Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 7;64(Pt 4):o682. doi: 10.1107/S1600536808006107

4-[(2-Hydr­oxy-1-naphth­yl)methyl­idene­amino]benzoic acid

Mehmet Akkurt a,*, Sema Öztürk Yıldırım a, Abdullah Mohamed Asiri b, Vickie McKee c
PMCID: PMC2960922  PMID: 21202074

Abstract

The mol­ecule of the title compound, C18H13NO3, is almost planar, the dihedral angle between the naphthalene and benzene ring systems being 4.04 (6)°. The mol­ecular conformation and packing are stabilized by intra­molecular O—H⋯N and inter­molecular O—H⋯O and C—H⋯O inter­actions.

Related literature

For background, see: Asiri & Badahdah (2007).graphic file with name e-64-0o682-scheme1.jpg

Experimental

Crystal data

  • C18H13NO3

  • M r = 291.29

  • Monoclinic, Inline graphic

  • a = 14.7490 (12) Å

  • b = 4.9850 (4) Å

  • c = 36.750 (3) Å

  • β = 91.305 (1)°

  • V = 2701.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • 0.31 × 0.19 × 0.09 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.970, T max = 0.991

  • 13445 measured reflections

  • 3520 independent reflections

  • 2761 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.145

  • S = 1.07

  • 3520 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006107/hb2705sup1.cif

e-64-0o682-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006107/hb2705Isup2.hkl

e-64-0o682-Isup2.hkl (210.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—HO1⋯N1 0.82 1.82 2.5572 (16) 148
O2—HO2⋯O3i 0.82 1.81 2.6281 (14) 171
C14—H14⋯O2ii 0.93 2.56 3.3611 (17) 145
C16—H16⋯O1iii 0.93 2.49 3.1542 (19) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

2-Hydroxy Schiff base ligands and their complexes, derived from the reaction of salicylaldehyde and 2-hydroxy-1-naphthaldehyde with amines are of interest due to the existence of (O—H ···N and N—H ···O) type hydrogen bonds and tautomerism between the enol-imine and keto-enamine forms. Tautomerism in 2-hydroxy Schiff bases both in solution and in the solid state was investigated using different spectroscopic techniques (Asiri & Badahdah, 2007).

In the title compound, (I), the molecule is almost planar (Fig. 1). The maximum deviation of the non-H atoms from their mean plane is 0.087 (1) Å for O3. The dihedral angle between the naphthalene ring and the benzene ring is 4.04 (6)°.

The molecular conformation is stabilized by an intramolecular O—H···N hydrogen bond (Table 1). Then, classical inversion dimers are formed by head-to-head O—H···O linkages of the carboxylic acid groups. Finally, C—H ···O interactions link the dimers into sheets (Fig. 2).

Experimental

A solution of 4-aminobenzoic acid (5.0 g, 36.5 mmol) in hot ethanol was mixed with an ethanolic solution of 2-hydroxynaphthaldehyde (7.23 g, 36.5 mmol) and the resulting mixture was refluxed for 3 h. The mxiture was cooled to recover the crude product. Orange laths of (I) were recrystalized from ethanol. IR ν (cm-1); 1683.3 (C?O), 1588.1 (C?N), 1427.1 (C?C), 1301.4 (C—O) and 1152 (C—N). [M.p.: > 573 K, yield: 54.7%].

Refinement

The H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding with with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids for the non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing for (I) showing hydrogen bonds as dashed lines.

Crystal data

C18H13NO3 F000 = 1216
Mr = 291.29 Dx = 1.433 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -C 2yc Cell parameters from 3973 reflections
a = 14.7490 (12) Å θ = 2.2–28.8º
b = 4.9850 (4) Å µ = 0.10 mm1
c = 36.750 (3) Å T = 150 (2) K
β = 91.305 (1)º Lath, orange
V = 2701.3 (4) Å3 0.31 × 0.19 × 0.09 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 3520 independent reflections
Radiation source: sealed tube 2761 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.031
T = 150(2) K θmax = 28.9º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −20→19
Tmin = 0.970, Tmax = 0.991 k = −6→6
13445 measured reflections l = −49→49

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.145   w = 1/[σ2(Fo2) + (0.0792P)2 + 1.0642P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3520 reflections Δρmax = 0.59 e Å3
210 parameters Δρmin = −0.33 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.11588 (7) 0.8430 (3) 0.11623 (4) 0.0398 (4)
O2 0.39188 (7) −0.3435 (2) 0.00066 (3) 0.0295 (3)
O3 0.52323 (6) −0.2551 (2) 0.03002 (3) 0.0277 (3)
N1 0.26607 (8) 0.6069 (2) 0.10400 (3) 0.0232 (3)
C1 0.15748 (10) 0.9891 (3) 0.13926 (4) 0.0293 (4)
C2 0.10809 (11) 1.1871 (4) 0.15946 (5) 0.0387 (5)
C3 0.14890 (11) 1.3471 (3) 0.18415 (5) 0.0368 (5)
C4 0.24458 (10) 1.3336 (3) 0.19194 (4) 0.0273 (4)
C5 0.28528 (12) 1.5100 (3) 0.21737 (4) 0.0333 (4)
C6 0.37653 (13) 1.5035 (3) 0.22449 (4) 0.0367 (5)
C7 0.43000 (12) 1.3207 (3) 0.20591 (5) 0.0382 (5)
C8 0.39165 (11) 1.1460 (3) 0.18077 (4) 0.0328 (4)
C9 0.29754 (10) 1.1446 (3) 0.17322 (4) 0.0235 (4)
C10 0.25387 (9) 0.9658 (3) 0.14694 (4) 0.0227 (3)
C11 0.30277 (9) 0.7702 (3) 0.12869 (4) 0.0222 (3)
C12 0.31172 (9) 0.4082 (3) 0.08444 (4) 0.0216 (3)
C13 0.26106 (9) 0.2595 (3) 0.05899 (4) 0.0237 (4)
C14 0.30229 (9) 0.0589 (3) 0.03908 (4) 0.0236 (4)
C15 0.39461 (9) 0.0041 (3) 0.04452 (4) 0.0212 (3)
C16 0.44479 (9) 0.1537 (3) 0.07000 (4) 0.0237 (4)
C17 0.40437 (9) 0.3544 (3) 0.08974 (4) 0.0237 (4)
C18 0.44065 (9) −0.2106 (3) 0.02406 (4) 0.0224 (3)
HO1 0.15250 0.74990 0.10550 0.0600*
H2 0.04600 1.20430 0.15520 0.053 (6)*
HO2 0.42310 −0.45920 −0.00880 0.0440*
H3 0.11410 1.47080 0.19660 0.046 (5)*
H5 0.24950 1.63300 0.22950 0.041 (5)*
H6 0.40270 1.61950 0.24150 0.045 (5)*
H7 0.49230 1.31630 0.21050 0.058 (6)*
H8 0.42870 1.02670 0.16860 0.037 (5)*
H11 0.36440 0.75340 0.13410 0.0270*
H13 0.19960 0.29500 0.05540 0.0280*
H14 0.26850 −0.03930 0.02210 0.031 (4)*
H16 0.50620 0.11760 0.07370 0.022 (4)*
H17 0.43850 0.45380 0.10650 0.031 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0220 (5) 0.0457 (7) 0.0513 (7) 0.0052 (5) −0.0055 (5) −0.0177 (6)
O2 0.0250 (5) 0.0288 (5) 0.0348 (6) −0.0002 (4) 0.0003 (4) −0.0125 (4)
O3 0.0212 (5) 0.0280 (5) 0.0340 (5) 0.0019 (4) 0.0017 (4) −0.0052 (4)
N1 0.0220 (5) 0.0239 (6) 0.0238 (6) 0.0009 (4) 0.0003 (4) −0.0034 (4)
C1 0.0236 (7) 0.0307 (7) 0.0336 (8) 0.0035 (6) 0.0012 (6) −0.0026 (6)
C2 0.0244 (7) 0.0432 (9) 0.0485 (10) 0.0085 (7) 0.0031 (7) −0.0090 (8)
C3 0.0340 (8) 0.0371 (8) 0.0396 (9) 0.0111 (7) 0.0078 (7) −0.0078 (7)
C4 0.0359 (8) 0.0237 (7) 0.0224 (7) 0.0030 (6) 0.0047 (5) 0.0017 (5)
C5 0.0487 (9) 0.0257 (7) 0.0257 (7) 0.0055 (7) 0.0049 (6) −0.0032 (6)
C6 0.0533 (10) 0.0281 (7) 0.0285 (8) −0.0041 (7) −0.0049 (7) −0.0053 (6)
C7 0.0379 (9) 0.0361 (8) 0.0402 (9) −0.0015 (7) −0.0091 (7) −0.0079 (7)
C8 0.0319 (8) 0.0295 (7) 0.0368 (8) 0.0039 (6) −0.0038 (6) −0.0084 (6)
C9 0.0287 (7) 0.0204 (6) 0.0213 (6) 0.0014 (5) 0.0020 (5) 0.0011 (5)
C10 0.0233 (6) 0.0226 (6) 0.0222 (6) 0.0009 (5) 0.0012 (5) 0.0000 (5)
C11 0.0209 (6) 0.0230 (6) 0.0228 (6) 0.0005 (5) 0.0000 (5) 0.0001 (5)
C12 0.0219 (6) 0.0215 (6) 0.0214 (6) 0.0000 (5) 0.0016 (5) −0.0002 (5)
C13 0.0182 (6) 0.0264 (7) 0.0264 (7) 0.0009 (5) −0.0023 (5) −0.0018 (5)
C14 0.0223 (6) 0.0246 (6) 0.0237 (7) −0.0021 (5) −0.0022 (5) −0.0031 (5)
C15 0.0206 (6) 0.0210 (6) 0.0221 (6) −0.0017 (5) 0.0018 (5) −0.0010 (5)
C16 0.0188 (6) 0.0261 (7) 0.0263 (7) −0.0006 (5) −0.0001 (5) −0.0033 (5)
C17 0.0210 (6) 0.0258 (7) 0.0243 (6) −0.0020 (5) −0.0016 (5) −0.0048 (5)
C18 0.0223 (6) 0.0214 (6) 0.0235 (6) −0.0025 (5) 0.0027 (5) −0.0013 (5)

Geometric parameters (Å, °)

O1—C1 1.265 (2) C12—C17 1.4018 (19)
O2—C18 1.2914 (18) C12—C13 1.397 (2)
O3—C18 1.2524 (16) C13—C14 1.388 (2)
O1—HO1 0.8200 C14—C15 1.3987 (19)
O2—HO2 0.8200 C15—C16 1.396 (2)
N1—C12 1.4047 (18) C15—C18 1.482 (2)
N1—C11 1.3254 (18) C16—C17 1.379 (2)
C1—C2 1.442 (2) C2—H2 0.9300
C1—C10 1.448 (2) C3—H3 0.9300
C2—C3 1.341 (3) C5—H5 0.9300
C3—C4 1.435 (2) C6—H6 0.9300
C4—C9 1.413 (2) C7—H7 0.9300
C4—C5 1.408 (2) C8—H8 0.9300
C5—C6 1.366 (3) C11—H11 0.9300
C6—C7 1.394 (2) C13—H13 0.9300
C7—C8 1.381 (2) C14—H14 0.9300
C8—C9 1.409 (2) C16—H16 0.9300
C9—C10 1.454 (2) C17—H17 0.9300
C10—C11 1.394 (2)
C1—O1—HO1 109.00 C14—C15—C18 121.63 (13)
C18—O2—HO2 109.00 C15—C16—C17 120.76 (13)
C11—N1—C12 126.19 (12) C12—C17—C16 119.83 (13)
O1—C1—C2 119.70 (14) O3—C18—C15 119.63 (13)
C2—C1—C10 117.37 (13) O2—C18—O3 123.39 (13)
O1—C1—C10 122.92 (14) O2—C18—C15 116.99 (12)
C1—C2—C3 122.09 (15) C1—C2—H2 119.00
C2—C3—C4 122.11 (15) C3—C2—H2 119.00
C3—C4—C9 119.09 (14) C2—C3—H3 119.00
C3—C4—C5 120.38 (14) C4—C3—H3 119.00
C5—C4—C9 120.52 (14) C4—C5—H5 119.00
C4—C5—C6 121.06 (14) C6—C5—H5 119.00
C5—C6—C7 119.19 (15) C5—C6—H6 120.00
C6—C7—C8 120.81 (16) C7—C6—H6 120.00
C7—C8—C9 121.42 (14) C6—C7—H7 120.00
C4—C9—C10 119.40 (13) C8—C7—H7 120.00
C4—C9—C8 116.99 (13) C7—C8—H8 119.00
C8—C9—C10 123.59 (13) C9—C8—H8 119.00
C1—C10—C11 118.61 (13) N1—C11—H11 118.00
C1—C10—C9 119.90 (13) C10—C11—H11 118.00
C9—C10—C11 121.48 (12) C12—C13—H13 120.00
N1—C11—C10 123.46 (12) C14—C13—H13 120.00
N1—C12—C17 122.74 (13) C13—C14—H14 120.00
C13—C12—C17 119.77 (13) C15—C14—H14 120.00
N1—C12—C13 117.49 (12) C15—C16—H16 120.00
C12—C13—C14 120.09 (12) C17—C16—H16 120.00
C13—C14—C15 120.15 (13) C12—C17—H17 120.00
C14—C15—C16 119.41 (13) C16—C17—H17 120.00
C16—C15—C18 118.96 (12)
C12—N1—C11—C10 179.29 (14) C7—C8—C9—C10 179.74 (15)
C11—N1—C12—C13 −178.82 (14) C4—C9—C10—C1 2.2 (2)
C11—N1—C12—C17 1.6 (2) C4—C9—C10—C11 −177.85 (14)
O1—C1—C2—C3 −179.95 (18) C8—C9—C10—C1 −176.23 (14)
C10—C1—C2—C3 0.8 (3) C8—C9—C10—C11 3.8 (2)
O1—C1—C10—C9 178.67 (15) C1—C10—C11—N1 1.4 (2)
O1—C1—C10—C11 −1.3 (2) C9—C10—C11—N1 −178.55 (14)
C2—C1—C10—C9 −2.1 (2) N1—C12—C13—C14 −179.43 (13)
C2—C1—C10—C11 177.93 (15) C17—C12—C13—C14 0.1 (2)
C1—C2—C3—C4 0.5 (3) N1—C12—C17—C16 179.04 (13)
C2—C3—C4—C5 178.31 (16) C13—C12—C17—C16 −0.5 (2)
C2—C3—C4—C9 −0.5 (2) C12—C13—C14—C15 0.3 (2)
C3—C4—C5—C6 −178.57 (15) C13—C14—C15—C16 −0.3 (2)
C9—C4—C5—C6 0.2 (2) C13—C14—C15—C18 179.30 (14)
C3—C4—C9—C8 177.61 (14) C14—C15—C16—C17 −0.1 (2)
C3—C4—C9—C10 −0.9 (2) C18—C15—C16—C17 −179.67 (14)
C5—C4—C9—C8 −1.1 (2) C14—C15—C18—O2 0.7 (2)
C5—C4—C9—C10 −179.65 (14) C14—C15—C18—O3 −179.25 (14)
C4—C5—C6—C7 0.7 (2) C16—C15—C18—O2 −179.75 (13)
C5—C6—C7—C8 −0.5 (2) C16—C15—C18—O3 0.3 (2)
C6—C7—C8—C9 −0.5 (2) C15—C16—C17—C12 0.5 (2)
C7—C8—C9—C4 1.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—HO1···N1 0.82 1.82 2.5572 (16) 148
O2—HO2···O3i 0.82 1.81 2.6281 (14) 171
C14—H14···O2ii 0.93 2.56 3.3611 (17) 145
C16—H16···O1iii 0.93 2.49 3.1542 (19) 128

Symmetry codes: (i) −x+1, −y−1, −z; (ii) −x+1/2, −y−1/2, −z; (iii) x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2705).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Asiri, A. M. & Badahdah, K. O. (2007). Molecules, 12, 1796-1804. [DOI] [PMC free article] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006107/hb2705sup1.cif

e-64-0o682-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006107/hb2705Isup2.hkl

e-64-0o682-Isup2.hkl (210.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES