Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 7;64(Pt 4):o683. doi: 10.1107/S1600536808006144

Biguanidinium dichloride

Gustavo Portalone a,*
PMCID: PMC2960918  PMID: 21202075

Abstract

The asymmetric unit of the title compound, C2H9N5 2+·2Cl, is composed of one diprotonated biguanidinium cation and two chloride anions. The diprotonated cation consists of two planar halves twisted by 36.42 (6)°. The ions are associated in the crystal structure by extensive hydrogen bonding into a three-dimensional network; the diprotonated biguanidinium cation is hydrogen bonded to the chloride anions.

Related literature

For a general approach to the use of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supra­molecular reagents, see: Portalone & Colapietro (2004, 2007 and references therein). For related crystal structures, see: Ernst (1977); Pinkerton & Schwarzenbach (1978); Martin & Pinkerton (1996); Martin et al. (1996, 1997); Kurzer & Pitchfork (1968).graphic file with name e-64-0o683-scheme1.jpg

Experimental

Crystal data

  • C2H9N5 2+·2Cl

  • M r = 174.04

  • Monoclinic, Inline graphic

  • a = 6.43693 (9) Å

  • b = 16.93420 (18) Å

  • c = 6.65260 (8) Å

  • β = 98.6878 (12)°

  • V = 716.84 (1) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.852, T max = 0.886

  • 80724 measured reflections

  • 2456 independent reflections

  • 2349 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.070

  • S = 1.14

  • 2456 reflections

  • 119 parameters

  • All H-atom parameters refined

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006; cell refinement: CrysAlis RED (Oxford Diffraction, 2006; data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006144/kp2161sup1.cif

e-64-0o683-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006144/kp2161Isup2.hkl

e-64-0o683-Isup2.hkl (118.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2 0.819 (18) 2.279 (18) 3.0796 (9) 166.0 (16)
N2—H21⋯Cl1i 0.833 (18) 2.530 (18) 3.2557 (10) 146.4 (15)
N2—H22⋯Cl2ii 0.852 (19) 2.34 (2) 3.1714 (10) 167.1 (17)
N3—H31⋯Cl2i 0.823 (19) 2.787 (19) 3.5098 (12) 147.8 (16)
N3—H32⋯Cl1iii 0.857 (19) 2.599 (19) 3.1933 (10) 127.4 (15)
N3—H32⋯Cl2 0.857 (19) 2.835 (19) 3.5454 (12) 141.3 (15)
N4—H41⋯Cl1 0.88 (2) 2.703 (19) 3.4178 (11) 139.4 (16)
N4—H42⋯Cl1iv 0.846 (19) 2.412 (19) 3.2295 (10) 162.8 (17)
N5—H51⋯Cl2v 0.853 (19) 2.413 (19) 3.2404 (12) 163.7 (16)
N5—H52⋯Cl1 0.874 (19) 2.369 (19) 3.1905 (11) 156.7 (17)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank MIUR (Rome) for 2006 financial support of the project ‘X-ray diffractometry and spectrometry’.

supplementary crystallographic information

Comment

Biguanidine derivatives, characterized by multiple hydrogen-bond donor sites, are good candidates to be coupled in the crystal with carefully selected molecules having multiple hydrogen-bond acceptor sites (Portalone & Colapietro, 2004, 2007). As a part of a more general study of multiple-hydrogen-bonding DNA/RNA nucleobases as potential supramolecular reagents, this paper reports the crystal structure of the title compound, (I), BIGH22+2Cl-. The asymmetric unit of (I) (Fig. 1) consists of a diprotonated biguanidinium cation (BIGH22+) and two chloride anions; protonation occurs at the bridge N atom and the imino N atom of the biguanidine molecule. The structure of the delocalized cation is very similar to those previously reported for the carbonate (BIGH2)CO3 and the sulfates (BIGH2)SO4.2H2O and (BIGH2)SO4.H2O (Pinkerton & Schwarzenbach, 1978), the dinitrate (BIGH2)NO3 (Martin et al., 1996), the diperchlorate (BIGH2)2ClO4 (Martin & Pinkerton, 1996), the bis-dinitramide (BIGH2)(DN)2 and (BIGH2)(DN)2.H2O (Martin et al., 1997). BIGH22+ is composed of two planar halves sharing the atom N(1). These two planar parts are twisted with respect to each other by 36.42 (6)°. The C—N terminal bond lengths are shorter due to delocalization of π-electron density through the planar fragments. The lack of complete planarity of the cation is due to steric interaction between the hydrogen atoms. This interaction induces a strain in the molecule which is manifested by the opening of the angle at the bridging N atom [C1—N1—C2, 127.9 (1)°]. The weakening of the bridges bonds is due to the lowered basicity of the bridge N atom on protonation [pkaI = 11.5; pkaII = 2.9 (Kurzer & Pitchfork, 1968)] and is manifested by the longer C—N1 bridging bonds [1.363 (1) - 1.372 (1) Å] and the shorter terminal C—N bonds [1.306 (1) - 1.321 (1) Å], comparing with the corresponding ones reported for BIGH+Cl- (Ernst, 1977). Analysis of the crystal packing of (I) (Fig. 2) shows that the structure is stabilized by ten hydrogen bonds N—H···Cl- involving all protons (Table 1) which account for the relatively high density (Dx = 1.61 Mg m-3).

Experimental

Biguanide (0.1 mmol, Sigma Aldrich at 98% purity) was dissolved in water (9 ml) and heated under reflux for 2 h. After cooling a solution to an ambient temperature, while stirring, HCl (6 mol L-1) was added dropwise until the pH = 2. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the solvent after a few days.

Refinement

All H atoms were found in a difference map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme. Displacements ellipsoids are at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing diagram for (I) viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. Hydrogen bonding is indicated by dashed lines.

Crystal data

C2H9N52+·2Cl F000 = 360
Mr = 174.04 Dx = 1.613 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 80724 reflections
a = 6.43693 (9) Å θ = 3.2–32.0º
b = 16.93420 (18) Å µ = 0.83 mm1
c = 6.65260 (8) Å T = 298 (2) K
β = 98.6878 (12)º Plate, colourless
V = 716.841 (15) Å3 0.20 × 0.20 × 0.15 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur S CCD diffractometer 2456 independent reflections
Radiation source: Enhance (Mo) X-ray source 2349 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
Detector resolution: 16.0696 pixels mm-1 θmax = 32.0º
T = 298(2) K θmin = 3.2º
ω and φ scans h = −9→9
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2006) k = −25→25
Tmin = 0.852, Tmax = 0.886 l = −9→9
80724 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.027   w = 1/[σ2(Fo2) + (0.0293P)2 + 0.2376P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071 (Δ/σ)max < 0.001
S = 1.14 Δρmax = 0.14 e Å3
2456 reflections Δρmin = −0.14 e Å3
119 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.110 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.86502 (5) −0.053995 (15) 0.27026 (4) 0.03288 (9)
Cl2 0.62775 (5) 0.315420 (18) 0.37349 (5) 0.03605 (9)
N1 0.35152 (13) 0.16618 (5) 0.32041 (15) 0.02556 (17)
H1 0.430 (3) 0.2034 (10) 0.356 (3) 0.039 (4)*
N2 0.00539 (15) 0.12772 (6) 0.20409 (16) 0.02955 (19)
H21 0.025 (3) 0.0812 (11) 0.243 (3) 0.038 (4)*
H22 −0.109 (3) 0.1408 (11) 0.130 (3) 0.048 (5)*
N3 0.09938 (18) 0.25798 (6) 0.21118 (17) 0.0335 (2)
H31 −0.025 (3) 0.2708 (11) 0.195 (3) 0.046 (5)*
H32 0.193 (3) 0.2941 (11) 0.232 (3) 0.044 (5)*
N4 0.38953 (17) 0.03968 (6) 0.18533 (15) 0.0304 (2)
H41 0.461 (3) −0.0045 (12) 0.196 (3) 0.050 (5)*
H42 0.308 (3) 0.0513 (11) 0.078 (3) 0.047 (5)*
N5 0.62338 (15) 0.08686 (7) 0.45410 (16) 0.0324 (2)
H51 0.646 (3) 0.1178 (11) 0.556 (3) 0.044 (5)*
H52 0.711 (3) 0.0485 (11) 0.440 (3) 0.051 (5)*
C1 0.14797 (15) 0.18273 (5) 0.24248 (14) 0.02118 (17)
C2 0.45468 (15) 0.09538 (6) 0.31785 (15) 0.02354 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.04007 (15) 0.02213 (13) 0.03406 (15) 0.00402 (9) −0.00208 (10) −0.00296 (9)
Cl2 0.03243 (14) 0.03940 (16) 0.03375 (15) −0.01269 (10) −0.00333 (10) 0.00083 (10)
N1 0.0205 (4) 0.0213 (4) 0.0344 (4) −0.0012 (3) 0.0024 (3) −0.0021 (3)
N2 0.0220 (4) 0.0256 (4) 0.0390 (5) −0.0017 (3) −0.0020 (3) 0.0058 (4)
N3 0.0368 (5) 0.0215 (4) 0.0420 (6) 0.0052 (4) 0.0055 (4) 0.0047 (4)
N4 0.0379 (5) 0.0269 (4) 0.0257 (4) 0.0089 (4) 0.0022 (4) −0.0017 (3)
N5 0.0253 (4) 0.0399 (5) 0.0312 (5) 0.0067 (4) 0.0010 (3) 0.0010 (4)
C1 0.0229 (4) 0.0203 (4) 0.0208 (4) 0.0012 (3) 0.0047 (3) 0.0022 (3)
C2 0.0218 (4) 0.0261 (4) 0.0238 (4) 0.0022 (3) 0.0068 (3) 0.0031 (3)

Geometric parameters (Å, °)

N1—C1 1.3634 (13) N3—H32 0.857 (19)
N1—C2 1.3719 (13) N4—C2 1.3156 (14)
N1—H1 0.819 (18) N4—H41 0.88 (2)
N2—C1 1.3056 (13) N4—H42 0.846 (19)
N2—H21 0.833 (18) N5—C2 1.3131 (14)
N2—H22 0.852 (19) N5—H51 0.853 (19)
N3—C1 1.3211 (13) N5—H52 0.874 (19)
N3—H31 0.823 (19)
C1—N1—C2 127.89 (9) H41—N4—H42 121.2 (17)
C1—N1—H1 117.6 (12) C2—N5—H51 120.4 (12)
C2—N1—H1 113.6 (12) C2—N5—H52 119.2 (13)
C1—N2—H21 122.9 (12) H51—N5—H52 120.4 (17)
C1—N2—H22 116.6 (13) N2—C1—N3 120.97 (10)
H21—N2—H22 120.4 (17) N2—C1—N1 122.31 (9)
C1—N3—H31 118.5 (13) N3—C1—N1 116.70 (9)
C1—N3—H32 121.3 (12) N5—C2—N4 122.04 (10)
H31—N3—H32 119.0 (17) N5—C2—N1 116.03 (10)
C2—N4—H41 116.7 (12) N4—C2—N1 121.93 (9)
C2—N4—H42 119.7 (12)
C2—N1—C1—N2 19.96 (17) C1—N1—C2—N5 −159.12 (10)
C2—N1—C1—N3 −161.49 (10) C1—N1—C2—N4 21.55 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl2 0.819 (18) 2.279 (18) 3.0796 (9) 166.0 (16)
N2—H21···Cl1i 0.833 (18) 2.530 (18) 3.2557 (10) 146.4 (15)
N2—H22···Cl2ii 0.852 (19) 2.34 (2) 3.1714 (10) 167.1 (17)
N3—H31···Cl2i 0.823 (19) 2.787 (19) 3.5098 (12) 147.8 (16)
N3—H32···Cl1iii 0.857 (19) 2.599 (19) 3.1933 (10) 127.4 (15)
N3—H32···Cl2 0.857 (19) 2.835 (19) 3.5454 (12) 141.3 (15)
N4—H41···Cl1 0.88 (2) 2.703 (19) 3.4178 (11) 139.4 (16)
N4—H42···Cl1iv 0.846 (19) 2.412 (19) 3.2295 (10) 162.8 (17)
N5—H51···Cl2v 0.853 (19) 2.413 (19) 3.2404 (12) 163.7 (16)
N5—H52···Cl1 0.874 (19) 2.369 (19) 3.1905 (11) 156.7 (17)

Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y, −z; (v) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2161).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Ernst, S. R. (1977). Acta Cryst. B33, 237–240.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Kurzer, F. & Pitchfork, E. D. (1968). Fortschr. Chem. Forsch.10, 375–472.
  6. Martin, A. & Pinkerton, A. A. (1996). Acta Cryst. C52, 1048–1052.
  7. Martin, A., Pinkerton, A. A., Gilardi, R. D. & Bottaro, J. C. (1997). Acta Cryst. B53, 504–512.
  8. Martin, A., Pinkerton, A. A. & Schiemann, A. (1996). Acta Cryst. C52, 966–970.
  9. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Pinkerton, A. A. & Schwarzenbach, D. (1978). J. Chem. Soc. Dalton Trans. pp. 989–996.
  11. Portalone, G. & Colapietro, M. (2004). Acta Cryst. E60, o1165–o1166.
  12. Portalone, G. & Colapietro, M. (2007). Acta Cryst. C63, o181–o184. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006144/kp2161sup1.cif

e-64-0o683-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006144/kp2161Isup2.hkl

e-64-0o683-Isup2.hkl (118.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES