Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m551. doi: 10.1107/S1600536808006338

Poly[[μ2-aqua-aqua­(μ3-3,5-dinitro­salicylato)barium(II)] monohydrate]

Wen-Dong Song a,*, Run-Zhen Fan a, Chang-Sheng Gu a, Xiao-Min Hao a
PMCID: PMC2960902  PMID: 21202008

Abstract

In the title coordination polymer, {[Ba(C7H2N2O7)(H2O)2]·H2O}n, the BaII atom is ten-coordinated by seven O atoms from four 3,5-dinitro­salicylatate ligands, two μ2-bridging aqua ligands and one water mol­ecule. The coordination mode is best described as a bicapped square-anti­prismatic geometry. The 3,5-dinitrosalicylatate ligands bridge three Ba atoms. Centrosymmetrically related dinuclear barium units, with a Ba⋯Ba separation of 4.767 (5) Å, form infinite chains, which are further self-assembled into a supra­molecular network through inter­molecular O—H⋯O hydrogen-bonding inter­actions between O atoms of 3,5-dinitro­salicylatate ligands and water mol­ecules.

Related literature

For related literature, see: Song et al. (2007).graphic file with name e-64-0m551-scheme1.jpg

Experimental

Crystal data

  • [Ba(C7H2N2O7)(H2O)2]·H2O

  • M r = 417.49

  • Monoclinic, Inline graphic

  • a = 11.9649 (6) Å

  • b = 4.1866 (2) Å

  • c = 26.121 (1) Å

  • β = 109.332 (3)°

  • V = 1234.7 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 296 (2) K

  • 0.30 × 0.26 × 0.23 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.392, T max = 0.471

  • 8615 measured reflections

  • 2374 independent reflections

  • 2189 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.067

  • S = 1.05

  • 2374 reflections

  • 199 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.30 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006338/im2052sup1.cif

e-64-0m551-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006338/im2052Isup2.hkl

e-64-0m551-Isup2.hkl (116.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3W—H6W⋯O7i 0.82 (3) 2.27 (3) 2.916 (4) 135 (4)
O3W—H5W⋯O5ii 0.82 (4) 2.60 (4) 2.985 (4) 110 (3)
O3W—H5W⋯O2Wiii 0.82 (4) 2.04 (3) 2.755 (4) 145 (4)
O2W—H4W⋯N1iv 0.83 (3) 2.69 (4) 3.340 (4) 137 (4)
O2W—H4W⋯O4iv 0.83 (3) 2.55 (4) 3.080 (4) 123 (3)
O2W—H4W⋯O5iv 0.83 (3) 2.25 (3) 2.993 (4) 150 (5)
O2W—H3W⋯O3v 0.83 (3) 2.01 (2) 2.730 (4) 145 (4)
O1W—H1W⋯O3Wv 0.83 (3) 1.991 (16) 2.798 (4) 164 (4)
O1W—H2W⋯O3Wvi 0.83 (3) 1.90 (3) 2.725 (4) 171 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 3,5-dinitrosalicylatato complexes, it has been found that the 3,5-dinitrosalicylatato moiety functions as a multidentate ligand (Song et al., 2007) with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ba complex obtained by the reaction of 3,5-dinitrosalicylic acid and barium chloride in alkaline aqueous solution.

As illustrated in Figure 1, the BaII atom displays a bicapped square antiprismatic coordination environment, defined by seven O atoms from four 3,5-dinitrosalicylatato ligands, two µ2-bridging aqua ligands and one water molecule. The 3,5-dinitrosalicylatato ligands link barium ions to form infinite chains, which are further self-assembled into a supramolecular network through intermolecular O—H···O hydrogen bonding interactions (Table 1) involving the uncoordinating water molecules, coordinating water molecules as donors and O atoms of 3,5-dinitrosalicylatato ligands as acceptors (Fig. 2).

Experimental

A mixture of barium chloride (1 mmol), 3,5-dinitrosalicylic acid (1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The obtained crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O)

Figures

Fig. 1.

Fig. 1.

The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing view of the title compound. The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Ba(C7H2N2O7)(H2O)2]·H2O F000 = 800
Mr = 417.49 Dx = 2.246 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 5837 reflections
a = 11.9649 (6) Å θ = 2.8–27.9º
b = 4.1866 (2) Å µ = 3.27 mm1
c = 26.121 (1) Å T = 296 (2) K
β = 109.332 (3)º Block, yellow
V = 1234.7 (1) Å3 0.30 × 0.26 × 0.23 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer 2374 independent reflections
Radiation source: fine-focus sealed tube 2189 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.041
T = 296(2) K θmax = 26.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.392, Tmax = 0.472 k = −4→4
8615 measured reflections l = −31→32

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067   w = 1/[σ2(Fo2) + (0.0339P)2 + 1.4739P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.001
2374 reflections Δρmax = 1.03 e Å3
199 parameters Δρmin = −1.30 e Å3
9 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ba1 0.698106 (16) 0.59849 (4) 0.002749 (8) 0.01250 (10)
O1 0.7177 (2) 0.1028 (5) 0.06998 (10) 0.0150 (5)
O2 0.5320 (2) −0.3574 (6) 0.05297 (11) 0.0211 (6)
O3 0.4012 (2) −0.0694 (6) 0.07602 (11) 0.0190 (6)
O4 0.5934 (3) 0.0066 (8) 0.28282 (12) 0.0311 (7)
O5 0.7491 (3) 0.3054 (8) 0.31157 (12) 0.0359 (7)
O6 0.9954 (3) 0.3764 (8) 0.19294 (14) 0.0416 (9)
O7 0.8915 (2) 0.5460 (7) 0.11347 (12) 0.0251 (6)
N1 0.6755 (3) 0.1544 (8) 0.27501 (14) 0.0245 (7)
N2 0.9007 (3) 0.4015 (7) 0.15565 (14) 0.0205 (7)
C1 0.5067 (3) −0.1530 (8) 0.08248 (14) 0.0116 (7)
C2 0.6052 (3) −0.0051 (9) 0.12815 (14) 0.0129 (7)
C3 0.5950 (3) 0.0128 (9) 0.17862 (15) 0.0167 (7)
H3 0.5270 −0.0629 0.1844 0.020*
C4 0.6874 (3) 0.1461 (9) 0.22201 (15) 0.0178 (8)
C5 0.7878 (3) 0.2691 (9) 0.21433 (15) 0.0191 (8)
H5 0.8488 0.3552 0.2431 0.023*
C6 0.7951 (3) 0.2603 (9) 0.16271 (14) 0.0158 (7)
C7 0.7074 (3) 0.1200 (8) 0.11687 (15) 0.0146 (8)
O1W 0.8608 (2) 0.1295 (6) 0.00092 (12) 0.0205 (6)
H2W 0.922 (2) 0.101 (10) 0.0272 (9) 0.031*
H1W 0.881 (3) 0.137 (10) −0.0265 (9) 0.031*
O2W 0.7483 (2) 0.6467 (6) −0.09980 (12) 0.0223 (6)
H3W 0.688 (2) 0.758 (8) −0.1068 (17) 0.033*
H4W 0.732 (3) 0.484 (6) −0.1189 (16) 0.033*
O3W 0.0565 (2) 0.9715 (8) 0.08622 (12) 0.0255 (6)
H5W 0.110 (3) 1.093 (8) 0.1033 (15) 0.038*
H6W 0.047 (4) 0.837 (8) 0.1074 (13) 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ba1 0.01402 (13) 0.01055 (14) 0.01455 (15) −0.00009 (7) 0.00690 (10) −0.00038 (8)
O1 0.0191 (13) 0.0156 (14) 0.0133 (13) −0.0010 (9) 0.0091 (11) −0.0007 (10)
O2 0.0199 (13) 0.0222 (15) 0.0235 (15) −0.0031 (10) 0.0105 (12) −0.0089 (11)
O3 0.0142 (12) 0.0185 (15) 0.0238 (15) 0.0005 (10) 0.0055 (11) −0.0015 (11)
O4 0.0331 (16) 0.0413 (17) 0.0244 (16) −0.0037 (14) 0.0167 (13) 0.0019 (15)
O5 0.0411 (18) 0.0464 (19) 0.0186 (16) −0.0102 (15) 0.0077 (14) −0.0100 (15)
O6 0.0227 (16) 0.066 (3) 0.033 (2) −0.0138 (14) 0.0056 (15) 0.0021 (16)
O7 0.0248 (14) 0.0226 (15) 0.0300 (17) −0.0044 (11) 0.0117 (12) 0.0052 (13)
N1 0.0296 (18) 0.0263 (18) 0.0184 (18) 0.0037 (14) 0.0089 (15) −0.0003 (14)
N2 0.0151 (15) 0.0223 (19) 0.0230 (19) −0.0046 (12) 0.0049 (14) −0.0040 (14)
C1 0.0132 (16) 0.0130 (18) 0.0082 (17) −0.0010 (13) 0.0030 (14) 0.0023 (13)
C2 0.0163 (16) 0.0102 (17) 0.0128 (18) 0.0025 (14) 0.0056 (14) 0.0018 (14)
C3 0.0178 (17) 0.0153 (18) 0.0178 (19) 0.0006 (15) 0.0071 (15) 0.0015 (16)
C4 0.0214 (18) 0.021 (2) 0.0116 (18) 0.0022 (14) 0.0060 (15) −0.0015 (15)
C5 0.0190 (17) 0.018 (2) 0.0166 (19) −0.0003 (15) 0.0013 (15) −0.0030 (16)
C6 0.0129 (16) 0.016 (2) 0.0181 (19) −0.0012 (14) 0.0042 (14) −0.0002 (15)
C7 0.0184 (18) 0.0121 (19) 0.0146 (19) 0.0044 (13) 0.0074 (15) 0.0040 (13)
O1W 0.0156 (13) 0.0291 (16) 0.0186 (15) 0.0036 (10) 0.0079 (11) 0.0005 (12)
O2W 0.0290 (15) 0.0188 (15) 0.0222 (15) 0.0010 (11) 0.0126 (13) −0.0019 (11)
O3W 0.0206 (14) 0.0334 (17) 0.0235 (16) −0.0020 (12) 0.0086 (12) 0.0046 (13)

Geometric parameters (Å, °)

Ba1—O1 2.678 (2) O5—N1 1.237 (4)
Ba1—O1i 2.706 (2) O6—N2 1.230 (5)
Ba1—O2i 2.726 (3) O7—N2 1.230 (4)
Ba1—O1W 2.777 (3) N1—C4 1.438 (5)
Ba1—O3ii 2.813 (3) N2—C6 1.462 (4)
Ba1—O2iii 2.840 (3) C1—C2 1.505 (5)
Ba1—O2W 2.940 (3) C1—Ba1iii 3.290 (3)
Ba1—O1Wi 2.966 (3) C2—C3 1.366 (5)
Ba1—O3iii 2.989 (3) C2—C7 1.447 (5)
Ba1—O7 3.056 (3) C3—C4 1.410 (5)
Ba1—C1iii 3.290 (3) C3—H3 0.9300
Ba1—Ba1i 4.18660 (19) C4—C5 1.382 (5)
Ba1—H3W 2.90 (5) C5—C6 1.380 (5)
O1—C7 1.273 (4) C5—H5 0.9300
O1—Ba1iv 2.706 (2) C6—C7 1.431 (5)
O2—C1 1.254 (4) O1W—Ba1iv 2.966 (3)
O2—Ba1iv 2.726 (3) O1W—H2W 0.83 (4)
O2—Ba1iii 2.840 (3) O1W—H1W 0.83 (4)
O3—C1 1.266 (4) O2W—H3W 0.83 (4)
O3—Ba1ii 2.813 (3) O2W—H4W 0.83 (4)
O3—Ba1iii 2.989 (3) O3W—H5W 0.82 (4)
O4—N1 1.233 (4) O3W—H6W 0.83 (4)
O1—Ba1—O1i 102.07 (8) O7—Ba1—Ba1i 94.12 (5)
O1—Ba1—O2i 69.92 (8) C1iii—Ba1—Ba1i 124.53 (6)
O1i—Ba1—O2i 63.59 (7) O1—Ba1—H3W 142.3 (6)
O1—Ba1—O1W 63.49 (7) O1i—Ba1—H3W 115.3 (6)
O1i—Ba1—O1W 130.70 (8) O2i—Ba1—H3W 131.3 (3)
O2i—Ba1—O1W 133.10 (8) O1W—Ba1—H3W 86.9 (3)
O1—Ba1—O3ii 161.23 (8) O3ii—Ba1—H3W 41.2 (3)
O1i—Ba1—O3ii 81.53 (7) O2iii—Ba1—H3W 81.9 (7)
O2i—Ba1—O3ii 96.08 (8) O2W—Ba1—H3W 16.3 (6)
O1W—Ba1—O3ii 127.72 (8) O1Wi—Ba1—H3W 68.0 (7)
O1—Ba1—O2iii 85.43 (8) O3iii—Ba1—H3W 67.3 (7)
O1i—Ba1—O2iii 118.10 (7) O7—Ba1—H3W 136.2 (6)
O2i—Ba1—O2iii 62.17 (9) C1iii—Ba1—H3W 71.6 (7)
O1W—Ba1—O2iii 107.83 (7) Ba1i—Ba1—H3W 76.7 (6)
O3ii—Ba1—O2iii 76.78 (8) C7—O1—Ba1 124.9 (2)
O1—Ba1—O2W 130.60 (7) C7—O1—Ba1iv 130.8 (2)
O1i—Ba1—O2W 122.52 (7) Ba1—O1—Ba1iv 102.07 (8)
O2i—Ba1—O2W 146.64 (8) C1—O2—Ba1iv 134.8 (2)
O1W—Ba1—O2W 71.15 (8) C1—O2—Ba1iii 99.6 (2)
O3ii—Ba1—O2W 56.60 (7) Ba1iv—O2—Ba1iii 117.83 (9)
O2iii—Ba1—O2W 90.76 (8) C1—O3—Ba1ii 116.9 (2)
O1—Ba1—O1Wi 132.52 (7) C1—O3—Ba1iii 92.2 (2)
O1i—Ba1—O1Wi 60.61 (7) Ba1ii—O3—Ba1iii 92.33 (8)
O2i—Ba1—O1Wi 122.95 (7) N2—O7—Ba1 134.3 (2)
O1W—Ba1—O1Wi 93.55 (7) O4—N1—O5 122.1 (3)
O3ii—Ba1—O1Wi 65.38 (7) O4—N1—C4 119.0 (3)
O2iii—Ba1—O1Wi 142.04 (8) O5—N1—C4 118.9 (3)
O2W—Ba1—O1Wi 66.46 (8) O7—N2—O6 122.5 (3)
O1—Ba1—O3iii 78.80 (7) O7—N2—C6 119.2 (3)
O1i—Ba1—O3iii 162.60 (7) O6—N2—C6 118.3 (3)
O2i—Ba1—O3iii 101.22 (7) O2—C1—O3 122.7 (3)
O1W—Ba1—O3iii 65.50 (7) O2—C1—C2 118.9 (3)
O3ii—Ba1—O3iii 92.33 (8) O3—C1—C2 118.5 (3)
O2iii—Ba1—O3iii 44.50 (7) O2—C1—Ba1iii 58.32 (18)
O2W—Ba1—O3iii 65.05 (7) O3—C1—Ba1iii 65.18 (18)
O1Wi—Ba1—O3iii 131.14 (7) C2—C1—Ba1iii 169.1 (2)
O1—Ba1—O7 56.58 (7) C3—C2—C7 121.9 (3)
O1i—Ba1—O7 64.28 (8) C3—C2—C1 119.4 (3)
O2i—Ba1—O7 89.64 (8) C7—C2—C1 118.7 (3)
O1W—Ba1—O7 69.50 (8) C2—C3—C4 120.0 (3)
O3ii—Ba1—O7 138.31 (7) C2—C3—H3 120.0
O2iii—Ba1—O7 139.60 (8) C4—C3—H3 120.0
O2W—Ba1—O7 123.25 (7) C5—C4—C3 121.3 (3)
O1Wi—Ba1—O7 76.92 (7) C5—C4—N1 119.9 (3)
O3iii—Ba1—O7 127.03 (7) C3—C4—N1 118.8 (3)
O1—Ba1—C1iii 83.60 (8) C6—C5—C4 118.1 (3)
O1i—Ba1—C1iii 140.04 (8) C6—C5—H5 121.0
O2i—Ba1—C1iii 82.29 (8) C4—C5—H5 121.0
O1W—Ba1—C1iii 87.53 (8) C5—C6—C7 124.2 (3)
O3ii—Ba1—C1iii 82.12 (8) C5—C6—N2 116.7 (3)
O2iii—Ba1—C1iii 22.07 (8) C7—C6—N2 119.1 (3)
O2W—Ba1—C1iii 75.72 (8) O1—C7—C6 123.4 (3)
O1Wi—Ba1—C1iii 139.44 (8) O1—C7—C2 122.2 (3)
O3iii—Ba1—C1iii 22.61 (8) C6—C7—C2 114.4 (3)
O7—Ba1—C1iii 139.53 (8) Ba1—O1W—Ba1iv 93.55 (7)
O1—Ba1—Ba1i 140.79 (5) Ba1—O1W—H2W 121 (3)
O1i—Ba1—Ba1i 38.72 (5) Ba1iv—O1W—H2W 107 (3)
O2i—Ba1—Ba1i 86.11 (5) Ba1—O1W—H1W 113 (3)
O1W—Ba1—Ba1i 135.00 (5) Ba1iv—O1W—H1W 115 (3)
O3ii—Ba1—Ba1i 45.50 (5) H2W—O1W—H1W 106.4 (17)
O2iii—Ba1—Ba1i 110.82 (5) Ba1—O2W—H3W 79 (3)
O2W—Ba1—Ba1i 86.06 (5) Ba1—O2W—H4W 114 (4)
O1Wi—Ba1—Ba1i 41.45 (5) H3W—O2W—H4W 108 (4)
O3iii—Ba1—Ba1i 137.83 (5) H5W—O3W—H6W 108 (4)

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) −x+1, −y, −z; (iv) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3W—H6W···O7v 0.82 (3) 2.27 (3) 2.916 (4) 135 (4)
O3W—H5W···O5vi 0.82 (4) 2.60 (4) 2.985 (4) 110 (3)
O3W—H5W···O2Wvii 0.82 (4) 2.04 (3) 2.755 (4) 145 (4)
O2W—H4W···N1viii 0.83 (3) 2.69 (4) 3.340 (4) 137 (4)
O2W—H4W···O4viii 0.83 (3) 2.55 (4) 3.080 (4) 123 (3)
O2W—H4W···O5viii 0.83 (3) 2.25 (3) 2.993 (4) 150 (5)
O2W—H3W···O3ii 0.83 (3) 2.01 (2) 2.730 (4) 145 (4)
O1W—H1W···O3Wii 0.83 (3) 1.991 (16) 2.798 (4) 164 (4)
O1W—H2W···O3Wix 0.83 (3) 1.90 (3) 2.725 (4) 171 (4)

Symmetry codes: (v) x−1, y, z; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, −y+2, −z; (viii) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z; (ix) x+1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2052).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006338/im2052sup1.cif

e-64-0m551-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006338/im2052Isup2.hkl

e-64-0m551-Isup2.hkl (116.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES