Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):m512–m513. doi: 10.1107/S1600536808005485

Chloridotris[tris­(4-fluoro­phen­yl)phosphine]rhodium(I) methanol solvate

Fabio Lorenzini a, Brian O Patrick a, Brian R James a,*
PMCID: PMC2960913  PMID: 21201983

Abstract

In the title compound, [RhCl{P(p-FC6H4)3}3]·CH3OH, the Rh atom adopts a distorted square-planar geometry. Rh, Cl and one P atom lie on a mirror plane, as does the solvent molecule. There are two inter­molecular hydrogen bonds, one between the methanol O atom and an aryl H atom (2.51 Å), and one between the Cl atom and the hydr­oxy H atom of methanol [2.34 (3) Å]. The complex precipitates in trace amounts from a reaction between RhCl(cod)(thp) [cod is 1,5-cyclo­octa­diene and thp is tris­(hydroxy­meth­yl)phos­phine] and P(p-FC6H4)3 under argon in CD3OD. Two C6H4-F units are disordered over two positions; for one the site occupancy factors are ca. 0.53 and 0.47, for the other the values are ca. 0.64 and 0.36. The methyl H atoms of the solvent molecule are disordered across the mirror plane.

Related literature

For related literature, see: Beck et al. (1999) and references therein; Bennett & Donaldson (1977); Bennett et al. (1971); Evans et al. (1999); Higham et al. (2004); Hoye et al. (1993); Jones et al. (1980); Lorenzini et al. (2007a ,b ,c , 2008a ,b ); Montelatici et al. (1968); Young et al. (1965). graphic file with name e-64-0m512-scheme1.jpg

Experimental

Crystal data

  • [RhCl(C18H12F3P)3]·CH4O

  • M r = 1119.14

  • Monoclinic, Inline graphic

  • a = 10.831 (3) Å

  • b = 23.724 (7) Å

  • c = 9.845 (3) Å

  • β = 108.213 (8)°

  • V = 2403.0 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 173.0 (1) K

  • 0.30 × 0.15 × 0.03 mm

Data collection

  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.544, T max = 0.983

  • 10921 measured reflections

  • 3312 independent reflections

  • 3094 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.075

  • S = 1.03

  • 3312 reflections

  • 372 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983), 812 Friedel pairs

  • Flack parameter: −0.03 (3)

Data collection: SAINT (Bruker, 2003); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005485/rk2075sup1.cif

e-64-0m512-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005485/rk2075Isup2.hkl

e-64-0m512-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.95 2.51 3.458 (9) 172
O1—H1O⋯Cl1ii 1.03 (5) 2.34 (5) 3.369 (9) 174 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support via a Discovery Grant.

supplementary crystallographic information

Comment

We have reported recently on the syntheses of water-soluble RhI–thp complexes such as RhCl(cod)(thp), where thp = tris(hydroxymethyl)phosphine, P(CH2OH)3, and cod = 1,5-cyclooctadiene (Lorenzini et al., 2007a). This complex reacts with PRR'2 phosphines (R = or ≠ R') in solution under Ar to generate, concomitantly with R'H, the phosphine-phosphinite derivatives RhCl(PRR'2)[P,P-R'(R)POCH2P(CH2OH)2] in two isomeric cis- and trans-forms, where cis and trans refer to the disposition of the P atoms with the R and R' substituents. In some of these systems, trace amounts of the trans-RhCl(CO)(PRR'2)2 complexes are formed (Lorenzini et al., 2007b), and these have been characterized by X-ray crystallography, for example, for the PEtPh2 and P(p-tolyl)3 systems (Lorenzini et al., 2008b; Lorenzini et al., submitted). The CO ligand almost certainly derives from the formaldehyde (Beck et al., 1999), which can be readily formed from transition metal–thp species (Higham et al., 2004; Hoye et al., 1993). The RhCl(cod)(thp)/phosphine reactions, when carried out under H2, give high yield formation of the dihydrido complexes cis,mer-Rh(H)2Cl(PRR'2)3 (where R' = Ph, and R = Me or Cy), although in some systems (e.g. with PMePh2) partial loss of H2 occurs and the RhCl(PRR'2)3 species has been detected in solution (Lorenzini et al., 2007c). Now, during a reaction of the Rh precursor with P(p-FC6H4)3 in MeOH under Ar, we have found that a few crystals of RhCl[P(p-FC6H4)3]3.CH3OH in low overall yield are precipitated.

The so-called "Wilkinson" hydrogenation catalyst, RhCl(PPh3)3, was first reported in 1965 (Young et al., 1965), and since then 22 Rh(I) complexes of general formula RhCl(PRR'2)3 have been structurally characterized; the first such complex was RhCl(PF2NEt2)2(PPh3) (Bennett et al., 1971), while there are just 3 of the type RhCl(PR3)3 where R = Ph (Bennett & Donaldson, 1977), Me (Jones et al., 1980) and OPh (Evans et al., 1999). The title P(p-FC6H4)3 complex was first isolated in 1968 (Montelatici et al., 1968), but an X-ray structure has not been reported.

Experimental

General. The RhCl(1,5-cod)(thp) complex was synthesized by our recently reported method (Lorenzini et al., 2007a); P(p-FC6H4)3 was used as received from Strem Chemicals, CD3OD (Cambridge Isotope Laboratory) was used as received. The Rh-phosphine reaction was carried out under Ar using standard Schlenk techniques.

RhCl[P(p-FC6H4)3]3.CH3OH. Addition of P(p-FC6H4)3 (10 mg, 0.031 mmol) in CD3OD (0.5 ml) to a yellow CD3OD solution (0.5 ml) of RhCl(1,5-cod)(thp) (5.6 mg, 0.015 mmol) at room temperature under Ar results in the immediate formation of a brown solution. Over 12 h, a few X-ray quality, yellow plate crystals of the solvated complex deposit from the solution.

Refinement

The material crystallizes with one molecule of solvent MeOH in the asymmetric unit. Two of the C6H4F substituents are disordered in two orientations and these were refined with constraints to maintain reasonable geometry and thermal parameters. All non-hydrogen atoms were refined anisotropically, while all hydrogen atoms were placed in calculated positions and not refined, except for H10 which was located in a difference map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound, with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Only major part of disordered molecular moieties are presented.

Crystal data

[RhCl(C18H12F3P1)3]·CH4O F000 = 1132
Mr = 1119.14 Dx = 1.547 Mg m3
Monoclinic, Cm Mo Kα radiation λ = 0.71073 Å
a = 10.831 (3) Å Cell parameters from 3285 reflections
b = 23.724 (7) Å θ = 3.3–23.2º
c = 9.845 (3) Å µ = 0.59 mm1
β = 108.213 (8)º T = 173.0 (1) K
V = 2403.0 (12) Å3 Plate, yellow
Z = 2 0.30 × 0.15 × 0.03 mm

Data collection

Bruker X8 APEXII diffractometer 3312 independent reflections
Radiation source: Fine-focus sealed tube 3094 reflections with I > 2σ(I)
Monochromator: Graphite Rint = 0.048
T = 173.0(1) K θmax = 26.3º
Area detector scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2003) h = −13→12
Tmin = 0.544, Tmax = 0.983 k = −29→29
10921 measured reflections l = −4→12

Refinement

Refinement on F2 Hydrogen site location: Geom
Least-squares matrix: Full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.034   w = 1/[σ2(Fo2) + (0.0308P)2 + 3.2966P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max = 0.016
S = 1.03 Δρmax = 0.67 e Å3
3312 reflections Δρmin = −0.47 e Å3
372 parameters Extinction correction: None
15 restraints Absolute structure: Flack (1983), 812 Friedel pairs
Primary atom site location: Direct Flack parameter: −0.03 (3)
Secondary atom site location: Difmap

Special details

Geometry. All s.u.s' (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.s' are taken into account individually in the estimation of s.u.s' in distances, angles and torsion angles; correlations between s.u.s' in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.s' is used for estimating s.u.s' involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2479 (3) 0.0000 0.8201 (5) 0.0317 (16)
C2 0.3484 (5) 0.0002 (5) 0.9489 (4) 0.0402 (19)
H2 0.3302 −0.0051 1.0364 0.048* 0.50
C3 0.4758 (4) 0.0083 (6) 0.9494 (6) 0.049 (4) 0.50
H3 0.5444 0.0098 1.0375 0.059* 0.50
C4 0.5028 (4) 0.0142 (4) 0.8210 (8) 0.044 (4) 0.50
C5 0.4023 (6) 0.0127 (4) 0.6922 (6) 0.038 (4) 0.50
H5 0.4207 0.0167 0.6045 0.046* 0.50
C6 0.2748 (5) 0.0053 (4) 0.6917 (4) 0.042 (2) 0.50
H6 0.2062 0.0040 0.6037 0.051* 0.50
C7 0.0049 (17) −0.0575 (8) 0.721 (2) 0.018 (3) 0.533 (12)
C8 0.0491 (13) −0.0863 (8) 0.6226 (19) 0.039 (3) 0.533 (12)
H8 0.1295 −0.0761 0.6098 0.047* 0.533 (12)
C9 −0.0245 (12) −0.1298 (7) 0.5426 (13) 0.048 (4) 0.533 (12)
H9 0.0057 −0.1495 0.4750 0.058* 0.533 (12)
C10 −0.1423 (11) −0.1447 (5) 0.5614 (13) 0.041 (3) 0.533 (12)
C11 −0.1864 (11) −0.1159 (6) 0.6603 (16) 0.042 (3) 0.533 (12)
H11 −0.2669 −0.1260 0.6731 0.050* 0.533 (12)
C12 −0.1129 (16) −0.0723 (8) 0.7403 (19) 0.024 (2) 0.533 (12)
H12 −0.1430 −0.0527 0.8078 0.029* 0.533 (12)
F2 −0.2133 (11) −0.1847 (4) 0.4740 (9) 0.060 (3) 0.533 (12)
C13 −0.0508 (5) 0.1306 (2) 1.1071 (5) 0.0280 (11)
C14 −0.1577 (5) 0.0973 (2) 1.0925 (7) 0.0429 (14)
H14 −0.1535 0.0581 1.0741 0.051*
C15 −0.2723 (6) 0.1201 (3) 1.1043 (7) 0.0586 (19)
H15 −0.3464 0.0969 1.0928 0.070*
C16 −0.2767 (6) 0.1756 (3) 1.1322 (7) 0.0537 (17)
C17 −0.1751 (8) 0.2093 (3) 1.1419 (10) 0.076 (3)
H17 −0.1804 0.2486 1.1584 0.091*
C18 −0.0642 (7) 0.1867 (2) 1.1280 (8) 0.061 (2)
H18 0.0067 0.2111 1.1330 0.073*
C19 0.2189 (3) 0.11444 (16) 1.2662 (4) 0.0291 (11) 0.637 (11)
C20 0.2075 (5) 0.1632 (2) 1.3398 (6) 0.037 (2) 0.637 (11)
H20 0.1344 0.1872 1.3032 0.044* 0.637 (11)
C21 0.3031 (5) 0.1768 (2) 1.4668 (6) 0.049 (3) 0.637 (11)
H21 0.2954 0.2101 1.5171 0.058* 0.637 (11)
C22 0.4101 (4) 0.1417 (2) 1.5203 (4) 0.0458 (15) 0.637 (11)
C23 0.4214 (5) 0.0929 (2) 1.4468 (6) 0.054 (3) 0.637 (11)
H23 0.4945 0.0689 1.4833 0.064* 0.637 (11)
C24 0.3258 (5) 0.0793 (2) 1.3197 (6) 0.050 (3) 0.637 (11)
H24 0.3336 0.0460 1.2694 0.060* 0.637 (11)
C25 0.1512 (5) 0.14409 (19) 0.9781 (5) 0.0245 (10)
C26 0.0727 (5) 0.1841 (2) 0.8909 (6) 0.0413 (13)
H26 −0.0157 0.1870 0.8876 0.050*
C27 0.1193 (5) 0.2199 (2) 0.8088 (6) 0.0450 (14)
H27 0.0638 0.2473 0.7500 0.054*
C28 0.2439 (5) 0.2159 (2) 0.8121 (6) 0.0354 (12)
C29 0.3242 (6) 0.1770 (3) 0.8920 (8) 0.0560 (18)
H29 0.4116 0.1740 0.8918 0.067*
C30 0.2765 (5) 0.1413 (2) 0.9747 (8) 0.0524 (18)
H30 0.3330 0.1137 1.0315 0.063*
F1 0.6241 (6) 0.0176 (3) 0.8185 (10) 0.078 (3) 0.50
F3 −0.3864 (4) 0.19782 (18) 1.1463 (5) 0.0806 (13)
F4 0.5006 (3) 0.1544 (2) 1.6443 (4) 0.0669 (13)
F5 0.2899 (3) 0.25244 (13) 0.7328 (4) 0.0531 (9)
P1 0.08546 (18) 0.0000 0.84167 (19) 0.0197 (4)
P2 0.09765 (13) 0.09686 (4) 1.09570 (12) 0.0229 (3)
Cl1 0.05281 (19) 0.0000 1.2983 (2) 0.0321 (5)
Rh1 0.08365 (4) 0.0000 1.06599 (4) 0.01826 (13)
O1 0.7332 (8) 0.0000 0.2629 (9) 0.120 (4)
C31 0.7118 (13) 0.0000 0.3817 (15) 0.104 (5)
H31A 0.7165 −0.0387 0.4179 0.156* 0.50
H31B 0.6250 0.0154 0.3695 0.156* 0.50
H31C 0.7772 0.0233 0.4500 0.156* 0.50
C7B −0.0176 (19) −0.0581 (10) 0.739 (2) 0.018 (3) 0.467 (12)
C8B 0.0088 (14) −0.0833 (10) 0.623 (2) 0.039 (3) 0.467 (12)
H8B 0.0889 −0.0759 0.6062 0.047* 0.467 (12)
C9B −0.0818 (13) −0.1192 (8) 0.5333 (15) 0.048 (4) 0.467 (12)
H9B −0.0637 −0.1364 0.4545 0.058* 0.467 (12)
C10B −0.1989 (12) −0.1299 (6) 0.5585 (15) 0.041 (3) 0.467 (12)
C11B −0.2254 (14) −0.1048 (8) 0.6739 (19) 0.042 (3) 0.467 (12)
H11B −0.3054 −0.1121 0.6912 0.050* 0.467 (12)
C12B −0.135 (2) −0.0689 (10) 0.764 (2) 0.024 (2) 0.467 (12)
H12B −0.1528 −0.0517 0.8430 0.029* 0.467 (12)
F2B −0.2822 (12) −0.1659 (5) 0.4806 (11) 0.061 (3) 0.467 (12)
C19B 0.2189 (3) 0.11444 (16) 1.2662 (4) 0.0291 (11) 0.363 (11)
C20B 0.1878 (8) 0.1313 (8) 1.3842 (10) 0.038 (4) 0.363 (11)
H20B 0.0990 0.1368 1.3766 0.046* 0.363 (11)
C21B 0.2825 (8) 0.1408 (8) 1.5153 (10) 0.047 (5) 0.363 (11)
H21B 0.2589 0.1464 1.5995 0.056* 0.363 (11)
C22B 0.4101 (4) 0.1417 (2) 1.5203 (4) 0.0458 (15) 0.363 (11)
C23B 0.4461 (8) 0.1307 (11) 1.4004 (11) 0.067 (7) 0.363 (11)
H23B 0.5349 0.1330 1.4049 0.080* 0.363 (11)
C24B 0.3518 (8) 0.1163 (11) 1.2728 (11) 0.079 (9) 0.363 (11)
H24B 0.3761 0.1077 1.1905 0.095* 0.363 (11)
H1O 0.833 (5) 0.0000 0.282 (14) 0.11 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.029 (4) 0.038 (4) 0.026 (4) 0.000 0.006 (3) 0.000
C2 0.028 (4) 0.060 (5) 0.028 (4) 0.000 0.001 (3) 0.000
C3 0.020 (4) 0.074 (12) 0.048 (6) −0.007 (7) 0.002 (4) 0.004 (8)
C4 0.032 (5) 0.023 (9) 0.083 (9) 0.005 (4) 0.028 (6) −0.001 (5)
C5 0.043 (6) 0.022 (11) 0.060 (7) −0.002 (4) 0.033 (6) 0.002 (4)
C6 0.028 (4) 0.068 (7) 0.029 (4) −0.002 (10) 0.008 (3) −0.003 (10)
C7 0.024 (6) 0.028 (3) 0.008 (5) −0.006 (4) 0.011 (4) 0.003 (3)
C8 0.051 (8) 0.047 (4) 0.031 (3) −0.025 (7) 0.031 (6) −0.012 (3)
C9 0.065 (11) 0.048 (7) 0.033 (4) −0.021 (8) 0.016 (7) −0.021 (4)
C10 0.026 (7) 0.037 (7) 0.034 (4) −0.011 (5) −0.028 (6) 0.005 (5)
C11 0.011 (8) 0.059 (7) 0.044 (5) −0.008 (6) −0.009 (5) 0.023 (5)
C12 0.017 (6) 0.039 (4) 0.020 (6) −0.007 (4) 0.009 (4) 0.006 (3)
F2 0.072 (7) 0.051 (5) 0.044 (5) −0.021 (5) −0.001 (5) −0.021 (4)
C13 0.037 (3) 0.026 (3) 0.023 (3) 0.010 (2) 0.013 (2) 0.008 (2)
C14 0.033 (3) 0.042 (3) 0.047 (4) 0.011 (2) 0.002 (3) −0.015 (3)
C15 0.031 (3) 0.073 (5) 0.065 (5) 0.014 (3) 0.004 (3) −0.021 (4)
C16 0.059 (4) 0.063 (4) 0.049 (4) 0.040 (3) 0.030 (3) 0.023 (3)
C17 0.116 (6) 0.033 (4) 0.116 (7) 0.039 (4) 0.089 (6) 0.027 (4)
C18 0.084 (5) 0.028 (3) 0.098 (6) 0.011 (3) 0.069 (4) 0.010 (3)
C19 0.037 (3) 0.023 (2) 0.028 (3) 0.002 (2) 0.010 (2) −0.001 (2)
C20 0.027 (4) 0.040 (5) 0.040 (5) −0.004 (4) 0.006 (4) −0.016 (4)
C21 0.045 (5) 0.046 (6) 0.055 (7) −0.005 (5) 0.015 (5) −0.040 (5)
C22 0.043 (3) 0.062 (4) 0.029 (3) −0.005 (3) 0.005 (3) −0.007 (3)
C23 0.062 (7) 0.046 (6) 0.038 (6) 0.014 (5) −0.006 (5) −0.004 (5)
C24 0.057 (6) 0.037 (6) 0.036 (6) 0.010 (5) −0.012 (5) −0.010 (5)
C25 0.029 (3) 0.022 (2) 0.021 (2) −0.002 (2) 0.005 (2) −0.0011 (19)
C26 0.034 (3) 0.049 (3) 0.043 (3) 0.008 (3) 0.016 (3) 0.019 (3)
C27 0.047 (3) 0.047 (3) 0.038 (3) 0.009 (3) 0.010 (3) 0.020 (3)
C28 0.047 (3) 0.032 (3) 0.030 (3) −0.014 (2) 0.015 (2) −0.005 (2)
C29 0.038 (3) 0.045 (4) 0.093 (6) −0.004 (3) 0.032 (4) 0.014 (4)
C30 0.033 (3) 0.037 (3) 0.090 (6) 0.004 (3) 0.023 (3) 0.020 (3)
F1 0.032 (3) 0.097 (10) 0.119 (7) −0.008 (3) 0.041 (4) −0.013 (5)
F3 0.075 (3) 0.090 (3) 0.090 (3) 0.056 (2) 0.043 (2) 0.019 (2)
F4 0.047 (2) 0.094 (3) 0.046 (2) −0.003 (2) −0.0053 (18) −0.032 (2)
F5 0.074 (2) 0.0430 (19) 0.050 (2) −0.0210 (16) 0.0305 (17) 0.0044 (16)
P1 0.0215 (9) 0.0229 (10) 0.0141 (9) 0.000 0.0044 (7) 0.000
P2 0.0313 (7) 0.0197 (5) 0.0174 (8) 0.0021 (6) 0.0073 (6) −0.0005 (4)
Cl1 0.0425 (12) 0.0369 (11) 0.0193 (9) 0.000 0.0133 (8) 0.000
Rh1 0.0222 (3) 0.0185 (2) 0.0137 (2) 0.000 0.00499 (19) 0.000
O1 0.072 (6) 0.245 (13) 0.037 (5) 0.000 0.006 (4) 0.000
C31 0.086 (10) 0.177 (16) 0.060 (9) 0.000 0.038 (8) 0.000
C7B 0.024 (6) 0.028 (3) 0.008 (5) −0.006 (4) 0.011 (4) 0.003 (3)
C8B 0.051 (8) 0.047 (4) 0.031 (3) −0.025 (7) 0.031 (6) −0.012 (3)
C9B 0.065 (11) 0.048 (7) 0.033 (4) −0.021 (8) 0.016 (7) −0.021 (4)
C10B 0.026 (7) 0.037 (7) 0.034 (4) −0.011 (5) −0.028 (6) 0.005 (5)
C11B 0.011 (8) 0.059 (7) 0.044 (5) −0.008 (6) −0.009 (5) 0.023 (5)
C12B 0.017 (6) 0.039 (4) 0.020 (6) −0.007 (4) 0.009 (4) 0.006 (3)
F2B 0.059 (7) 0.054 (7) 0.046 (6) −0.026 (5) −0.017 (5) −0.012 (5)
C19B 0.037 (3) 0.023 (2) 0.028 (3) 0.002 (2) 0.010 (2) −0.001 (2)
C20B 0.032 (8) 0.055 (12) 0.031 (9) −0.011 (8) 0.012 (7) −0.018 (8)
C21B 0.044 (10) 0.057 (13) 0.037 (10) −0.028 (9) 0.009 (8) −0.031 (9)
C22B 0.043 (3) 0.062 (4) 0.029 (3) −0.005 (3) 0.005 (3) −0.007 (3)
C23B 0.026 (9) 0.13 (2) 0.049 (12) 0.016 (11) 0.014 (8) 0.003 (12)
C24B 0.080 (15) 0.13 (2) 0.015 (8) 0.065 (15) 0.002 (9) −0.008 (11)

Geometric parameters (Å, °)

C1—C2 1.3897 C23—H23 0.9500
C1—C6 1.3888 C24—H24 0.9500
C1—P1 1.836 (4) C25—C30 1.370 (7)
C2—C3 1.3922 C25—C26 1.381 (7)
C2—H2 0.9500 C25—P2 1.831 (5)
C3—C4 1.3900 C26—C27 1.372 (7)
C3—H3 0.9500 C26—H26 0.9500
C4—F1 1.324 (7) C27—C28 1.343 (7)
C4—C5 1.3900 C27—H27 0.9500
C5—C6 1.3900 C28—C29 1.343 (8)
C5—H5 0.9500 C28—F5 1.360 (6)
C6—H6 0.9500 C29—C30 1.381 (8)
C7—C8 1.3900 C29—H29 0.9500
C7—C12 1.3900 C30—H30 0.9500
C7—P1 1.838 (10) F1—F1i 0.833 (15)
C8—C9 1.3900 F1—C4i 1.521 (8)
C8—H8 0.9500 P1—C1i 1.836 (4)
C9—C10 1.3900 P1—C7i 1.838 (10)
C9—H9 0.9500 P1—C7B 1.862 (13)
C10—F2 1.350 (13) P1—C7Bi 1.862 (13)
C10—C11 1.3900 P1—Rh1 2.215 (2)
C11—C12 1.3900 P2—Rh1 2.3153 (12)
C11—H11 0.9500 Cl1—Rh1 2.412 (2)
C12—H12 0.9500 Rh1—P2i 2.3153 (12)
C13—C18 1.362 (7) O1—C31 1.262 (15)
C13—C14 1.372 (7) O1—H1O 1.07 (4)
C13—P2 1.830 (5) C31—H31A 0.9800
C14—C15 1.391 (8) C31—H31B 0.9800
C14—H14 0.9500 C31—H31C 0.9800
C15—C16 1.351 (9) C7B—C8B 1.3900
C15—H15 0.9500 C7B—C12B 1.3900
C16—C17 1.339 (10) C8B—C9B 1.3900
C16—F3 1.346 (6) C8B—H8B 0.9500
C17—C18 1.361 (8) C9B—C10B 1.3900
C17—H17 0.9500 C9B—H9B 0.9500
C18—H18 0.9500 C10B—F2B 1.303 (15)
C19—C20 1.3900 C10B—C11B 1.3900
C19—C24 1.3900 C11B—C12B 1.3900
C19—P2 1.827 (3) C11B—H11B 0.9500
C20—C21 1.3900 C12B—H12B 0.9500
C20—H20 0.9500 C20B—C21B 1.393 (8)
C21—C22 1.3900 C20B—H20B 0.9500
C21—H21 0.9500 C21B—H21B 0.9500
C22—F4 1.340 (4) C23B—C24B 1.392 (8)
C22—C23 1.3900 C23B—H23B 0.9500
C23—C24 1.3900 C24B—H24B 0.9500
C2—C1—C6 120.2 C27—C26—C25 121.6 (5)
C2—C1—P1 113.6 (3) C27—C26—H26 119.2
C6—C1—P1 125.9 (3) C25—C26—H26 119.2
C1—C2—C3 119.8 C28—C27—C26 119.6 (5)
C1—C2—H2 120.1 C28—C27—H27 120.2
C3—C2—H2 120.1 C26—C27—H27 120.2
C4—C3—C2 120.0 C29—C28—C27 121.6 (5)
C4—C3—H3 120.0 C29—C28—F5 119.2 (5)
C2—C3—H3 120.0 C27—C28—F5 119.1 (5)
F1—C4—C5 118.9 (6) C28—C29—C30 118.3 (5)
F1—C4—C3 120.9 (6) C28—C29—H29 120.8
C5—C4—C3 120.0 C30—C29—H29 120.8
C6—C5—C4 120.0 C25—C30—C29 122.7 (5)
C6—C5—H5 120.0 C25—C30—H30 118.7
C4—C5—H5 120.0 C29—C30—H30 118.7
C5—C6—C1 120.0 C1i—P1—C7 101.8 (5)
C5—C6—H6 120.0 C1—P1—C7 101.8 (5)
C1—C6—H6 120.0 C1i—P1—C7i 101.8 (5)
C8—C7—C12 120.0 C1—P1—C7i 101.8 (5)
C8—C7—P1 128.1 (9) C7—P1—C7i 95.9 (17)
C12—C7—P1 111.9 (9) C1i—P1—C7B 111.7 (6)
C7—C8—C9 120.0 C1—P1—C7B 111.7 (6)
C7—C8—H8 120.0 C7i—P1—C7B 96.7 (3)
C9—C8—H8 120.0 C1i—P1—C7Bi 111.7 (6)
C10—C9—C8 120.0 C1—P1—C7Bi 111.7 (6)
C10—C9—H9 120.0 C7—P1—C7Bi 96.7 (3)
C8—C9—H9 120.0 C7B—P1—C7Bi 95.6 (19)
F2—C10—C9 117.2 (9) C1i—P1—Rh1 115.00 (17)
F2—C10—C11 122.7 (9) C1—P1—Rh1 115.00 (17)
C9—C10—C11 120.0 C7—P1—Rh1 119.4 (7)
C12—C11—C10 120.0 C7i—P1—Rh1 119.4 (7)
C12—C11—H11 120.0 C7B—P1—Rh1 110.6 (8)
C10—C11—H11 120.0 C7Bi—P1—Rh1 110.6 (8)
C11—C12—C7 120.0 C19—P2—C13 103.7 (2)
C11—C12—H12 120.0 C19—P2—C25 99.3 (2)
C7—C12—H12 120.0 C13—P2—C25 103.3 (2)
C18—C13—C14 116.9 (5) C19—P2—Rh1 110.04 (13)
C18—C13—P2 125.0 (4) C13—P2—Rh1 114.65 (18)
C14—C13—P2 118.1 (4) C25—P2—Rh1 123.28 (16)
C13—C14—C15 120.9 (6) P1—Rh1—P2 96.05 (3)
C13—C14—H14 119.5 P1—Rh1—P2i 96.05 (3)
C15—C14—H14 119.5 P2—Rh1—P2i 165.90 (5)
C16—C15—C14 119.0 (6) P1—Rh1—Cl1 172.92 (8)
C16—C15—H15 120.5 P2—Rh1—Cl1 84.45 (3)
C14—C15—H15 120.5 P2i—Rh1—Cl1 84.45 (3)
C17—C16—F3 119.4 (6) C31—O1—H1O 103 (5)
C17—C16—C15 121.1 (5) O1—C31—H31A 109.5
F3—C16—C15 119.4 (6) O1—C31—H31B 109.5
C16—C17—C18 119.2 (6) H31A—C31—H31B 109.5
C16—C17—H17 120.4 O1—C31—H31C 109.5
C18—C17—H17 120.4 H31A—C31—H31C 109.5
C17—C18—C13 122.7 (6) H31B—C31—H31C 109.5
C17—C18—H18 118.7 C8B—C7B—C12B 120.0
C13—C18—H18 118.7 C8B—C7B—P1 121.4 (11)
C20—C19—C24 120.0 C12B—C7B—P1 117.7 (10)
C20—C19—P2 120.9 (2) C7B—C8B—C9B 120.0
C24—C19—P2 119.0 (2) C7B—C8B—H8B 120.0
C19—C20—C21 120.0 C9B—C8B—H8B 120.0
C19—C20—H20 120.0 C10B—C9B—C8B 120.0
C21—C20—H20 120.0 C10B—C9B—H9B 120.0
C20—C21—C22 120.0 C8B—C9B—H9B 120.0
C20—C21—H21 120.0 F2B—C10B—C11B 118.7 (11)
C22—C21—H21 120.0 F2B—C10B—C9B 121.2 (11)
F4—C22—C23 120.2 (4) C11B—C10B—C9B 120.0
F4—C22—C21 119.8 (4) C10B—C11B—C12B 120.0
C23—C22—C21 120.0 C10B—C11B—H11B 120.0
C24—C23—C22 120.0 C12B—C11B—H11B 120.0
C24—C23—H23 120.0 C11B—C12B—C7B 120.0
C22—C23—H23 120.0 C11B—C12B—H12B 120.0
C23—C24—C19 120.0 C7B—C12B—H12B 120.0
C23—C24—H24 120.0 C21B—C20B—H20B 119.0
C19—C24—H24 120.0 C20B—C21B—H21B 120.7
C30—C25—C26 116.1 (5) C24B—C23B—H23B 120.2
C30—C25—P2 119.9 (4) C23B—C24B—H24B 120.1
C26—C25—P2 124.0 (4)
C6—C1—C2—C3 2.8 C8—C7—P1—C7i 93.6 (12)
P1—C1—C2—C3 −170.91 (16) C12—C7—P1—C7i −87.8 (10)
C1—C2—C3—C4 −2.2 C12—C7—P1—C7B 7(9)
C2—C3—C4—F1 −174.8 (7) C8—C7—P1—C7Bi 104.1 (13)
C2—C3—C4—C5 0.8 C12—C7—P1—C7Bi −77.3 (10)
F1—C4—C5—C6 175.7 (7) C8—C7—P1—Rh1 −137.7 (10)
C3—C4—C5—C6 0.0 C12—C7—P1—Rh1 40.9 (11)
C4—C5—C6—C1 0.6 C20—C19—P2—C13 −27.6 (5)
C2—C1—C6—C5 −2.0 C24—C19—P2—C13 154.7 (4)
P1—C1—C6—C5 170.89 (19) C20—C19—P2—C25 78.7 (5)
C12—C7—C8—C9 0.0 C24—C19—P2—C25 −99.1 (4)
P1—C7—C8—C9 178.5 (18) C20—C19—P2—Rh1 −150.6 (4)
C7—C8—C9—C10 0.0 C24—C19—P2—Rh1 31.6 (4)
C8—C9—C10—F2 175.7 (11) C18—C13—P2—C19 58.3 (6)
C8—C9—C10—C11 0.0 C14—C13—P2—C19 −122.2 (4)
F2—C10—C11—C12 −175.5 (11) C18—C13—P2—C25 −44.9 (6)
C9—C10—C11—C12 0.0 C14—C13—P2—C25 134.5 (4)
C10—C11—C12—C7 0.0 C18—C13—P2—Rh1 178.3 (5)
C8—C7—C12—C11 0.0 C14—C13—P2—Rh1 −2.2 (5)
P1—C7—C12—C11 −178.8 (15) C30—C25—P2—C19 55.9 (5)
C18—C13—C14—C15 −2.4 (9) C26—C25—P2—C19 −123.3 (5)
P2—C13—C14—C15 178.1 (5) C30—C25—P2—C13 162.5 (5)
C13—C14—C15—C16 −0.8 (10) C26—C25—P2—C13 −16.7 (5)
C14—C15—C16—C17 3.1 (11) C30—C25—P2—Rh1 −65.7 (5)
C14—C15—C16—F3 −178.8 (6) C26—C25—P2—Rh1 115.1 (4)
F3—C16—C17—C18 179.8 (7) C1i—P1—Rh1—P2 86.36 (4)
C15—C16—C17—C18 −2.1 (12) C1—P1—Rh1—P2 86.36 (4)
C16—C17—C18—C13 −1.4 (13) C7—P1—Rh1—P2 −152.1 (8)
C14—C13—C18—C17 3.5 (11) C7i—P1—Rh1—P2 −35.2 (8)
P2—C13—C18—C17 −177.0 (6) C7B—P1—Rh1—P2 −145.9 (9)
C24—C19—C20—C21 0.0 C7Bi—P1—Rh1—P2 −41.3 (9)
P2—C19—C20—C21 −177.8 (3) C1i—P1—Rh1—P2i −86.36 (4)
C19—C20—C21—C22 0.0 C1—P1—Rh1—P2i −86.36 (4)
C20—C21—C22—F4 −178.6 (5) C7—P1—Rh1—P2i 35.2 (8)
C20—C21—C22—C23 0.0 C7i—P1—Rh1—P2i 152.1 (8)
F4—C22—C23—C24 178.6 (5) C7B—P1—Rh1—P2i 41.3 (9)
C21—C22—C23—C24 0.0 C7Bi—P1—Rh1—P2i 145.9 (9)
C22—C23—C24—C19 0.0 C19—P2—Rh1—P1 −134.29 (16)
C20—C19—C24—C23 0.0 C13—P2—Rh1—P1 109.30 (18)
P2—C19—C24—C23 177.8 (3) C25—P2—Rh1—P1 −17.8 (2)
C30—C25—C26—C27 −1.7 (9) C19—P2—Rh1—P2i 14.6 (4)
P2—C25—C26—C27 177.5 (5) C13—P2—Rh1—P2i −101.8 (3)
C25—C26—C27—C28 0.4 (10) C25—P2—Rh1—P2i 131.1 (3)
C26—C27—C28—C29 1.3 (10) C19—P2—Rh1—Cl1 52.81 (16)
C26—C27—C28—F5 −178.5 (5) C13—P2—Rh1—Cl1 −63.59 (18)
C27—C28—C29—C30 −1.5 (10) C25—P2—Rh1—Cl1 169.3 (2)
F5—C28—C29—C30 178.3 (6) C1i—P1—C7B—C8B −21.7 (15)
C26—C25—C30—C29 1.5 (10) C1—P1—C7B—C8B −21.7 (15)
P2—C25—C30—C29 −177.7 (6) C7—P1—C7B—C8B −2(9)
C28—C29—C30—C25 0.0 (11) C7i—P1—C7B—C8B 83.8 (14)
C5—C4—F1—F1i −90.3 (7) C7Bi—P1—C7B—C8B 94.3 (12)
C3—C4—F1—F1i 85.4 (5) Rh1—P1—C7B—C8B −151.2 (10)
C5—C4—F1—C4i −90.3 (3) C1i—P1—C7B—C12B 169.5 (8)
C3—C4—F1—C4i 85.4 (4) C1—P1—C7B—C12B 169.5 (8)
C2—C1—P1—C7 −130.9 (10) C7—P1—C7B—C12B −171 (10)
C6—C1—P1—C7 55.8 (10) C7i—P1—C7B—C12B −84.9 (10)
C2—C1—P1—C7i 130.4 (10) C7Bi—P1—C7B—C12B −74.4 (14)
C6—C1—P1—C7i −42.9 (10) Rh1—P1—C7B—C12B 40.1 (13)
C2—C1—P1—C7B −127.4 (11) C12B—C7B—C8B—C9B 0.0
C6—C1—P1—C7B 59.3 (11) P1—C7B—C8B—C9B −168.4 (19)
C2—C1—P1—C7Bi 126.9 (11) C7B—C8B—C9B—C10B 0.0
C6—C1—P1—C7Bi −46.4 (11) C8B—C9B—C10B—F2B −176.0 (14)
C2—C1—P1—Rh1 −0.2 (5) C8B—C9B—C10B—C11B 0.0
C6—C1—P1—Rh1 −173.6 (5) F2B—C10B—C11B—C12B 176.1 (13)
C8—C7—P1—C1i −9.8 (14) C9B—C10B—C11B—C12B 0.0
C12—C7—P1—C1i 168.8 (7) C10B—C11B—C12B—C7B 0.0
C8—C7—P1—C1 −9.8 (14) C8B—C7B—C12B—C11B 0.0
C12—C7—P1—C1 168.8 (7) P1—C7B—C12B—C11B 168.9 (19)

Symmetry codes: (i) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ii 0.95 2.51 3.458 (9) 172
O1—H1O···Cl1iii 1.03 (5) 2.34 (5) 3.369 (9) 174 (11)

Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2075).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Beck, C. M., Rathmill, S. E., Park, Y. J., Chen, J., Crabtree, R. H., Liable-Sands, L. M. & Rheingold, A. L. (1999). Organometallics, 18, 5311–5317.
  3. Bennett, M. J. & Donaldson, P. B. (1977). Inorg. Chem.16, 655–660.
  4. Bennett, M. A., Robertson, G. B., Turney, T. W. & Whimp, P. O. (1971). J. Chem. Soc. D, pp. 762–764.
  5. Bruker (2003). SADABS. and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Evans, P. A., Incarvito, C. D. & Rheingold, A. L. (1999). Private communication (deposition number: 115178). CCDC, Cambridge, England.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Higham, L. J., Whittlesey, M. K. & Wood, P. T. (2004). J. Chem. Soc. Dalton Trans. pp. 4202–4208. [DOI] [PubMed]
  11. Hoye, P. A. T., Pringle, P. G., Smith, M. B. & Worboys, K. (1993). J. Chem. Soc. Dalton Trans. pp. 269–274.
  12. Jones, R. A., Real, F. M., Wilkinson, G., Galas, A. M. R., Hursthouse, M. B. & Malik, K. M. A. (1980). J. Chem. Soc. Dalton Trans. pp. 511–518.
  13. Lorenzini, F., Patrick, B. O. & James, B. R. (2007a). J. Chem. Soc. Dalton Trans. pp. 3224–3226. [DOI] [PubMed]
  14. Lorenzini, F., Patrick, B. O. & James, B. R. (2007b). Inorg. Chem.46, 8998–9002. [DOI] [PubMed]
  15. Lorenzini, F., Patrick, B. O. & James, B. R. (2007c). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.044.
  16. Lorenzini, F., Patrick, B. O. & James, B. R. (2008a). Acta Cryst. E64, m179–m180. [DOI] [PMC free article] [PubMed]
  17. Lorenzini, F., Patrick, B. O. & James, B. R. (2008b). Acta Cryst. E64, m464–m465. [DOI] [PMC free article] [PubMed]
  18. Montelatici, S., van der Ent, A., Osborn, J. A. & Wilkinson, G. (1968). J. Chem. Soc. A, pp. 1054–1058.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Young, J. F., Osborn, J. A., Jardine, F. H. & Wilkinson, G. (1965). Chem. Commun. pp. 131–132.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808005485/rk2075sup1.cif

e-64-0m512-sup1.cif (31.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005485/rk2075Isup2.hkl

e-64-0m512-Isup2.hkl (159.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES