Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):o760. doi: 10.1107/S1600536808007940

2-(4,6-Dimethyl­pyrimidin-2-ylsulfan­yl)-N-phenyl­acetamide

Li-Xin Gao a, Guang-Jun Fang a, Jin-Guo Feng a, Dong Liang a, Wei Wang a,*
PMCID: PMC2960928  PMID: 21202149

Abstract

In the title compound, C14H15N3OS, the phenyl ring is almost perpendicular to the dimethyl­pyrimidine group, with a dihedral angle of 88.1 (3)°. The Csp 2—S bond of 1.759 (3) Å is significantly shorter than the Csp 3—S bond of 1.795 (3) Å due to the p–π conjugation.

Related literature

For related literature, see: Koike et al. (1999); Liang et al. (2008); Wang et al. (2004, 2005).graphic file with name e-64-0o760-scheme1.jpg

Experimental

Crystal data

  • C14H15N3OS

  • M r = 273.35

  • Orthorhombic, Inline graphic

  • a = 9.1691 (17) Å

  • b = 15.485 (3) Å

  • c = 20.798 (4) Å

  • V = 2952.9 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 571 (2) K

  • 0.28 × 0.24 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.942, T max = 0.971

  • 14235 measured reflections

  • 2606 independent reflections

  • 1494 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.01

  • 2606 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007940/at2550sup1.cif

e-64-0o760-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007940/at2550Isup2.hkl

e-64-0o760-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the 05 L003 project supported by the Education Department of LiaoNing Province in China and the 2006 SH03 project supported by Anshan Municipal Science and Technology Commission.

supplementary crystallographic information

Comment

Acetamide is an important class of medical intermidate. Many biologically active compounds are synthesized by using acetamide (Koike et al., 1999). We have reported the synthesis and crystal structure of a acetamide compound, 1,1'-diphenyl-5,5'-[o-phenylenebis(methylenethio)]di-1H-tetrazole (Liang et al., 2008). Now, a new acetamide derivative, namely 2-(4,6-dimethylpyrimidin-2- ylsulfanyl)-N-phenylacetamide (I) are prepared from the reaction of 2-thio-4,6- dimethylpyrimidine with 2-chloro-N-phenylacetamide. We present its crystal structure here.

The title compound contains a benzene ring and a dimethylpyrimidine ring. The two methyl groups attached to the pyrimidine ring don't deviate from the pyrimidine ring, with an r.m.s. of 0.0082 (4) Å. The dihedral angle between the benzene ring and dimethylpyrimidine ring is 91.9 (3)°, which indicates that the two aromatic rings are almost perpendicular. The O1—C8—N3—C9 and C8—N3—C9—C14 torsion angles are 2.5 (4) and 164.3 (3)°, indicating that the acetamide is planar with the benzene ring.

Due to the p-π conjugation, the Csp2—S bond [S1—C1 = 1.759 (3) Å] is significantly shorter than the Csp3—S bond [C7—S1 = 1.795 (3) Å]. These values compare with the values reported in the literatures (Wang et al., 2004, 2005).

Experimental

The title compound was synthesized by the reaction of 2-thio-4,6-dimethyl- pyrimidine(2 mmol) with 2-chloro-N-phenylacetamide (2 mmol) in refluxing ethanol (40 ml). Single crystals suitable for X-ray analysis were grown by slow evaporation of a chloroform-acetone (1:5 v/v) solution.

Refinement

All H atoms were positioned geometrically and refined as riding [N—H = 0.86Å and C—H = 0.93–0.97 Å]. For the NH, CH and CH2 groups, Uiso(H) values were set equal to 1.2Ueq(C) and for the methyl groups they were set equal to 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C14H15N3OS F000 = 1152
Mr = 273.35 Dx = 1.230 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2395 reflections
a = 9.1691 (17) Å θ = 2.8–22.1º
b = 15.485 (3) Å µ = 0.22 mm1
c = 20.798 (4) Å T = 571 (2) K
V = 2952.9 (9) Å3 Block, colourless
Z = 8 0.28 × 0.24 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2606 independent reflections
Radiation source: fine-focus sealed tube 1494 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.073
T = 571(2) K θmax = 25.0º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→10
Tmin = 0.942, Tmax = 0.971 k = −18→18
14235 measured reflections l = −22→24

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040   w = 1/[σ2(Fo2) + (0.044P)2 + 0.9487P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116 (Δ/σ)max = 0.001
S = 1.01 Δρmax = 0.17 e Å3
2606 reflections Δρmin = −0.16 e Å3
175 parameters Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0155 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.10446 (8) 0.82693 (5) 0.31856 (3) 0.0566 (3)
O1 0.08455 (18) 0.69624 (13) 0.20969 (9) 0.0658 (6)
N1 0.1800 (2) 0.67674 (14) 0.37036 (10) 0.0540 (6)
C8 0.2078 (3) 0.70685 (17) 0.23078 (12) 0.0498 (7)
C1 0.0880 (3) 0.74194 (16) 0.37418 (12) 0.0480 (7)
N3 0.3186 (2) 0.65184 (14) 0.22060 (10) 0.0539 (6)
H3A 0.4015 0.6669 0.2364 0.065*
C7 0.2494 (3) 0.78653 (16) 0.26898 (13) 0.0541 (7)
H7A 0.2793 0.8316 0.2394 0.065*
H7B 0.3324 0.7728 0.2961 0.065*
C9 0.3164 (3) 0.57251 (18) 0.18732 (13) 0.0538 (7)
N2 −0.0195 (3) 0.75292 (15) 0.41631 (11) 0.0665 (7)
C2 0.1643 (3) 0.61439 (19) 0.41447 (15) 0.0643 (8)
C14 0.4321 (4) 0.51737 (19) 0.19623 (14) 0.0703 (9)
H14 0.5079 0.5332 0.2235 0.084*
C10 0.2056 (3) 0.5472 (2) 0.14672 (15) 0.0779 (10)
H10 0.1266 0.5837 0.1396 0.093*
C3 0.0557 (4) 0.6186 (2) 0.45961 (14) 0.0707 (9)
H3 0.0440 0.5748 0.4898 0.085*
C4 −0.0353 (4) 0.6890 (2) 0.45926 (15) 0.0774 (10)
C13 0.4371 (5) 0.4388 (2) 0.16514 (18) 0.0922 (12)
H13 0.5167 0.4025 0.1712 0.111*
C12 0.3259 (6) 0.4141 (2) 0.12546 (18) 0.0939 (12)
H12 0.3289 0.3608 0.1048 0.113*
C6 0.2714 (4) 0.5413 (2) 0.41157 (19) 0.1032 (13)
H6A 0.2749 0.5188 0.3686 0.155*
H6B 0.2415 0.4965 0.4406 0.155*
H6C 0.3663 0.5618 0.4236 0.155*
C11 0.2113 (5) 0.4679 (3) 0.11651 (17) 0.0930 (12)
H11 0.1354 0.4512 0.0896 0.112*
C5 −0.1579 (6) 0.6993 (3) 0.5073 (2) 0.147 (2)
H5A −0.1525 0.7555 0.5266 0.221*
H5B −0.1491 0.6559 0.5400 0.221*
H5C −0.2498 0.6929 0.4857 0.221*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0512 (4) 0.0549 (4) 0.0636 (5) 0.0038 (4) 0.0011 (4) 0.0005 (4)
O1 0.0307 (10) 0.0895 (15) 0.0773 (13) −0.0027 (10) −0.0043 (9) −0.0168 (11)
N1 0.0526 (14) 0.0541 (13) 0.0554 (14) 0.0043 (12) −0.0011 (11) −0.0041 (12)
C8 0.0318 (15) 0.0690 (17) 0.0486 (16) −0.0061 (14) 0.0067 (12) 0.0041 (14)
C1 0.0472 (16) 0.0529 (16) 0.0438 (15) −0.0019 (14) −0.0039 (13) −0.0085 (12)
N3 0.0309 (12) 0.0714 (16) 0.0595 (14) −0.0028 (11) 0.0009 (10) −0.0078 (12)
C7 0.0362 (14) 0.0618 (16) 0.0641 (18) −0.0076 (13) −0.0001 (13) 0.0049 (14)
C9 0.0445 (16) 0.0656 (18) 0.0514 (17) −0.0071 (15) 0.0112 (14) 0.0026 (15)
N2 0.0706 (17) 0.0670 (16) 0.0620 (16) 0.0121 (14) 0.0178 (14) 0.0002 (13)
C2 0.072 (2) 0.0547 (18) 0.066 (2) 0.0035 (16) −0.0021 (18) −0.0043 (16)
C14 0.075 (2) 0.069 (2) 0.067 (2) −0.0001 (18) −0.0013 (17) 0.0073 (16)
C10 0.059 (2) 0.101 (3) 0.073 (2) −0.0015 (18) 0.0026 (17) −0.026 (2)
C3 0.092 (2) 0.0622 (19) 0.0583 (19) −0.0038 (19) 0.0064 (18) 0.0034 (15)
C4 0.089 (2) 0.078 (2) 0.065 (2) 0.009 (2) 0.0241 (19) 0.0003 (18)
C13 0.124 (4) 0.066 (2) 0.087 (3) 0.019 (2) 0.012 (2) 0.007 (2)
C12 0.137 (4) 0.071 (2) 0.074 (3) −0.017 (3) 0.028 (3) −0.013 (2)
C6 0.113 (3) 0.075 (2) 0.122 (3) 0.031 (2) 0.010 (3) 0.016 (2)
C11 0.091 (3) 0.109 (3) 0.079 (3) −0.018 (3) 0.010 (2) −0.030 (2)
C5 0.175 (5) 0.138 (4) 0.129 (4) 0.045 (3) 0.100 (3) 0.029 (3)

Geometric parameters (Å, °)

S1—C1 1.759 (3) C14—H14 0.9300
S1—C7 1.795 (3) C10—C11 1.380 (4)
O1—C8 1.223 (3) C10—H10 0.9300
N1—C1 1.318 (3) C3—C4 1.373 (4)
N1—C2 1.340 (3) C3—H3 0.9300
C8—N3 1.343 (3) C4—C5 1.512 (5)
C8—C7 1.516 (3) C13—C12 1.367 (5)
C1—N2 1.330 (3) C13—H13 0.9300
N3—C9 1.410 (3) C12—C11 1.354 (5)
N3—H3A 0.8600 C12—H12 0.9300
C7—H7A 0.9700 C6—H6A 0.9600
C7—H7B 0.9700 C6—H6B 0.9600
C9—C14 1.375 (4) C6—H6C 0.9600
C9—C10 1.378 (4) C11—H11 0.9300
N2—C4 1.341 (4) C5—H5A 0.9600
C2—C3 1.370 (4) C5—H5B 0.9600
C2—C6 1.500 (4) C5—H5C 0.9600
C14—C13 1.378 (4)
C1—S1—C7 100.40 (13) C11—C10—H10 119.9
C1—N1—C2 116.2 (2) C2—C3—C4 118.4 (3)
O1—C8—N3 123.9 (2) C2—C3—H3 120.8
O1—C8—C7 122.0 (2) C4—C3—H3 120.8
N3—C8—C7 114.1 (2) N2—C4—C3 121.6 (3)
N1—C1—N2 127.7 (2) N2—C4—C5 116.3 (3)
N1—C1—S1 118.6 (2) C3—C4—C5 122.1 (3)
N2—C1—S1 113.7 (2) C12—C13—C14 120.4 (4)
C8—N3—C9 128.2 (2) C12—C13—H13 119.8
C8—N3—H3A 115.9 C14—C13—H13 119.8
C9—N3—H3A 115.9 C11—C12—C13 119.3 (3)
C8—C7—S1 113.47 (17) C11—C12—H12 120.4
C8—C7—H7A 108.9 C13—C12—H12 120.4
S1—C7—H7A 108.9 C2—C6—H6A 109.5
C8—C7—H7B 108.9 C2—C6—H6B 109.5
S1—C7—H7B 108.9 H6A—C6—H6B 109.5
H7A—C7—H7B 107.7 C2—C6—H6C 109.5
C14—C9—C10 118.4 (3) H6A—C6—H6C 109.5
C14—C9—N3 117.6 (3) H6B—C6—H6C 109.5
C10—C9—N3 124.0 (3) C12—C11—C10 121.0 (4)
C1—N2—C4 115.1 (2) C12—C11—H11 119.5
N1—C2—C3 120.9 (3) C10—C11—H11 119.5
N1—C2—C6 116.5 (3) C4—C5—H5A 109.5
C3—C2—C6 122.6 (3) C4—C5—H5B 109.5
C9—C14—C13 120.7 (3) H5A—C5—H5B 109.5
C9—C14—H14 119.6 C4—C5—H5C 109.5
C13—C14—H14 119.6 H5A—C5—H5C 109.5
C9—C10—C11 120.3 (3) H5B—C5—H5C 109.5
C9—C10—H10 119.9
C2—N1—C1—N2 −0.7 (4) C10—C9—C14—C13 0.1 (4)
C2—N1—C1—S1 178.98 (19) N3—C9—C14—C13 −179.9 (3)
C7—S1—C1—N1 3.4 (2) C14—C9—C10—C11 0.6 (5)
C7—S1—C1—N2 −176.94 (19) N3—C9—C10—C11 −179.3 (3)
O1—C8—N3—C9 −2.5 (4) N1—C2—C3—C4 −1.0 (4)
C7—C8—N3—C9 179.8 (2) C6—C2—C3—C4 178.7 (3)
O1—C8—C7—S1 34.4 (3) C1—N2—C4—C3 1.1 (4)
N3—C8—C7—S1 −147.93 (19) C1—N2—C4—C5 −179.3 (3)
C1—S1—C7—C8 66.6 (2) C2—C3—C4—N2 −0.3 (5)
C8—N3—C9—C14 −164.3 (3) C2—C3—C4—C5 −179.9 (4)
C8—N3—C9—C10 15.6 (4) C9—C14—C13—C12 −0.8 (5)
N1—C1—N2—C4 −0.6 (4) C14—C13—C12—C11 0.6 (5)
S1—C1—N2—C4 179.7 (2) C13—C12—C11—C10 0.1 (6)
C1—N1—C2—C3 1.5 (4) C9—C10—C11—C12 −0.8 (5)
C1—N1—C2—C6 −178.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2550).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett.1, 197–198.
  3. Liang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, W., Liu, H.-M. & Zhang, W.-Q. (2004). Acta Cryst. E60, o1979–o1980.
  7. Wang, W., Zhao, B., Zheng, P.-W. & Duan, X.-M. (2005). Acta Cryst. E61, o1163–o1164.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007940/at2550sup1.cif

e-64-0o760-sup1.cif (17.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007940/at2550Isup2.hkl

e-64-0o760-Isup2.hkl (128.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES