Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):m511. doi: 10.1107/S1600536808005382

Bis(2,6-dimethyl­pyrazine-κN 4)diiodidozinc(II)

Sun Hwa Lee a, Sea-Hyun Kim b, Pan-Gi Kim c, Cheal Kim a,*, Youngmee Kim d,*
PMCID: PMC2960900  PMID: 21201982

Abstract

In the title compound, [ZnI2(C6H8N2)2], the ZnII ion is coordinated by two iodide anions and two N atoms from 2,6-dimethyl­pyrazine in a distorted tetra­hedral geometry.

Related literature

For background information, see: Batten & Robson (1998); Chi et al. (2006); Evans & Lin (2002); Hong et al. (2004); Janiak (2003); Janaik & Scharmann (2003); Kasai et al. (2000); Kitagawa et al. (2004); Luan et al. (2005, 2006); Moler et al. (2001); Moulton & Zaworotko (2001); Ryu et al. (2005); Wang et al. (2006); Blake et al. (1999); Saalfrank et al. (2001).graphic file with name e-64-0m511-scheme1.jpg

Experimental

Crystal data

  • [ZnI2(C6H8N2)2]

  • M r = 535.48

  • Monoclinic, Inline graphic

  • a = 9.1825 (7) Å

  • b = 13.8144 (10) Å

  • c = 13.6242 (10) Å

  • β = 98.381 (1)°

  • V = 1709.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.04 mm−1

  • T = 170 (2) K

  • 0.10 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9413 measured reflections

  • 3344 independent reflections

  • 2518 reflections with I > 2σ(I)

  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.069

  • S = 0.81

  • 3344 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −1.27 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005382/dn2320sup1.cif

e-64-0m511-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005382/dn2320Isup2.hkl

e-64-0m511-Isup2.hkl (164KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Environmental Technology Educational Innovation Program (2006) of the Ministry of Environment and the Seoul R & BD Program is gratefully acknowledged.

supplementary crystallographic information

Comment

Much interest has recently been focused on the rational design and construction of novel discrete and polymeric metal-organic complexes, not only due to their structural and topological novelty (Batten & Robson, 1998, Moler et al., 2001, Moulton & Zaworotko, 2001), but also for their potential applications as functional materials such as catalysis, molecular recognition, separation, and nonlinear optics (Hong et al., 2004, Evans & Lin, 2002, Kasai et al. 2000, Kitagawa et al., 2004). It has shown that many factors such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Ryu et al., 2005), the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Blake et al., 1999, Saalfrank et al., 2001) influence highly on the structure of metal-organic complexes. In addition, it has been considered that the secondary forces such as hydrogen-bonding, pi-pi stacking, and host–guest interactions are of importance as well (Luan et al., 2005, Janaik & Scharmann, 2003, Janiak, 2003). For obtaining novel structural motifs with predictable properties, therefore, a large number of organic ligands were designed and utilized. Among them, 2,6-dimethylpyrazine was often selected. We have also reacted ZnI2 with 2,6-dimethylpyrazine to form a new zinc complex and report here on the crystal structure of diiodobis(2,6-dimethylpyrazine)zinc(II).

Asymmetric unit contains a whole molecule (Fig. 1). ZnII ion is coordinated by two iodide anions and two nitrogen atoms from 2,6-dimethylpyrazine to form a distorted tetrahedral geometry (Fig. 1). Zn—I bond distances are 2.5393 (7) and 2.5442 (6) Å, and I—Zn—I and N—Zn—N bond angles are 122.78 (2) and 101.39 (14)°, respectively.

Experimental

244.29 mg (0.75 mmol) of ZnI2 were dissolved in 4 ml water and carefully layered by 4 ml e thanol solution of 2,6-dimethylpyrazine ligand (165.52 mg, 1.5 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement

(type here to add refinement details)

Figures

Fig. 1.

Fig. 1.

The structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are shown at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

[ZnI2(C6H8N2)2] F(000) = 1008
Mr = 535.48 Dx = 2.080 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2888 reflections
a = 9.1825 (7) Å θ = 2.7–25.6°
b = 13.8144 (10) Å µ = 5.04 mm1
c = 13.6242 (10) Å T = 170 K
β = 98.381 (1)° Rod, colorless
V = 1709.8 (2) Å3 0.10 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 2518 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.109
graphite θmax = 26.0°, θmin = 2.1°
φ and ω scans h = −11→11
9413 measured reflections k = −17→16
3344 independent reflections l = −9→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069 H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0147P)2] where P = (Fo2 + 2Fc2)/3
3344 reflections (Δ/σ)max = 0.001
176 parameters Δρmax = 0.81 e Å3
0 restraints Δρmin = −1.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.07870 (6) 0.24556 (4) 0.76694 (4) 0.02508 (15)
I1 0.07868 (4) 0.15009 (3) 0.60725 (2) 0.03357 (11)
I2 0.19801 (4) 0.41101 (3) 0.79495 (2) 0.03516 (11)
N11 −0.1362 (4) 0.2579 (3) 0.7987 (3) 0.0244 (9)
N12 −0.4102 (4) 0.2602 (3) 0.8610 (3) 0.0290 (10)
N21 0.1716 (4) 0.1540 (3) 0.8789 (3) 0.0247 (9)
N22 0.3046 (4) 0.0275 (3) 1.0237 (3) 0.0283 (10)
C11 −0.2359 (5) 0.1893 (4) 0.7695 (3) 0.0262 (11)
H11 −0.2115 0.1387 0.7276 0.031*
C12 −0.3750 (5) 0.1903 (4) 0.7992 (3) 0.0274 (11)
C13 −0.3120 (5) 0.3282 (4) 0.8896 (3) 0.0280 (12)
C14 −0.1739 (5) 0.3274 (4) 0.8575 (3) 0.0278 (11)
H14 −0.1058 0.3778 0.8781 0.033*
C15 −0.4843 (5) 0.1130 (4) 0.7682 (4) 0.0361 (13)
H15A −0.5043 0.0768 0.8267 0.054*
H15B −0.4450 0.0688 0.7222 0.054*
H15C −0.5758 0.1422 0.7351 0.054*
C16 −0.3539 (5) 0.4070 (4) 0.9555 (4) 0.0438 (15)
H16A −0.4566 0.4258 0.9340 0.066*
H16B −0.2898 0.4631 0.9515 0.066*
H16C −0.3429 0.3837 1.0241 0.066*
C21 0.1310 (5) 0.0616 (4) 0.8802 (3) 0.0278 (12)
H21 0.0566 0.0385 0.8299 0.033*
C22 0.1950 (5) −0.0025 (4) 0.9535 (3) 0.0302 (12)
C23 0.3442 (5) 0.1193 (4) 1.0219 (3) 0.0277 (12)
C24 0.2793 (5) 0.1839 (4) 0.9502 (3) 0.0265 (11)
H24 0.3112 0.2494 0.9515 0.032*
C25 0.1460 (6) −0.1051 (4) 0.9560 (4) 0.0391 (14)
H25A 0.1946 −0.1436 0.9098 0.059*
H25B 0.0390 −0.1085 0.9366 0.059*
H25C 0.1720 −0.1308 1.0234 0.059*
C26 0.4667 (6) 0.1544 (4) 1.1002 (3) 0.0406 (14)
H26A 0.4261 0.1714 1.1606 0.061*
H26B 0.5133 0.2115 1.0756 0.061*
H26C 0.5401 0.1030 1.1152 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0246 (3) 0.0250 (3) 0.0258 (3) 0.0006 (2) 0.0044 (2) 0.0019 (3)
I1 0.0398 (2) 0.0359 (2) 0.02578 (18) 0.00179 (16) 0.00728 (14) −0.00169 (16)
I2 0.0342 (2) 0.0259 (2) 0.0448 (2) −0.00311 (15) 0.00379 (16) 0.00327 (16)
N11 0.023 (2) 0.027 (2) 0.023 (2) 0.0031 (18) 0.0014 (17) 0.0060 (19)
N12 0.028 (2) 0.034 (3) 0.026 (2) 0.005 (2) 0.0062 (18) 0.001 (2)
N21 0.025 (2) 0.027 (3) 0.0217 (19) −0.0010 (18) 0.0039 (16) 0.0008 (19)
N22 0.028 (2) 0.030 (3) 0.026 (2) 0.002 (2) 0.0014 (18) 0.000 (2)
C11 0.022 (3) 0.028 (3) 0.027 (2) 0.004 (2) −0.001 (2) −0.002 (2)
C12 0.023 (3) 0.029 (3) 0.028 (3) 0.003 (2) 0.000 (2) 0.007 (2)
C13 0.029 (3) 0.030 (3) 0.025 (3) 0.004 (2) 0.004 (2) 0.003 (2)
C14 0.028 (3) 0.026 (3) 0.028 (3) 0.001 (2) 0.000 (2) 0.000 (2)
C15 0.024 (3) 0.038 (3) 0.045 (3) −0.006 (3) 0.003 (2) −0.008 (3)
C16 0.032 (3) 0.049 (4) 0.051 (3) 0.001 (3) 0.009 (3) −0.011 (3)
C21 0.029 (3) 0.028 (3) 0.026 (3) −0.003 (2) 0.004 (2) −0.004 (2)
C22 0.032 (3) 0.029 (3) 0.030 (3) 0.000 (2) 0.008 (2) −0.001 (2)
C23 0.030 (3) 0.032 (3) 0.021 (2) −0.003 (2) 0.004 (2) −0.004 (2)
C24 0.023 (2) 0.029 (3) 0.029 (3) −0.001 (2) 0.008 (2) −0.002 (2)
C25 0.050 (3) 0.030 (3) 0.034 (3) −0.002 (3) −0.003 (3) 0.007 (3)
C26 0.041 (3) 0.045 (4) 0.033 (3) −0.008 (3) −0.006 (2) 0.002 (3)

Geometric parameters (Å, °)

Zn1—N21 2.068 (4) C15—H15A 0.9800
Zn1—N11 2.088 (4) C15—H15B 0.9800
Zn1—I2 2.5393 (7) C15—H15C 0.9800
Zn1—I1 2.5442 (6) C16—H16A 0.9800
N11—C14 1.328 (6) C16—H16B 0.9800
N11—C11 1.337 (6) C16—H16C 0.9800
N12—C13 1.321 (6) C21—C22 1.398 (7)
N12—C12 1.351 (6) C21—H21 0.9500
N21—C21 1.331 (6) C22—C25 1.489 (7)
N21—C24 1.346 (5) C23—C24 1.392 (6)
N22—C23 1.321 (6) C23—C26 1.513 (6)
N22—C22 1.348 (6) C24—H24 0.9500
C11—C12 1.395 (7) C25—H25A 0.9800
C11—H11 0.9500 C25—H25B 0.9800
C12—C15 1.485 (7) C25—H25C 0.9800
C13—C14 1.401 (7) C26—H26A 0.9800
C13—C16 1.496 (7) C26—H26B 0.9800
C14—H14 0.9500 C26—H26C 0.9800
N21—Zn1—N11 101.39 (14) H15B—C15—H15C 109.5
N21—Zn1—I2 108.49 (11) C13—C16—H16A 109.5
N11—Zn1—I2 107.19 (12) C13—C16—H16B 109.5
N21—Zn1—I1 105.22 (11) H16A—C16—H16B 109.5
N11—Zn1—I1 109.72 (10) C13—C16—H16C 109.5
I2—Zn1—I1 122.78 (2) H16A—C16—H16C 109.5
C14—N11—C11 117.7 (4) H16B—C16—H16C 109.5
C14—N11—Zn1 121.4 (3) N21—C21—C22 121.8 (4)
C11—N11—Zn1 120.5 (3) N21—C21—H21 119.1
C13—N12—C12 118.6 (4) C22—C21—H21 119.1
C21—N21—C24 117.6 (4) N22—C22—C21 120.3 (5)
C21—N21—Zn1 120.7 (3) N22—C22—C25 118.2 (4)
C24—N21—Zn1 121.7 (3) C21—C22—C25 121.5 (5)
C23—N22—C22 117.5 (4) N22—C23—C24 122.5 (4)
N11—C11—C12 121.5 (5) N22—C23—C26 118.2 (4)
N11—C11—H11 119.2 C24—C23—C26 119.2 (5)
C12—C11—H11 119.2 N21—C24—C23 120.3 (5)
N12—C12—C11 120.0 (5) N21—C24—H24 119.9
N12—C12—C15 118.6 (4) C23—C24—H24 119.9
C11—C12—C15 121.3 (5) C22—C25—H25A 109.5
N12—C13—C14 120.8 (5) C22—C25—H25B 109.5
N12—C13—C16 118.1 (4) H25A—C25—H25B 109.5
C14—C13—C16 121.1 (5) C22—C25—H25C 109.5
N11—C14—C13 121.4 (5) H25A—C25—H25C 109.5
N11—C14—H14 119.3 H25B—C25—H25C 109.5
C13—C14—H14 119.3 C23—C26—H26A 109.5
C12—C15—H15A 109.5 C23—C26—H26B 109.5
C12—C15—H15B 109.5 H26A—C26—H26B 109.5
H15A—C15—H15B 109.5 C23—C26—H26C 109.5
C12—C15—H15C 109.5 H26A—C26—H26C 109.5
H15A—C15—H15C 109.5 H26B—C26—H26C 109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2320).

References

  1. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494. [DOI] [PubMed]
  2. Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Deveson, A. M., Fenske, D., Hubberstey, P. & Schröder, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2103–2110.
  3. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem.45, 10605–10612. [DOI] [PubMed]
  5. Evans, O. R. & Lin, W. (2002). Acc. Chem. Res.35, 511–522. [DOI] [PubMed]
  6. Hong, S. J., Ryu, J. Y., Lee, J. Y., Kim, C., Kim, S.-J. & Kim, Y. (2004). Dalton Trans. pp. 2697–2701. [DOI] [PubMed]
  7. Janaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123–1133.
  8. Janiak, C. (2003). Dalton Trans. pp. 2781–2804.
  9. Kasai, K., Aoyagi, M. & Fujita, M. (2000). J. Am. Chem. Soc.122, 2140–2141.
  10. Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [DOI] [PubMed]
  11. Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J.12, 6281–6289. [DOI] [PubMed]
  12. Luan, X.-J., Wang, Y.-Y., Li, D.-S., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2005). Angew. Chem. Int. Ed.44, 3864–3867. [DOI] [PubMed]
  13. Moler, D. B., Chen, H., Li, B., Reineke, T. M., O’Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res.34, 319–330. [DOI] [PubMed]
  14. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [DOI] [PubMed]
  15. Ryu, J. Y., Han, J. H., Lee, J. Y., Hong, S. J., Choi, S. H., Kim, C., Kim, S.-J. & Kim, Y. (2005). Inorg. Chim. Acta, 358, 3659–3670.
  16. Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J.7, 2765–2769. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc.128, 674–675. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005382/dn2320sup1.cif

e-64-0m511-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005382/dn2320Isup2.hkl

e-64-0m511-Isup2.hkl (164KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES