Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m561. doi: 10.1107/S1600536808006909

catena-Poly[[chloridocopper(II)]bis­(μ-3,3′,5,5′-tetra­methyl-4,4′-methylene­dipyrazole)[chloridocopper(II)]-di-μ-chlorido]

Zhi-Min Wang a,*
PMCID: PMC2960916  PMID: 21202017

Abstract

In the title compound, [Cu2Cl4(C11H16N4)]n, the Cu atom is coordinated by two N atoms of two 3,3′,5,5′-tetra­methyl-4,4′-methyl­enedipyrazole (H2mbdpz) ligands, two bridging Cl atoms and one terminal Cl atom, forming a square-pyramidal geometry. The bridging Cl atoms and the bridging H2mbdpz ligands connect the Cu atoms to build up an extended one-dimensional chain. The chains are further connected through N—H⋯Cl hydrogen bonds to build up a two-dimensional layer in the (011) plane. An inversion centre lies between every pair of adjacent Cu atoms.

Related literature

For related literature, see: Kaes et al. (1998); Yaghi et al. (1998); Yagi et al. (2002); Nassimbeni (2003).graphic file with name e-64-0m561-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C11H16N4)]

  • M r = 677.44

  • Triclinic, Inline graphic

  • a = 8.759 (3) Å

  • b = 8.879 (3) Å

  • c = 9.735 (3) Å

  • α = 79.269 (6)°

  • β = 63.584 (5)°

  • γ = 86.922 (5)°

  • V = 665.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 298 (2) K

  • 0.26 × 0.23 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.621, T max = 0.699

  • 3354 measured reflections

  • 2331 independent reflections

  • 1541 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064

  • wR(F 2) = 0.178

  • S = 0.99

  • 2331 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006909/dn2323sup1.cif

e-64-0m561-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006909/dn2323Isup2.hkl

e-64-0m561-Isup2.hkl (114.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.86 2.43 3.242 (6) 157
N4—H4⋯Cl1ii 0.86 2.34 3.172 (6) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author is grateful to Shuren University for financial support.

supplementary crystallographic information

Comment

Considerable research efforts have been devoted to searching for new and better inclusion compounds. One of the main reasons is their potential for eventual applications in a variety of technologically useful processes (Nassimbeni, 2003). In the past performance, the majority of cases in one-dimensional coordination networks was focused on bis-monodentate ligand (Yaghi et al., 1998), while a few examples of bis-bidentate, bis-tridentate ones were documented(Kaes et al., 1998). Here, we reported a 1-D complexes using the bis-bidentate ligand 4,4'-methylene-bis(3,5-dimethylpyrazole) (H2mbdpz).

In the title compound (I), the copper atom is coordinated by two nitrogen atoms of the H2mbdpz ligand, two bridging chlorine atom and one terminal chlorine, forming a square-pyramidal geometry (Fig. 1). The average Cu—N bond lengths, 1.999 (3) Å, is longer than those observed in other copper complexes (Yagi et al., 2002). The average Cu—Cl bond lengths is 2.439 (3) Å. the bridging chlorine atoms and the bridging H2mbdpz ligands connect the copper atoms to build up an extended one dimensionnal chain (Fig. 1). The chains are further connected through N—H···Cl hydrogen bonds to build up a two-dimensionnal layer along the (0 1 1) plane (Table 1).

Experimental

CuCl2(0.028 g, 0.015 mmol), H2mbdpz(0.023 g, 0.012 mmol) were added to methanol. The mixture was heated for ten hours under reflux. The resultant was then filtered to give a pure solution. Two weeks later suitable single crystals for X-Ray diffraction analysis were obtained.

Refinement

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

View of compound (I) with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 2 - z].

Crystal data

[Cu2Cl4(C11H16N4)] Z = 1
Mr = 677.44 F000 = 346
Triclinic, P1 Dx = 1.689 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.759 (3) Å Cell parameters from 2334 reflections
b = 8.879 (3) Å θ = 2.3–25.2º
c = 9.735 (3) Å µ = 2.03 mm1
α = 79.269 (6)º T = 298 (2) K
β = 63.584 (5)º Block, blue
γ = 86.922 (5)º 0.26 × 0.23 × 0.19 mm
V = 665.8 (4) Å3

Data collection

Bruker APEXII area-detector diffractometer 2331 independent reflections
Radiation source: fine-focus sealed tube 1541 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.033
T = 298(2) K θmax = 25.2º
φ and ω scans θmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −10→9
Tmin = 0.621, Tmax = 0.699 k = −7→10
3354 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064 H-atom parameters constrained
wR(F2) = 0.178   w = 1/[σ2(Fo2) + (0.1072P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
2331 reflections Δρmax = 0.79 e Å3
167 parameters Δρmin = −1.14 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.36691 (10) 0.08450 (10) 0.90150 (9) 0.0298 (3)
Cl1 0.1132 (2) 0.0034 (2) 1.1136 (2) 0.0345 (5)
Cl2 0.4814 (2) −0.1536 (2) 0.9274 (2) 0.0355 (5)
N1 0.7388 (7) 0.7150 (7) 0.1354 (6) 0.0310 (14)
N2 0.8962 (6) 0.7124 (6) 0.1260 (6) 0.0301 (14)
H2 0.9629 0.7922 0.0931 0.036*
N3 0.5561 (7) 0.1394 (7) 0.6871 (6) 0.0332 (14)
N4 0.7207 (7) 0.1464 (7) 0.6647 (6) 0.0364 (15)
H4 0.7525 0.1184 0.7371 0.044*
C1 0.4005 (9) 0.1972 (9) 0.5280 (8) 0.0386 (18)
H1A 0.3168 0.1271 0.6123 0.058*
H1B 0.4246 0.1673 0.4308 0.058*
H1C 0.3574 0.2989 0.5284 0.058*
C2 0.5597 (8) 0.1946 (7) 0.5478 (8) 0.0282 (15)
C3 0.7295 (8) 0.2400 (7) 0.4356 (7) 0.0284 (15)
C4 0.8263 (9) 0.2018 (8) 0.5166 (8) 0.0343 (17)
C5 1.0159 (9) 0.2144 (10) 0.4652 (9) 0.045 (2)
H5A 1.0463 0.3166 0.4655 0.068*
H5B 1.0764 0.1921 0.3618 0.068*
H5C 1.0455 0.1425 0.5356 0.068*
C6 0.7909 (9) 0.3024 (8) 0.2656 (8) 0.0320 (17)
H6A 0.7166 0.2605 0.2311 0.038*
H6B 0.9039 0.2644 0.2102 0.038*
C7 0.8000 (8) 0.4739 (7) 0.2171 (7) 0.0265 (15)
C8 0.6772 (8) 0.5694 (7) 0.1915 (7) 0.0252 (15)
C9 0.5023 (9) 0.5253 (8) 0.2174 (9) 0.0382 (18)
H9A 0.4223 0.5283 0.3234 0.057*
H9B 0.5027 0.4234 0.1972 0.057*
H9C 0.4699 0.5959 0.1482 0.057*
C10 0.9385 (8) 0.5715 (8) 0.1735 (7) 0.0267 (15)
C11 1.1096 (9) 0.5461 (9) 0.1710 (9) 0.042 (2)
H11A 1.1906 0.6210 0.0904 0.064*
H11B 1.1453 0.4451 0.1508 0.064*
H11C 1.1028 0.5560 0.2701 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0340 (5) 0.0250 (5) 0.0293 (5) 0.0015 (4) −0.0153 (4) 0.0012 (4)
Cl1 0.0322 (9) 0.0351 (11) 0.0354 (10) −0.0042 (8) −0.0186 (8) 0.0064 (8)
Cl2 0.0457 (11) 0.0258 (10) 0.0402 (10) 0.0037 (8) −0.0242 (9) −0.0050 (8)
N1 0.028 (3) 0.028 (3) 0.033 (3) −0.001 (3) −0.013 (3) 0.003 (3)
N2 0.024 (3) 0.024 (3) 0.038 (3) −0.003 (2) −0.014 (3) 0.006 (3)
N3 0.033 (3) 0.035 (4) 0.029 (3) 0.008 (3) −0.015 (3) 0.000 (3)
N4 0.037 (4) 0.043 (4) 0.034 (3) 0.001 (3) −0.024 (3) 0.002 (3)
C1 0.039 (4) 0.043 (5) 0.036 (4) 0.002 (4) −0.019 (4) −0.004 (4)
C2 0.033 (4) 0.019 (3) 0.037 (4) 0.002 (3) −0.020 (3) −0.003 (3)
C3 0.035 (4) 0.018 (4) 0.029 (4) 0.004 (3) −0.014 (3) −0.001 (3)
C4 0.040 (4) 0.034 (4) 0.028 (4) 0.002 (3) −0.018 (3) 0.003 (3)
C5 0.035 (4) 0.061 (6) 0.041 (5) −0.001 (4) −0.023 (4) 0.002 (4)
C6 0.037 (4) 0.028 (4) 0.029 (4) 0.010 (3) −0.016 (3) −0.001 (3)
C7 0.031 (4) 0.023 (4) 0.026 (4) 0.001 (3) −0.014 (3) −0.004 (3)
C8 0.029 (4) 0.021 (3) 0.021 (3) 0.004 (3) −0.009 (3) 0.000 (3)
C9 0.032 (4) 0.031 (4) 0.060 (5) −0.007 (3) −0.028 (4) −0.007 (4)
C10 0.021 (3) 0.033 (4) 0.022 (3) −0.003 (3) −0.007 (3) −0.001 (3)
C11 0.035 (4) 0.047 (5) 0.041 (4) 0.011 (4) −0.016 (4) −0.004 (4)

Geometric parameters (Å, °)

Cu1—N3 1.993 (5) C3—C4 1.386 (9)
Cu1—N1i 2.009 (6) C3—C6 1.495 (9)
Cu1—Cl1 2.2926 (19) C4—C5 1.510 (9)
Cu1—Cl2 2.310 (2) C5—H5A 0.9600
Cu1—Cl2ii 2.712 (2) C5—H5B 0.9600
Cl2—Cu1ii 2.712 (2) C5—H5C 0.9600
N1—N2 1.340 (7) C6—C7 1.504 (9)
N1—C8 1.346 (8) C6—H6A 0.9700
N1—Cu1i 2.009 (6) C6—H6B 0.9700
N2—C10 1.343 (8) C7—C10 1.386 (9)
N2—H2 0.8600 C7—C8 1.414 (9)
N3—C2 1.340 (8) C8—C9 1.499 (9)
N3—N4 1.362 (7) C9—H9A 0.9600
N4—C4 1.332 (8) C9—H9B 0.9600
N4—H4 0.8600 C9—H9C 0.9600
C1—C2 1.489 (9) C10—C11 1.493 (9)
C1—H1A 0.9600 C11—H11A 0.9600
C1—H1B 0.9600 C11—H11B 0.9600
C1—H1C 0.9600 C11—H11C 0.9600
C2—C3 1.422 (9)
N3—Cu1—N1i 88.7 (2) N4—C4—C5 120.3 (6)
N3—Cu1—Cl1 165.01 (18) C3—C4—C5 131.7 (6)
N1i—Cu1—Cl1 88.83 (16) C4—C5—H5A 109.5
N3—Cu1—Cl2 89.48 (17) C4—C5—H5B 109.5
N1i—Cu1—Cl2 174.58 (17) H5A—C5—H5B 109.5
Cl1—Cu1—Cl2 91.58 (7) C4—C5—H5C 109.5
N3—Cu1—Cl2ii 100.44 (18) H5A—C5—H5C 109.5
N1i—Cu1—Cl2ii 100.88 (18) H5B—C5—H5C 109.5
Cl1—Cu1—Cl2ii 94.55 (7) C3—C6—C7 117.1 (6)
Cl2—Cu1—Cl2ii 84.47 (7) C3—C6—H6A 108.0
Cu1—Cl2—Cu1ii 95.53 (7) C7—C6—H6A 108.0
N2—N1—C8 105.5 (5) C3—C6—H6B 108.0
N2—N1—Cu1i 120.4 (4) C7—C6—H6B 108.0
C8—N1—Cu1i 133.3 (5) H6A—C6—H6B 107.3
N1—N2—C10 112.6 (5) C10—C7—C8 104.7 (6)
N1—N2—H2 123.7 C10—C7—C6 126.9 (6)
C10—N2—H2 123.7 C8—C7—C6 128.1 (6)
C2—N3—N4 105.8 (5) N1—C8—C7 110.2 (6)
C2—N3—Cu1 133.1 (5) N1—C8—C9 121.6 (6)
N4—N3—Cu1 120.4 (4) C7—C8—C9 128.3 (6)
C4—N4—N3 111.6 (5) C8—C9—H9A 109.5
C4—N4—H4 124.2 C8—C9—H9B 109.5
N3—N4—H4 124.2 H9A—C9—H9B 109.5
C2—C1—H1A 109.5 C8—C9—H9C 109.5
C2—C1—H1B 109.5 H9A—C9—H9C 109.5
H1A—C1—H1B 109.5 H9B—C9—H9C 109.5
C2—C1—H1C 109.5 N2—C10—C7 106.9 (5)
H1A—C1—H1C 109.5 N2—C10—C11 120.3 (6)
H1B—C1—H1C 109.5 C7—C10—C11 132.8 (7)
N3—C2—C3 110.0 (6) C10—C11—H11A 109.5
N3—C2—C1 120.3 (6) C10—C11—H11B 109.5
C3—C2—C1 129.7 (6) H11A—C11—H11B 109.5
C4—C3—C2 104.5 (6) C10—C11—H11C 109.5
C4—C3—C6 127.9 (6) H11A—C11—H11C 109.5
C2—C3—C6 127.5 (6) H11B—C11—H11C 109.5
N4—C4—C3 108.0 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···Cl1iii 0.86 2.43 3.242 (6) 157
N4—H4···Cl1ii 0.86 2.34 3.172 (6) 164

Symmetry codes: (iii) x+1, y+1, z−1; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2323).

References

  1. Bruker (2004). APEX2 Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Kaes, C., Hosseini, M. W., Richard, C. E. F., Skelton, B. B. & White, A. (1998). Angew. Chem. Int. Ed.37, 920–922. [DOI] [PubMed]
  3. Nassimbeni, L. R. (2003). Acc. Chem. Res.36, 631–637. [DOI] [PubMed]
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.
  8. Yagi, T., Hanai, H., Komorita, T., Suzuki, T. & Kaizaki, S. J. (2002). J. Chem. Soc. Dalton. Trans. pp. 1126–1131.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006909/dn2323sup1.cif

e-64-0m561-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006909/dn2323Isup2.hkl

e-64-0m561-Isup2.hkl (114.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES