Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):o747. doi: 10.1107/S1600536808007496

2,7-Bis(4-acetyl­phen­oxy)naphthalene

Kosuke Nakaema a, Masahiro Imaizumi b, Keiichi Noguchi c, Noriyuki Yonezawa a,*
PMCID: PMC2960926  PMID: 21202137

Abstract

The title compound, C26H20O4, has an asymmetrical conformation at 193 K. The 4-acetyl­phenyl groups are twisted away from the the naphthalene ring system, with one benzene ring turned towards the 1-position of the naphthalene ring and the other benzene ring turned towards the 6-position. The inter­planar angles between the mean planes of the benzene rings and the naphthalene ring system are 68.71 (6) and 74.01 (6)°. The structure displays C—H⋯O hydrogen bonding and π–π stacking inter­actions [centroid–centroid and interplanar distances are 3.5938 (9) and 3.517 Å, respectively].

Related literature

For related literature, see: Ocak et al. (2004).graphic file with name e-64-0o747-scheme1.jpg

Experimental

Crystal data

  • C26H20O4

  • M r = 396.42

  • Triclinic, Inline graphic

  • a = 5.8691 (2) Å

  • b = 7.9105 (2) Å

  • c = 21.4040 (5) Å

  • α = 90.322 (2)°

  • β = 95.534 (2)°

  • γ = 102.283 (2)°

  • V = 966.11 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.02 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.792, T max = 0.985

  • 17040 measured reflections

  • 3467 independent reflections

  • 2617 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.125

  • S = 1.09

  • 3467 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla, et al, 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007496/fl2193sup1.cif

e-64-0o747-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007496/fl2193Isup2.hkl

e-64-0o747-Isup2.hkl (166.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.95 2.54 3.448 (2) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

supplementary crystallographic information

Comment

An ORTEPIII (Burnett & Johnson, 1996) plot of the molecule (I) is shown in Fig. 1.Considering its two dimensional representation, the molecule could have had C2 symmetry. This is certainly not the case in practice, as the naphthalene moiety forms dihedral angles of 68.71 (6)° and 74.01 (6)° with the best mean planes of the aromatic rings C11—C16 and C19—C24, respectively. The torsion angles between the naphthalene ring and the two benzene rings are -34.0 (2)° [C11—O1—C1—C2], and -132.00 (15)° [C19—O3—C5—C4]. The difference in the two torsion angles between the naphthalene and benzene rings is rather large. This means that one benzene ring (C11—C16) turns to the 1-position, and the other benzene ring (C19—C24) turns to the 6-position rather than the 8-position. This compound has an asymmetrical conformation similar to that of 2,7-bis(3,4-dicyanophenoxy)naphthalene (Ocak et al., 2004).

The crystal packing is stabilized mainly by van der Waals interactions, however there is some π—π stacking and C—H···O intermolecular interactions (Table 1, Fig. 2). The hydrogen bonds between an acetyl hydrogen and the carbonyl oxygen of a neighboring molecule link the molecules into pairs around a center of symmetry that are aligned complementarily in a row forming a polymer-like infinitive ribbon (Fig. 2).

Experimental

2,7-naphthalenediol (160 mg, 1.0 mmol) and 4-fluoroacetophenone (303 mg, 2.2 mmol) were dissolved in DMF (1.0 ml) with stirring under N2. Potassium carbonate (304 mg, 2.2 mmol) was added. The reaction mixture was stirred for 24 h at 150 C° and poured into water. The products extracted with CHCl3, and washed with brine. The organic layer was dried with MgSO4 and concentrated under pressure. Slightly purplish single crystals suitable for X-ray diffraction were obtained by crystallization from ethanol.

Refinement

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uĩso~(H) = 1.2U~eq~(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis. The dashed lines indicate hydrogen bonding (blue dashed line) and π—π stacking interactions (black dashed line).

Crystal data

C26H20O4 Z = 2
Mr = 396.42 F000 = 416
Triclinic, P1 Dx = 1.363 Mg m3
Hall symbol: -P 1 Melting point = 430.2–430.9 K
a = 5.8691 (2) Å Cu Kα radiation λ = 1.54187 Å
b = 7.9105 (2) Å Cell parameters from 12820 reflections
c = 21.4040 (5) Å θ = 4.2–68.2º
α = 90.322 (2)º µ = 0.74 mm1
β = 95.534 (2)º T = 193 K
γ = 102.283 (2)º Platelet, clear pale purple
V = 966.11 (5) Å3 0.60 × 0.20 × 0.02 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 3467 independent reflections
Radiation source: rotating anode 2617 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
Detector resolution: 10.00 pixels mm-1 θmax = 68.2º
T = 193 K θmin = 4.2º
ω scans h = −6→6
Absorption correction: numerical(NUMABS; Higashi, 1999) k = −9→9
Tmin = 0.792, Tmax = 0.985 l = −25→25
17040 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.125   w = 1/[σ2(Fo2) + (0.0673P)2 + 0.0881P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
3467 reflections Δρmax = 0.19 e Å3
273 parameters Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4929 (2) 0.04326 (15) 0.14405 (5) 0.0460 (3)
O2 0.7532 (2) 0.44294 (17) −0.10302 (6) 0.0578 (4)
O3 −0.3337 (2) 0.45641 (15) 0.28446 (5) 0.0445 (3)
O4 −0.6274 (2) 0.81543 (16) 0.51905 (6) 0.0542 (4)
C1 0.3180 (3) 0.0478 (2) 0.18309 (7) 0.0364 (4)
C2 0.2243 (3) 0.1895 (2) 0.19006 (7) 0.0363 (4)
H2 0.2721 0.2894 0.1661 0.044*
C3 0.0555 (3) 0.18698 (19) 0.23309 (6) 0.0334 (4)
C4 −0.0519 (3) 0.3297 (2) 0.24098 (7) 0.0361 (4)
H4 −0.0100 0.4308 0.2173 0.043*
C5 −0.2151 (3) 0.3208 (2) 0.28259 (7) 0.0376 (4)
C6 −0.2807 (3) 0.1748 (2) 0.31916 (7) 0.0416 (4)
H6 −0.3939 0.1724 0.3482 0.050*
C7 −0.1796 (3) 0.0366 (2) 0.31236 (7) 0.0402 (4)
H7 −0.2233 −0.0622 0.3371 0.048*
C8 −0.0113 (3) 0.03715 (19) 0.26930 (6) 0.0344 (4)
C9 0.0924 (3) −0.1059 (2) 0.26025 (7) 0.0410 (4)
H9 0.0496 −0.2065 0.2841 0.049*
C10 0.2526 (3) −0.1022 (2) 0.21793 (7) 0.0407 (4)
H10 0.3194 −0.1997 0.2120 0.049*
C11 0.4961 (3) 0.13361 (19) 0.08868 (7) 0.0361 (4)
C12 0.2975 (3) 0.1256 (2) 0.04757 (7) 0.0402 (4)
H12 0.1489 0.0664 0.0586 0.048*
C13 0.3166 (3) 0.2042 (2) −0.00971 (7) 0.0395 (4)
H13 0.1800 0.1984 −0.0380 0.047*
C14 0.5327 (3) 0.29172 (18) −0.02654 (7) 0.0341 (4)
C15 0.7292 (3) 0.3012 (2) 0.01629 (7) 0.0393 (4)
H15 0.8777 0.3623 0.0059 0.047*
C16 0.7120 (3) 0.2230 (2) 0.07376 (7) 0.0392 (4)
H16 0.8473 0.2307 0.1027 0.047*
C17 0.5597 (3) 0.3703 (2) −0.08936 (7) 0.0403 (4)
C18 0.3482 (3) 0.3545 (2) −0.13569 (8) 0.0510 (5)
H18A 0.3925 0.4167 −0.1736 0.061*
H18B 0.2301 0.4043 −0.1172 0.061*
H18C 0.2835 0.2321 −0.1466 0.061*
C19 −0.3525 (3) 0.52941 (19) 0.34179 (7) 0.0359 (4)
C20 −0.1817 (3) 0.5418 (2) 0.39204 (7) 0.0404 (4)
H20 −0.0502 0.4910 0.3891 0.049*
C21 −0.2046 (3) 0.6289 (2) 0.44668 (7) 0.0409 (4)
H21 −0.0859 0.6398 0.4808 0.049*
C22 −0.3988 (3) 0.70055 (19) 0.45228 (7) 0.0359 (4)
C23 −0.5678 (3) 0.6862 (2) 0.40098 (7) 0.0408 (4)
H23 −0.7010 0.7351 0.4039 0.049*
C24 −0.5448 (3) 0.6021 (2) 0.34601 (7) 0.0398 (4)
H24 −0.6606 0.5942 0.3113 0.048*
C25 −0.4346 (3) 0.7891 (2) 0.51118 (7) 0.0407 (4)
C26 −0.2330 (3) 0.8422 (3) 0.56052 (8) 0.0545 (5)
H26A −0.2649 0.9313 0.5884 0.065*
H26B −0.0902 0.8885 0.5405 0.065*
H26C −0.2117 0.7415 0.5851 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0475 (7) 0.0581 (7) 0.0407 (6) 0.0246 (6) 0.0160 (5) 0.0149 (5)
O2 0.0560 (8) 0.0639 (8) 0.0516 (7) 0.0043 (6) 0.0144 (6) 0.0169 (6)
O3 0.0530 (7) 0.0528 (7) 0.0338 (6) 0.0234 (6) 0.0082 (5) 0.0020 (5)
O4 0.0503 (8) 0.0594 (8) 0.0558 (7) 0.0128 (6) 0.0184 (6) −0.0041 (6)
C1 0.0351 (9) 0.0458 (9) 0.0299 (8) 0.0113 (7) 0.0054 (6) 0.0031 (6)
C2 0.0380 (9) 0.0388 (9) 0.0315 (8) 0.0067 (7) 0.0041 (6) 0.0051 (6)
C3 0.0338 (8) 0.0389 (8) 0.0266 (7) 0.0062 (7) 0.0010 (6) 0.0007 (6)
C4 0.0395 (9) 0.0370 (8) 0.0311 (8) 0.0064 (7) 0.0038 (6) 0.0030 (6)
C5 0.0385 (9) 0.0427 (9) 0.0332 (8) 0.0127 (7) 0.0025 (6) −0.0026 (6)
C6 0.0407 (10) 0.0492 (10) 0.0352 (8) 0.0070 (8) 0.0117 (7) 0.0014 (7)
C7 0.0418 (10) 0.0405 (9) 0.0364 (8) 0.0029 (7) 0.0073 (7) 0.0050 (7)
C8 0.0338 (9) 0.0388 (8) 0.0294 (7) 0.0054 (7) 0.0024 (6) 0.0014 (6)
C9 0.0466 (10) 0.0372 (9) 0.0383 (8) 0.0063 (7) 0.0058 (7) 0.0059 (7)
C10 0.0464 (10) 0.0401 (9) 0.0386 (9) 0.0151 (7) 0.0063 (7) 0.0032 (7)
C11 0.0411 (9) 0.0378 (8) 0.0328 (8) 0.0136 (7) 0.0087 (7) 0.0033 (6)
C12 0.0335 (9) 0.0448 (9) 0.0413 (9) 0.0034 (7) 0.0099 (7) 0.0014 (7)
C13 0.0352 (9) 0.0461 (9) 0.0363 (8) 0.0075 (7) 0.0021 (7) −0.0014 (7)
C14 0.0375 (9) 0.0310 (8) 0.0349 (8) 0.0085 (6) 0.0064 (6) −0.0014 (6)
C15 0.0339 (9) 0.0390 (9) 0.0438 (9) 0.0031 (7) 0.0085 (7) 0.0023 (7)
C16 0.0341 (9) 0.0466 (9) 0.0375 (8) 0.0106 (7) 0.0025 (7) 0.0004 (7)
C17 0.0483 (10) 0.0364 (8) 0.0390 (9) 0.0126 (7) 0.0103 (7) 0.0020 (7)
C18 0.0608 (12) 0.0583 (11) 0.0380 (9) 0.0221 (9) 0.0049 (8) 0.0060 (8)
C19 0.0377 (9) 0.0370 (8) 0.0346 (8) 0.0083 (7) 0.0103 (7) 0.0032 (6)
C20 0.0353 (9) 0.0462 (9) 0.0426 (9) 0.0143 (7) 0.0053 (7) 0.0019 (7)
C21 0.0388 (9) 0.0459 (9) 0.0390 (9) 0.0123 (7) 0.0019 (7) 0.0027 (7)
C22 0.0358 (9) 0.0335 (8) 0.0383 (8) 0.0053 (6) 0.0079 (7) 0.0031 (6)
C23 0.0332 (9) 0.0433 (9) 0.0478 (9) 0.0103 (7) 0.0081 (7) 0.0022 (7)
C24 0.0345 (9) 0.0446 (9) 0.0411 (9) 0.0110 (7) 0.0020 (7) 0.0016 (7)
C25 0.0445 (10) 0.0369 (8) 0.0418 (9) 0.0073 (7) 0.0129 (7) 0.0054 (7)
C26 0.0574 (12) 0.0635 (12) 0.0432 (10) 0.0149 (9) 0.0048 (8) −0.0075 (8)

Geometric parameters (Å, °)

O1—C11 1.3871 (17) C13—C14 1.391 (2)
O1—C1 1.3905 (17) C13—H13 0.9500
O2—C17 1.2225 (18) C14—C15 1.391 (2)
O3—C19 1.3772 (17) C14—C17 1.492 (2)
O3—C5 1.4001 (18) C15—C16 1.383 (2)
O4—C25 1.2201 (19) C15—H15 0.9500
C1—C2 1.363 (2) C16—H16 0.9500
C1—C10 1.408 (2) C17—C18 1.495 (2)
C2—C3 1.413 (2) C18—H18A 0.9800
C2—H2 0.9500 C18—H18B 0.9800
C3—C4 1.422 (2) C18—H18C 0.9800
C3—C8 1.425 (2) C19—C24 1.381 (2)
C4—C5 1.361 (2) C19—C20 1.386 (2)
C4—H4 0.9500 C20—C21 1.386 (2)
C5—C6 1.405 (2) C20—H20 0.9500
C6—C7 1.363 (2) C21—C22 1.391 (2)
C6—H6 0.9500 C21—H21 0.9500
C7—C8 1.414 (2) C22—C23 1.394 (2)
C7—H7 0.9500 C22—C25 1.493 (2)
C8—C9 1.415 (2) C23—C24 1.381 (2)
C9—C10 1.363 (2) C23—H23 0.9500
C9—H9 0.9500 C24—H24 0.9500
C10—H10 0.9500 C25—C26 1.495 (2)
C11—C16 1.381 (2) C26—H26A 0.9800
C11—C12 1.381 (2) C26—H26B 0.9800
C12—C13 1.381 (2) C26—H26C 0.9800
C12—H12 0.9500
C11—O1—C1 119.52 (12) C13—C14—C17 122.02 (14)
C19—O3—C5 118.88 (11) C16—C15—C14 121.10 (14)
C2—C1—O1 123.00 (14) C16—C15—H15 119.5
C2—C1—C10 121.89 (14) C14—C15—H15 119.5
O1—C1—C10 115.03 (14) C11—C16—C15 119.34 (15)
C1—C2—C3 119.57 (14) C11—C16—H16 120.3
C1—C2—H2 120.2 C15—C16—H16 120.3
C3—C2—H2 120.2 O2—C17—C14 120.20 (15)
C2—C3—C4 121.79 (14) O2—C17—C18 120.69 (14)
C2—C3—C8 119.44 (14) C14—C17—C18 119.09 (14)
C4—C3—C8 118.76 (13) C17—C18—H18A 109.5
C5—C4—C3 119.74 (14) C17—C18—H18B 109.5
C5—C4—H4 120.1 H18A—C18—H18B 109.5
C3—C4—H4 120.1 C17—C18—H18C 109.5
C4—C5—O3 117.97 (14) H18A—C18—H18C 109.5
C4—C5—C6 122.15 (15) H18B—C18—H18C 109.5
O3—C5—C6 119.65 (14) O3—C19—C24 116.52 (14)
C7—C6—C5 119.04 (14) O3—C19—C20 122.80 (14)
C7—C6—H6 120.5 C24—C19—C20 120.53 (14)
C5—C6—H6 120.5 C19—C20—C21 119.39 (15)
C6—C7—C8 121.46 (14) C19—C20—H20 120.3
C6—C7—H7 119.3 C21—C20—H20 120.3
C8—C7—H7 119.3 C20—C21—C22 121.00 (15)
C7—C8—C9 122.66 (14) C20—C21—H21 119.5
C7—C8—C3 118.84 (14) C22—C21—H21 119.5
C9—C8—C3 118.50 (14) C21—C22—C23 118.36 (14)
C10—C9—C8 121.31 (14) C21—C22—C25 122.64 (15)
C10—C9—H9 119.3 C23—C22—C25 118.98 (14)
C8—C9—H9 119.3 C24—C23—C22 121.06 (15)
C9—C10—C1 119.28 (15) C24—C23—H23 119.5
C9—C10—H10 120.4 C22—C23—H23 119.5
C1—C10—H10 120.4 C23—C24—C19 119.63 (15)
C16—C11—C12 120.70 (14) C23—C24—H24 120.2
C16—C11—O1 116.81 (14) C19—C24—H24 120.2
C12—C11—O1 122.32 (14) O4—C25—C22 120.09 (15)
C11—C12—C13 119.49 (14) O4—C25—C26 120.68 (15)
C11—C12—H12 120.3 C22—C25—C26 119.22 (14)
C13—C12—H12 120.3 C25—C26—H26A 109.5
C12—C13—C14 121.00 (15) C25—C26—H26B 109.5
C12—C13—H13 119.5 H26A—C26—H26B 109.5
C14—C13—H13 119.5 C25—C26—H26C 109.5
C15—C14—C13 118.34 (14) H26A—C26—H26C 109.5
C15—C14—C17 119.62 (14) H26B—C26—H26C 109.5
C11—O1—C1—C2 −34.0 (2) O1—C11—C12—C13 −173.43 (14)
C11—O1—C1—C10 149.36 (14) C11—C12—C13—C14 −0.2 (2)
O1—C1—C2—C3 −176.78 (13) C12—C13—C14—C15 −1.2 (2)
C10—C1—C2—C3 −0.4 (2) C12—C13—C14—C17 176.96 (14)
C1—C2—C3—C4 −178.38 (14) C13—C14—C15—C16 1.2 (2)
C1—C2—C3—C8 1.0 (2) C17—C14—C15—C16 −177.04 (14)
C2—C3—C4—C5 179.42 (14) C12—C11—C16—C15 −1.7 (2)
C8—C3—C4—C5 0.0 (2) O1—C11—C16—C15 173.65 (13)
C3—C4—C5—O3 −173.71 (12) C14—C15—C16—C11 0.3 (2)
C3—C4—C5—C6 0.7 (2) C15—C14—C17—O2 −0.2 (2)
C19—O3—C5—C4 −132.00 (15) C13—C14—C17—O2 −178.38 (14)
C19—O3—C5—C6 53.40 (19) C15—C14—C17—C18 178.13 (14)
C4—C5—C6—C7 −0.7 (2) C13—C14—C17—C18 0.0 (2)
O3—C5—C6—C7 173.69 (14) C5—O3—C19—C24 −152.32 (14)
C5—C6—C7—C8 −0.2 (2) C5—O3—C19—C20 32.1 (2)
C6—C7—C8—C9 −178.51 (14) O3—C19—C20—C21 175.05 (14)
C6—C7—C8—C3 0.9 (2) C24—C19—C20—C21 −0.4 (2)
C2—C3—C8—C7 179.76 (13) C19—C20—C21—C22 1.4 (2)
C4—C3—C8—C7 −0.8 (2) C20—C21—C22—C23 −1.5 (2)
C2—C3—C8—C9 −0.8 (2) C20—C21—C22—C25 177.50 (14)
C4—C3—C8—C9 178.62 (13) C21—C22—C23—C24 0.4 (2)
C7—C8—C9—C10 179.34 (14) C25—C22—C23—C24 −178.56 (14)
C3—C8—C9—C10 −0.1 (2) C22—C23—C24—C19 0.6 (2)
C8—C9—C10—C1 0.7 (2) O3—C19—C24—C23 −176.32 (13)
C2—C1—C10—C9 −0.5 (2) C20—C19—C24—C23 −0.6 (2)
O1—C1—C10—C9 176.16 (13) C21—C22—C25—O4 −163.64 (15)
C1—O1—C11—C16 137.94 (14) C23—C22—C25—O4 15.3 (2)
C1—O1—C11—C12 −46.8 (2) C21—C22—C25—C26 15.4 (2)
C16—C11—C12—C13 1.7 (2) C23—C22—C25—C26 −165.70 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.95 2.54 3.448 (2) 160

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2193).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  3. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  4. Ocak, N., Işık, Ş., Akdemir, N., Ağar, E. & Gümrükçüoğlu, I. E. (2004). Acta Cryst. E60, o435–o436.
  5. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007496/fl2193sup1.cif

e-64-0o747-sup1.cif (21.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007496/fl2193Isup2.hkl

e-64-0o747-Isup2.hkl (166.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES