1.0619 0.4625 0.037*
C5 0.3317 (2) 1.0148 (4) 0.35410 (13) 0.0361 (6)
H5 0.3574 0.9137 0.3233 0.043*
C6 0.3851 (3) 1.2050 (5) 0.33591 (17) 0.0627 (9)
H6A 0.3556 1.2323 0.2858 0.094*
H6B 0.4771 1.1991 0.3460 0.094*
H6C 0.3569 1.3056 0.3643 0.094*
C7 0.1446 (2) 0.7275 (4) 0.23480 (13) 0.0380 (6)
C8 0.0812 (3) 0.8810 (4) 0.19674 (15) 0.0483 (7)
H8 0.0478 0.9806 0.2207 0.058*
C9 0.0680 (3) 0.8846 (5) 0.12280 (16) 0.0511 (7)
H9 0.0243 0.9858 0.0964 0.061*
C10 0.1192 (3) 0.7394 (4) 0.08867 (14) 0.0443 (6)
C11 0.1813 (3) 0.5855 (5) 0.12565 (15) 0.0496 (7)
H11 0.2150 0.4869 0.1013 0.060*
C12 0.1930 (3) 0.5790 (4) 0.19884 (15) 0.0487 (7)
H12 0.2336 0.4743 0.2245 0.058*
C13 0.7158 (2) 0.7509 (4) 0.21975 (14) 0.0393 (6)
H13 0.7388 0.8774 0.2023 0.047*
C14 0.6727 (3) 0.7788 (4) 0.29176 (14) 0.0408 (6)
H14 0.5930 0.8540 0.2846 0.049*
C15 0.6516 (2) 0.5824 (4) 0.32289 (13) 0.0358 (5)
H15 0.5806 0.5181 0.2908 0.043*
C16 0.7705 (3) 0.4593 (3) 0.32767 (13) 0.0354 (5)
H16 0.8422 0.5205 0.3603 0.042*
C17 0.8030 (3) 0.4388 (4) 0.25371 (14) 0.0396 (6)
H17 0.7318 0.3744 0.2218 0.047*
C18 0.9237 (3) 0.3276 (5) 0.2535 (2) 0.0662 (10)
H18A 0.9419 0.3265 0.2057 0.099*
H18B 0.9132 0.1970 0.2688 0.099*
H18C 0.9933 0.3879 0.2857 0.099*
C19 0.6052 (3) 0.6749 (4) 0.09986 (14) 0.0413 (6)
C20 0.4846 (3) 0.6600 (4) 0.05670 (15) 0.0466 (6)
H20 0.4122 0.6551 0.0776 0.056*
C21 0.4716 (3) 0.6523 (4) −0.01641 (15) 0.0491 (7)
H21 0.3908 0.6428 −0.0455 0.059*
C22 0.5802 (3) 0.6590 (4) −0.04625 (15) 0.0473 (7)
C23 0.7006 (3) 0.6735 (5) −0.00431 (16) 0.0505 (7)
H23 0.7725 0.6778 −0.0256 0.061*
C24 0.7141 (3) 0.6817 (5) 0.06912 (16) 0.0497 (7)
H24 0.7950 0.6916 0.0980 0.060*
H10 0.617 (4) 0.501 (3) 0.4090 (18) 0.074 (12)*
H2A 0.038 (4) 0.906 (6) 0.476 (2) 0.081 (12)*
H3A 0.389 (3) 0.639 (5) 0.5343 (16) 0.052 (9)*
H4A 0.530 (3) 0.830 (4) 0.4316 (18) 0.062 (10)*
H9A 0.753 (3) 0.991 (5) 0.3344 (17) 0.053 (10)*
H11A 0.743 (3) 0.284 (5) 0.3943 (11) 0.056 (9)*
H15A 0.835 (5) 0.829 (8) 0.4467 (15) 0.124 (19)*
H15B 0.873 (5) 0.708 (4) 0.507 (3) 0.108 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0446 (10) 0.0357 (9) 0.0357 (9) 0.0069 (8) −0.0009 (8) 0.0013 (7)
O2 0.0424 (11) 0.0504 (11) 0.0482 (11) −0.0037 (9) 0.0185 (9) −0.0139 (9)
O3 0.0527 (11) 0.0429 (11) 0.0291 (9) 0.0109 (9) 0.0084 (7) 0.0060 (8)
O4 0.0327 (9) 0.0420 (11) 0.0469 (11) 0.0014 (8) 0.0034 (8) −0.0095 (9)
O5 0.0499 (10) 0.0408 (10) 0.0334 (9) 0.0045 (8) −0.0005 (8) −0.0050 (8)
O6 0.106 (2) 0.120 (2) 0.0416 (13) 0.0504 (19) 0.0000 (13) 0.0104 (15)
O7 0.0579 (13) 0.0952 (18) 0.0489 (12) 0.0037 (13) 0.0159 (10) −0.0109 (13)
O8 0.0423 (10) 0.0368 (10) 0.0447 (10) −0.0003 (8) 0.0162 (7) 0.0064 (8)
O9 0.0800 (16) 0.0245 (10) 0.0513 (12) 0.0015 (10) 0.0053 (11) −0.0015 (9)
O10 0.0726 (13) 0.0375 (11) 0.0408 (11) 0.0125 (10) 0.0268 (9) 0.0006 (9)
O11 0.0786 (14) 0.0260 (9) 0.0419 (11) 0.0029 (9) 0.0274 (10) 0.0003 (8)
O12 0.0444 (10) 0.0567 (12) 0.0417 (10) −0.0047 (9) 0.0121 (8) 0.0030 (9)
O13 0.0877 (19) 0.104 (2) 0.0528 (14) −0.0079 (17) −0.0082 (13) −0.0063 (14)
O14 0.099 (2) 0.143 (3) 0.0490 (14) −0.013 (2) 0.0223 (14) −0.0026 (18)
O15 0.0538 (13) 0.0506 (14) 0.0698 (16) −0.0070 (10) 0.0146 (11) 0.0015 (12)
N1 0.0492 (14) 0.0716 (18) 0.0410 (13) −0.0021 (14) 0.0081 (11) −0.0081 (13)
N2 0.0780 (19) 0.0592 (17) 0.0447 (14) −0.0011 (15) 0.0115 (14) −0.0001 (13)
C1 0.0326 (13) 0.0405 (14) 0.0383 (14) 0.0026 (11) 0.0020 (10) −0.0061 (11)
C2 0.0390 (13) 0.0328 (12) 0.0369 (13) −0.0028 (11) 0.0106 (10) −0.0042 (10)
C3 0.0416 (13) 0.0326 (12) 0.0255 (11) 0.0045 (10) 0.0073 (9) −0.0017 (9)
C4 0.0357 (12) 0.0309 (11) 0.0269 (11) 0.0042 (10) 0.0058 (9) −0.0040 (10)
C5 0.0388 (14) 0.0389 (13) 0.0300 (12) −0.0003 (11) 0.0050 (10) −0.0008 (10)
C6 0.072 (2) 0.062 (2) 0.0493 (18) −0.0159 (17) 0.0014 (15) 0.0200 (15)
C7 0.0358 (12) 0.0406 (14) 0.0353 (13) −0.0038 (11) 0.0005 (10) −0.0071 (11)
C8 0.0514 (17) 0.0513 (16) 0.0401 (15) 0.0151 (13) 0.0032 (12) −0.0059 (13)
C9 0.0509 (17) 0.0573 (18) 0.0412 (15) 0.0139 (14) −0.0008 (12) −0.0010 (13)
C10 0.0366 (13) 0.0590 (18) 0.0348 (13) −0.0037 (13) 0.0005 (10) −0.0077 (13)
C11 0.0507 (16) 0.0540 (17) 0.0442 (15) 0.0076 (14) 0.0091 (12) −0.0118 (14)
C12 0.0539 (17) 0.0430 (16) 0.0459 (16) 0.0101 (13) 0.0007 (12) −0.0029 (13)
C13 0.0421 (14) 0.0354 (13) 0.0408 (14) 0.0015 (11) 0.0089 (11) 0.0062 (11)
C14 0.0502 (15) 0.0343 (13) 0.0389 (14) 0.0081 (12) 0.0109 (11) 0.0037 (11)
C15 0.0432 (14) 0.0338 (13) 0.0323 (12) 0.0020 (11) 0.0119 (10) −0.0033 (10)
C16 0.0475 (15) 0.0235 (11) 0.0367 (13) 0.0017 (10) 0.0119 (10) −0.0020 (10)
C17 0.0478 (15) 0.0318 (13) 0.0437 (14) 0.0003 (12) 0.0201 (12) −0.0017 (11)
C18 0.074 (2) 0.0503 (19) 0.086 (3) 0.0198 (17) 0.0460 (19) 0.0148 (17)
C19 0.0458 (14) 0.0382 (14) 0.0411 (14) −0.0006 (12) 0.0115 (11) 0.0042 (12)
C20 0.0394 (14) 0.0477 (16) 0.0538 (17) −0.0025 (12) 0.0113 (12) −0.0008 (13)
C21 0.0503 (16) 0.0457 (16) 0.0484 (17) −0.0041 (13) 0.0019 (13) −0.0022 (13)
C22 0.0608 (17) 0.0393 (15) 0.0409 (15) −0.0055 (13) 0.0072 (13) 0.0002 (12)
C23 0.0504 (16) 0.0579 (18) 0.0456 (15) −0.0014 (14) 0.0151 (13) 0.0103 (14)
C24 0.0417 (14) 0.0628 (18) 0.0443 (15) −0.0049 (14) 0.0075 (12) 0.0069 (14)

Geometric parameters (Å, °)

O1—C1 1.398 (3) C5—H5 0.9800
O1—C5 1.435 (3) C6—H6A 0.9600
O2—C2 1.417 (3) C6—H6B 0.9600
O2—H2A 0.87 (4) C6—H6C 0.9600
O3—C3 1.423 (3) C7—C12 1.382 (4)
O3—H3A 0.87 (4) C7—C8 1.382 (4)
O4—C4 1.430 (3) C8—C9 1.380 (4)
O4—H4A 0.829 (19) C8—H8 0.9300
O5—C7 1.365 (3) C9—C10 1.360 (4)
O5—C1 1.425 (3) C9—H9 0.9300
O6—N1 1.208 (4) C10—C11 1.370 (4)
O7—N1 1.216 (3) C11—C12 1.368 (4)
O8—C13 1.385 (3) C11—H11 0.9300
O8—C17 1.439 (3) C12—H12 0.9300
O9—C14 1.416 (4) C13—C14 1.530 (4)
O9—H9A 0.80 (4) C13—H13 0.9800
O10—C15 1.434 (3) C14—C15 1.512 (4)
O10—H10 0.828 (19) C14—H14 0.9800
O11—C16 1.420 (3) C15—C16 1.510 (4)
O11—H11A 0.816 (19) C15—H15 0.9800
O12—C19 1.363 (3) C16—C17 1.511 (4)
O12—C13 1.425 (3) C16—H16 0.9800
O13—N2 1.221 (4) C17—C18 1.494 (4)
O14—N2 1.211 (4) C17—H17 0.9800
O15—H15A 0.89 (2) C18—H18A 0.9600
O15—H15B 0.88 (2) C18—H18B 0.9600
N1—C10 1.462 (3) C18—H18C 0.9600
N2—C22 1.458 (4) C19—C20 1.387 (4)
C1—C2 1.525 (4) C19—C24 1.390 (4)
C1—H1 0.9800 C20—C21 1.366 (4)
C2—C3 1.517 (3) C20—H20 0.9300
C2—H2 0.9800 C21—C22 1.378 (4)
C3—C4 1.506 (3) C21—H21 0.9300
C3—H3 0.9800 C22—C23 1.375 (4)
C4—C5 1.523 (3) C23—C24 1.371 (4)
C4—H4 0.9800 C23—H23 0.9300
C5—C6 1.495 (4) C24—H24 0.9300
C1—O1—C5 114.34 (18) C9—C10—N1 119.7 (3)
C2—O2—H2A 111 (3) C11—C10—N1 118.6 (3)
C3—O3—H3A 111 (2) C12—C11—C10 119.1 (3)
C4—O4—H4A 110 (2) C12—C11—H11 120.5
C7—O5—C1 119.09 (19) C10—C11—H11 120.5
C13—O8—C17 115.16 (19) C11—C12—C7 120.2 (3)
C14—O9—H9A 106 (2) C11—C12—H12 119.9
C15—O10—H10 104 (3) C7—C12—H12 119.9
C16—O11—H11A 105 (2) O8—C13—O12 113.1 (2)
C19—O12—C13 119.4 (2) O8—C13—C14 111.9 (2)
H15A—O15—H15B 107 (5) O12—C13—C14 105.2 (2)
O6—N1—O7 123.2 (3) O8—C13—H13 108.8
O6—N1—C10 118.4 (3) O12—C13—H13 108.8
O7—N1—C10 118.4 (3) C14—C13—H13 108.8
O14—N2—O13 123.0 (3) O9—C14—C15 109.3 (2)
O14—N2—C22 118.3 (3) O9—C14—C13 108.9 (2)
O13—N2—C22 118.7 (3) C15—C14—C13 109.0 (2)
O1—C1—O5 111.6 (2) O9—C14—H14 109.9
O1—C1—C2 112.4 (2) C15—C14—H14 109.9
O5—C1—C2 105.4 (2) C13—C14—H14 109.9
O1—C1—H1 109.1 O10—C15—C16 112.8 (2)
O5—C1—H1 109.1 O10—C15—C14 108.3 (2)
C2—C1—H1 109.1 C16—C15—C14 110.1 (2)
O2—C2—C3 108.7 (2) O10—C15—H15 108.5
O2—C2—C1 109.0 (2) C16—C15—H15 108.5
C3—C2—C1 109.3 (2) C14—C15—H15 108.5
O2—C2—H2 109.9 O11—C16—C15 111.1 (2)
C3—C2—H2 109.9 O11—C16—C17 107.17 (19)
C1—C2—H2 109.9 C15—C16—C17 109.4 (2)
O3—C3—C4 109.06 (19) O11—C16—H16 109.7
O3—C3—C2 109.38 (19) C15—C16—H16 109.7
C4—C3—C2 111.9 (2) C17—C16—H16 109.7
O3—C3—H3 108.8 O8—C17—C18 107.1 (2)
C4—C3—H3 108.8 O8—C17—C16 108.83 (19)
C2—C3—H3 108.8 C18—C17—C16 113.4 (2)
O4—C4—C3 110.61 (19) O8—C17—H17 109.1
O4—C4—C5 110.74 (19) C18—C17—H17 109.1
C3—C4—C5 111.57 (19) C16—C17—H17 109.1
O4—C4—H4 107.9 C17—C18—H18A 109.5
C3—C4—H4 107.9 C17—C18—H18B 109.5
C5—C4—H4 107.9 H18A—C18—H18B 109.5
O1—C5—C6 107.1 (2) C17—C18—H18C 109.5
O1—C5—C4 108.70 (19) H18A—C18—H18C 109.5
C6—C5—C4 113.6 (2) H18B—C18—H18C 109.5
O1—C5—H5 109.1 O12—C19—C20 114.9 (2)
C6—C5—H5 109.1 O12—C19—C24 124.8 (2)
C4—C5—H5 109.1 C20—C19—C24 120.3 (3)
C5—C6—H6A 109.5 C21—C20—C19 120.3 (3)
C5—C6—H6B 109.5 C21—C20—H20 119.8
H6A—C6—H6B 109.5 C19—C20—H20 119.8
C5—C6—H6C 109.5 C20—C21—C22 118.8 (2)
H6A—C6—H6C 109.5 C20—C21—H21 120.6
H6B—C6—H6C 109.5 C22—C21—H21 120.6
O5—C7—C12 115.2 (2) C23—C22—C21 121.6 (3)
O5—C7—C8 124.7 (2) C23—C22—N2 119.2 (3)
C12—C7—C8 120.1 (2) C21—C22—N2 119.1 (3)
C9—C8—C7 119.2 (3) C24—C23—C22 119.7 (3)
C9—C8—H8 120.4 C24—C23—H23 120.1
C7—C8—H8 120.4 C22—C23—H23 120.1
C10—C9—C8 119.7 (3) C23—C24—C19 119.2 (3)
C10—C9—H9 120.2 C23—C24—H24 120.4
C8—C9—H9 120.2 C19—C24—H24 120.4
C9—C10—C11 121.7 (3)
C5—O1—C1—O5 −57.9 (3) C17—O8—C13—O12 −61.2 (3)
C5—O1—C1—C2 60.3 (3) C17—O8—C13—C14 57.4 (3)
C7—O5—C1—O1 −56.9 (3) C19—O12—C13—O8 −70.4 (3)
C7—O5—C1—C2 −179.1 (2) C19—O12—C13—C14 167.2 (2)
O1—C1—C2—O2 65.7 (3) O8—C13—C14—O9 65.8 (3)
O5—C1—C2—O2 −172.55 (19) O12—C13—C14—O9 −171.1 (2)
O1—C1—C2—C3 −53.0 (3) O8—C13—C14—C15 −53.4 (3)
O5—C1—C2—C3 68.7 (2) O12—C13—C14—C15 69.8 (3)
O2—C2—C3—O3 51.8 (3) O9—C14—C15—O10 59.1 (3)
C1—C2—C3—O3 170.7 (2) C13—C14—C15—O10 178.1 (2)
O2—C2—C3—C4 −69.2 (2) O9—C14—C15—C16 −64.5 (3)
C1—C2—C3—C4 49.7 (3) C13—C14—C15—C16 54.4 (3)
O3—C3—C4—O4 62.8 (2) O10—C15—C16—O11 62.7 (3)
C2—C3—C4—O4 −176.03 (18) C14—C15—C16—O11 −176.24 (19)
O3—C3—C4—C5 −173.46 (19) O10—C15—C16—C17 −179.1 (2)
C2—C3—C4—C5 −52.3 (3) C14—C15—C16—C17 −58.1 (3)
C1—O1—C5—C6 177.2 (2) C13—O8—C17—C18 177.8 (2)
C1—O1—C5—C4 −59.7 (2) C13—O8—C17—C16 −59.2 (3)
O4—C4—C5—O1 178.34 (19) O11—C16—C17—O8 178.5 (2)
C3—C4—C5—O1 54.7 (2) C15—C16—C17—O8 57.9 (3)
O4—C4—C5—C6 −62.5 (3) O11—C16—C17—C18 −62.4 (3)
C3—C4—C5—C6 173.8 (2) C15—C16—C17—C18 177.0 (2)
C1—O5—C7—C12 172.6 (2) C13—O12—C19—C20 −161.3 (2)
C1—O5—C7—C8 −8.9 (4) C13—O12—C19—C24 19.7 (4)
O5—C7—C8—C9 −179.0 (3) O12—C19—C20—C21 −179.2 (2)
C12—C7—C8—C9 −0.6 (4) C24—C19—C20—C21 −0.2 (4)
C7—C8—C9—C10 −1.1 (4) C19—C20—C21—C22 0.3 (4)
C8—C9—C10—C11 1.7 (5) C20—C21—C22—C23 −0.2 (4)
C8—C9—C10—N1 −178.5 (3) C20—C21—C22—N2 179.5 (3)
O6—N1—C10—C9 −13.4 (4) O14—N2—C22—C23 −0.8 (5)
O7—N1—C10—C9 167.3 (3) O13—N2—C22—C23 −179.8 (3)
O6—N1—C10—C11 166.4 (3) O14—N2—C22—C21 179.5 (4)
O7—N1—C10—C11 −13.0 (4) O13—N2—C22—C21 0.5 (4)
C9—C10—C11—C12 −0.6 (4) C21—C22—C23—C24 0.0 (5)
N1—C10—C11—C12 179.6 (3) N2—C22—C23—C24 −179.7 (3)
C10—C11—C12—C7 −1.1 (4) C22—C23—C24—C19 0.1 (4)
O5—C7—C12—C11 −179.7 (3) O12—C19—C24—C23 179.0 (3)
C8—C7—C12—C11 1.7 (4) C20—C19—C24—C23 0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O15i 0.87 (4) 1.83 (4) 2.697 (3) 171 (4)
O3—H3A···O4ii 0.87 (4) 1.78 (4) 2.652 (3) 179 (3)
O4—H4A···O10 0.829 (19) 1.98 (2) 2.799 (3) 168 (3)
O9—H9A···O11iii 0.80 (4) 1.96 (4) 2.724 (3) 161 (3)
O10—H10···O3ii 0.828 (19) 2.18 (2) 2.993 (3) 166 (3)
O11—H11A···O3ii 0.816 (19) 1.92 (2) 2.668 (3) 153 (3)
O15—H15A···O9 0.89 (2) 2.04 (2) 2.909 (3) 165 (5)
O15—H15B···O2ii 0.88 (2) 1.96 (2) 2.820 (3) 167 (5)

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1; (iii) x, y+1, z.

Footnotes

1

Dedicated to Professor Yongzheng Hui on the occasion of his 70th birthday.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AV2007).

References

  1. Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  4. Garegg, P. J., Hultberg, H. & Iversen, T. (1978). Carbohydr. Res.62, 173–174.
  5. Garegg, P. J. & Norberg, T. (1983). Carbohydr. Res.116, 308–311.
  6. Martearena, M. R., Blanco, S. & Ellenrieder, G. (2003). Bioresour. Technol.90, 297–303. [DOI] [PubMed]
  7. Nishio, T., Hoshino, S. & Kondo, A. (2004). Carbohydr. Res.339, 1389–1393. [DOI] [PubMed]
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Temeriusz, A., Gubica, T., Rogowska, P., Paradowskab, K. & Cyranski, M. K. (2005). Carbohydr. Res.340, 1175–1184. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006387/av2007sup1.cif

e-64-0o714-sup1.cif (27.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006387/av2007Isup2.hkl

e-64-0o714-Isup2.hkl (157.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES