Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):m514–m515. doi: 10.1107/S1600536808004236

1-Acetyl-3-ferrocenyl-5-(2-nitro­phen­yl)-2-pyrazoline

Günseli Turgut Cin a,*, Seda Demirel a, Nevzat Karadayı b, Orhan Büyükgüngör c
PMCID: PMC2960933  PMID: 21201984

Abstract

In the title compound, [Fe(C5H5)(C16H14N3O3)], the pyrazoline ring and the substituted cyclo­penta­dienyl ring are nearly coplanar, with a dihedral angle of 8.17 (2)°, while the nitro-substituted benzene ring is twisted out of the pyrazoline ring plane by 70.76 (1)°. The mol­ecules in the crystal structure are held together by three inter­molecular C—H⋯O hydrogen bonds. There is also an intra­molecular C—H⋯N hydrogen bond. The H atoms of the methyl group are disordered equally over two positions.

Related literature

For related literature, see: Amr et al. (2006); Biot et al. (2004); Cremer & Pople (1975); Fang et al. (2003); Fouda et al. (2007); Guirado et al. (2004); Jaouen et al. (2004); Karthikeyan et al. (2007); Küçükgüzel et al. (2000); Kudar et al. (2005); Özdemir et al. (2007); Shi et al. (2006a ,b ); Shi et al. (2006); Zora et al. (2006, 2008).graphic file with name e-64-0m514-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C16H14N3O3)]

  • M r = 417.24

  • Orthorhombic, Inline graphic

  • a = 8.6691 (6) Å

  • b = 13.4779 (7) Å

  • c = 31.4930 (15) Å

  • V = 3679.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 296 K

  • 0.50 × 0.31 × 0.06 mm

Data collection

  • Stoe IPDSII diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002) T min = 0.636, T max = 0.862

  • 17799 measured reflections

  • 3613 independent reflections

  • 2409 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.086

  • S = 0.94

  • 3613 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004236/hy2116sup1.cif

e-64-0m514-sup1.cif (30.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004236/hy2116Isup2.hkl

e-64-0m514-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

C12—Fe1 2.035 (3)
C13—Fe1 2.044 (3)
C14—Fe1 2.051 (3)
C15—Fe1 2.034 (3)
C16—Fe1 2.016 (3)
C17—Fe1 2.047 (3)
C18—Fe1 2.033 (3)
C19—Fe1 2.036 (3)
C20—Fe1 2.035 (3)
C21—Fe1 2.045 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯N3 0.96 2.29 2.788 (4) 112
C8—H8A⋯O3i 0.97 2.57 3.476 (3) 154
C8—H8B⋯O2ii 0.97 2.63 3.551 (4) 158
C21—H21⋯O2ii 0.93 2.46 3.136 (4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge the Research Board of Akdeniz University (grant No. BAP-2007.01.0105.001) for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the Stoe IPDSII diffractometer purchased under grant F.279 of the University Research Fund.

supplementary crystallographic information

Comment

Pyrazolines are widely studied as five-membered heterocyclic compounds. Condensation of nitrogen-containing binucleophilic agents with α-β unsaturated ketones is one of the most suitable synthetic pathways for 2-pyrazolines (Kudar et al., 2005), which possess widespread pharmaceutical properties such as antimicrobial (Küçükgüzel et al., 2000), anticonvulsant (Karthikeyan et al., 2007), antidepressant Özdemir et al., 2007), antiandrogenic (Amr et al., 2006), antifungal and anti-inflammatory (Guirado et al., 2004) activities. Metallocenes are also known to exhibit a wide range of biological activity. Among them ferrocenyl compounds display interesting antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004) activities. Therefore, incorporation of a ferrocene fragment into a heterocyclic ring may enhance their biological activities or generate new medicinal properties (Fang et al., 2003). As a part of an ongoing investigation of the chemistry of ferrocenyl pyrazolines, the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The puckering parameters (Cremer & Pople, 1975) are q2=0.037 (3)Å and φ=43.3 (8)° for the pyrazoline ring, q2=0.008 (3)Å and φ=156.3 (2)° for the substituted cyclopentadienyl (Cp) ring and q2=0.004 (3)Å and φ=69.6 (5)° for the unsubstituted Cp ring. The dihedral angle of 8.17 (2)° between the pyrazoline ring and the substituted Cp ring indicates that they are conjugated with each other; this is in accord with the C9—C12 bond [1.456 (4) Å], showing a double-bond character (Shi et al., 2006a). Furthermore, N3—C9 bond length [1.284 (3) Å] increases as a result of this conjugation. This observation is in good agreement with those reported for 2,6-bis(3-ferrocenyl-5-methyl-1H-pyrazol-1-ylcarbonyl)pyridine (Shi et al., 2006b) and 1,3-bis(3-ferrocenyl-5-methyl-1H-pyrazol-1-ylcarbonyl)benzene (Shi et al., 2006).

The Fe—Cgs and Fe—Cgas distances are 1.6398 (14) and 1.6544 (14) Å, respectively, and the Cgs—Fe—Cgas angle is 177.78 (7)°, where Cgs and Cgas are the centroids of the substituted and unsubstituted Cp rings. The small dihedral angle of 3.68 (2)° between the unsubstituted and substituted Cp rings indicates that the two Cp rings are parallel to each other (Shi et al., 2006a). The C12—CgsCgas—C20 torsion angle of 3.71 (2)° indicates that the two Cp rings of the ferrocenyl group is nearly in an eclipsed conformation, as was previously observed in a ferrocene-containing compound (Zora et al., 2008). The C—C bond distances in the Cp rings range from 1.389 (4) to 1.434 (4) Å, while Fe—C bond lengths range between 2.016 (3) and 2.051 (3)Å (Table 1), all of which are as expected (Zora et al., 2006).

The pyrazoline ring and the nitro substituted phenyl group make a dihedral angle of 70.76 (1)°. The dihedral angle between the nitro plane and pheny ring is 18.30 (5)°. The dihedral angles between the phenyl ring and the substituted and unsubstituted Cp planes are 76.16 (1) and 76.12 (1)°, respectively. The molecules in crystal are held together by three intermolecular C—H···O hydrogen bonds (Table 2; Fig. 2). There is one intramolecular C—H···N hydrogen bond.

Experimental

A mixture of 1-ferrocenyl-3-(2-nitrophenyl)-2-propenone (0.09 g, 0.24 mmol), 80% hydrazine hydrate (0.264 g, 5.28 mmol) and glacial acetic acid (10 ml) was refluxed under nitrogen atmosphere for 5 h. TLC indicated the formation of the reaction product. It was poured into ice-water to give dark orange solid. The participate was separated by filtration and washed with water. The solid product was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature (yield 50.5%; m.p. 425–426 K). IR (KBr, cm-1): 1653 (C?O), 1601 (C?C), 1574 (C?N), 1527 (asym N?O), 1333 (sym N?O), 1107 (C—N). 1H-NMR (CDCl3, p.p.m.): 2.33 (s, 1H, CH3), 2.89 (dd, 1H, pyrazoline H4), 3.84 (dd, 1H, pyrazoline H4), 4.04 (s, 5H, ferrocene), 4.36 (s, 2H, ferrocene), 4.53 (s, 1H, ferrocene), 4.60 (s, 1H, ferrocene), 6.03 (dd, 1H, pyrazoline H5), 7.23–8.05 (m, 4H, aromatic). 13C-NMR (CDCl3, p.p.m.): 21.75 (CH3), 43.83 (C4), 56.52 (C5), 67.30, 67.78 (C2', C5'), 69.46 (C6'–C10'), 70.61, 71.10 (C3', C4'), 74.86 (C1'), 125.56 (C8), 126.37 (C9), 128.50 (C11), 134.28 (C10), 137.33 (C6), 147.08 (C7), 156.63 (C3), 168.30 (C?O).

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.98 (CH) and 0.97 Å (CH2) and with Uiso(H) = 1.2Ueq(C). H atoms of the methyl group (C11) show rotational disorder from a difference Fourier map. These H atoms were refined as riding atoms, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the hydrogen-bonding network in the title compound. The dashed lines denote hydrogen bonds. [Symmetry codes: (i) -x + 1/2, y + 1/2, z; (ii) x + 1/2, y, -z + 3/2.]

Crystal data

[Fe(C5H5)(C16H14N3O3)] F000 = 1728
Mr = 417.24 Dx = 1.506 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 16565 reflections
a = 8.6691 (6) Å θ = 1.6–27.9º
b = 13.4779 (7) Å µ = 0.85 mm1
c = 31.4930 (15) Å T = 296 K
V = 3679.7 (4) Å3 Prism, red
Z = 8 0.50 × 0.31 × 0.06 mm

Data collection

Stoe IPDSII diffractometer 3613 independent reflections
Radiation source: fine-focus sealed tube 2409 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.061
T = 296(2) K θmax = 26.0º
ω scans θmin = 2.6º
Absorption correction: integration(X-RED32; Stoe & Cie, 2002) h = −10→10
Tmin = 0.636, Tmax = 0.862 k = −16→13
17799 measured reflections l = −38→38

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.086   w = 1/[σ2(Fo2) + (0.044P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94 (Δ/σ)max = 0.001
3613 reflections Δρmax = 0.19 e Å3
253 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.4226 (3) 0.55162 (19) 0.68996 (7) 0.0419 (6)
C2 0.3958 (3) 0.5738 (2) 0.73262 (8) 0.0481 (7)
C3 0.4637 (4) 0.5207 (2) 0.76547 (9) 0.0617 (8)
H3 0.4434 0.5376 0.7935 0.074*
C4 0.5601 (4) 0.4437 (2) 0.75645 (9) 0.0674 (9)
H4 0.6058 0.4078 0.7783 0.081*
C5 0.5895 (4) 0.4195 (2) 0.71485 (10) 0.0636 (8)
H5 0.6561 0.3675 0.7085 0.076*
C6 0.5201 (3) 0.4723 (2) 0.68231 (9) 0.0518 (7)
H6 0.5398 0.4539 0.6544 0.062*
C7 0.3550 (3) 0.61147 (18) 0.65354 (7) 0.0413 (6)
H7 0.2483 0.6299 0.6601 0.050*
C8 0.4494 (3) 0.70502 (18) 0.64348 (7) 0.0434 (6)
H8A 0.3860 0.7642 0.6452 0.052*
H8B 0.5363 0.7118 0.6627 0.052*
C9 0.5024 (3) 0.68659 (19) 0.59887 (8) 0.0409 (6)
C10 0.2617 (3) 0.48364 (19) 0.60260 (8) 0.0461 (6)
C11 0.2627 (4) 0.4488 (2) 0.55716 (9) 0.0591 (8)
H11A 0.3349 0.4877 0.5411 0.089* 0.50
H11B 0.1614 0.4562 0.5453 0.089* 0.50
H11C 0.2925 0.3802 0.5562 0.089* 0.50
H11D 0.1910 0.3950 0.5539 0.089* 0.50
H11E 0.3644 0.4265 0.5498 0.089* 0.50
H11F 0.2334 0.5025 0.5389 0.089* 0.50
C12 0.6069 (3) 0.7528 (2) 0.57636 (8) 0.0456 (6)
C13 0.6708 (3) 0.84249 (19) 0.59343 (9) 0.0523 (7)
H13 0.6467 0.8705 0.6196 0.063*
C14 0.7769 (4) 0.8809 (2) 0.56346 (10) 0.0593 (8)
H14 0.8346 0.9387 0.5665 0.071*
C15 0.7799 (4) 0.8165 (3) 0.52835 (9) 0.0615 (8)
H15 0.8397 0.8247 0.5041 0.074*
C16 0.6772 (3) 0.7373 (2) 0.53603 (8) 0.0558 (7)
H16 0.6586 0.6841 0.5179 0.067*
C17 1.0530 (4) 0.7425 (2) 0.60978 (10) 0.0635 (8)
H17 1.1130 0.7984 0.6149 0.076*
C18 1.0552 (4) 0.6843 (3) 0.57284 (10) 0.0665 (9)
H18 1.1166 0.6948 0.5491 0.080*
C19 0.9461 (4) 0.6060 (2) 0.57837 (10) 0.0628 (8)
H19 0.9238 0.5560 0.5590 0.075*
C20 0.8795 (4) 0.6185 (2) 0.61815 (9) 0.0560 (8)
H20 0.8039 0.5782 0.6300 0.067*
C21 0.9452 (4) 0.7019 (2) 0.63740 (9) 0.0581 (8)
H21 0.9208 0.7262 0.6642 0.070*
N1 0.2950 (3) 0.6566 (2) 0.74518 (7) 0.0580 (7)
N2 0.3604 (3) 0.55775 (15) 0.61266 (6) 0.0421 (5)
N3 0.4499 (2) 0.60674 (15) 0.58194 (6) 0.0446 (5)
O1 0.2640 (4) 0.72062 (19) 0.71980 (7) 0.0857 (8)
O2 0.2464 (3) 0.6580 (2) 0.78155 (7) 0.0818 (7)
O3 0.1803 (2) 0.44698 (15) 0.63000 (6) 0.0583 (5)
Fe1 0.84006 (4) 0.74057 (2) 0.581679 (10) 0.04091 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0399 (16) 0.0440 (15) 0.0416 (13) −0.0072 (12) −0.0011 (11) 0.0002 (10)
C2 0.0490 (17) 0.0539 (16) 0.0413 (13) −0.0120 (13) 0.0013 (12) −0.0019 (12)
C3 0.074 (2) 0.068 (2) 0.0428 (14) −0.0177 (18) −0.0069 (15) 0.0037 (14)
C4 0.082 (3) 0.062 (2) 0.0585 (19) −0.0102 (18) −0.0196 (17) 0.0154 (15)
C5 0.066 (2) 0.0507 (17) 0.074 (2) 0.0045 (15) −0.0186 (17) 0.0042 (14)
C6 0.0549 (19) 0.0486 (16) 0.0519 (14) 0.0029 (13) −0.0086 (13) −0.0040 (12)
C7 0.0393 (15) 0.0431 (13) 0.0415 (12) 0.0030 (12) 0.0012 (11) −0.0015 (10)
C8 0.0465 (17) 0.0377 (14) 0.0459 (13) −0.0015 (11) −0.0004 (12) −0.0004 (10)
C9 0.0366 (15) 0.0453 (14) 0.0410 (12) 0.0036 (12) 0.0000 (11) 0.0027 (11)
C10 0.0453 (17) 0.0407 (15) 0.0523 (14) 0.0038 (12) −0.0092 (14) −0.0006 (12)
C11 0.065 (2) 0.0535 (17) 0.0591 (17) −0.0014 (15) −0.0124 (15) −0.0099 (14)
C12 0.0397 (13) 0.0507 (15) 0.0463 (13) 0.0012 (12) −0.0023 (10) 0.0069 (12)
C13 0.0491 (17) 0.0425 (14) 0.0654 (17) 0.0040 (13) 0.0066 (14) 0.0035 (12)
C14 0.0485 (18) 0.0491 (17) 0.080 (2) 0.0027 (14) 0.0036 (16) 0.0182 (15)
C15 0.0476 (18) 0.081 (2) 0.0553 (16) −0.0004 (16) 0.0005 (14) 0.0281 (16)
C16 0.0494 (17) 0.0726 (19) 0.0453 (13) −0.0041 (15) −0.0064 (12) 0.0084 (13)
C17 0.0484 (18) 0.0617 (19) 0.080 (2) −0.0082 (16) −0.0178 (15) 0.0164 (17)
C18 0.051 (2) 0.077 (2) 0.072 (2) 0.0194 (16) 0.0159 (15) 0.0255 (17)
C19 0.066 (2) 0.0487 (17) 0.0741 (19) 0.0129 (14) 0.0016 (18) −0.0015 (15)
C20 0.0488 (19) 0.0531 (17) 0.0661 (18) 0.0028 (13) 0.0005 (14) 0.0162 (14)
C21 0.063 (2) 0.0604 (19) 0.0511 (15) 0.0017 (15) −0.0096 (15) 0.0077 (13)
N1 0.0575 (17) 0.0695 (17) 0.0470 (13) −0.0097 (13) 0.0061 (12) −0.0141 (12)
N2 0.0446 (14) 0.0448 (12) 0.0370 (10) −0.0040 (10) −0.0023 (9) −0.0012 (8)
N3 0.0421 (13) 0.0491 (12) 0.0427 (10) −0.0009 (10) −0.0021 (11) 0.0011 (10)
O1 0.118 (2) 0.0697 (16) 0.0695 (14) 0.0264 (15) 0.0219 (14) −0.0057 (12)
O2 0.0805 (18) 0.114 (2) 0.0514 (12) −0.0059 (15) 0.0203 (12) −0.0183 (12)
O3 0.0565 (14) 0.0540 (12) 0.0644 (12) −0.0097 (10) −0.0030 (10) 0.0044 (9)
Fe1 0.0390 (2) 0.0419 (2) 0.04183 (17) 0.00169 (17) 0.00009 (16) 0.00513 (16)

Geometric parameters (Å, °)

C1—C6 1.384 (4) C12—Fe1 2.035 (3)
C1—C2 1.396 (3) C13—C14 1.416 (4)
C1—C7 1.519 (3) C13—Fe1 2.044 (3)
C2—C3 1.389 (4) C13—H13 0.9300
C2—N1 1.472 (4) C14—C15 1.407 (4)
C3—C4 1.362 (5) C14—Fe1 2.051 (3)
C3—H3 0.9300 C14—H14 0.9300
C4—C5 1.374 (4) C15—C16 1.411 (4)
C4—H4 0.9300 C15—Fe1 2.034 (3)
C5—C6 1.385 (4) C15—H15 0.9300
C5—H5 0.9300 C16—Fe1 2.016 (3)
C6—H6 0.9300 C16—H16 0.9300
C7—N2 1.478 (3) C17—C21 1.389 (4)
C7—C8 1.536 (3) C17—C18 1.403 (5)
C7—H7 0.9800 C17—Fe1 2.047 (3)
C8—C9 1.499 (3) C17—H17 0.9300
C8—H8A 0.9700 C18—C19 1.428 (5)
C8—H8B 0.9700 C18—Fe1 2.033 (3)
C9—N3 1.284 (3) C18—H18 0.9300
C9—C12 1.456 (4) C19—C20 1.390 (4)
C10—O3 1.219 (3) C19—Fe1 2.036 (3)
C10—N2 1.353 (3) C19—H19 0.9300
C10—C11 1.506 (4) C20—C21 1.398 (4)
C11—H11A 0.9600 C20—Fe1 2.035 (3)
C11—H11B 0.9600 C20—H20 0.9300
C11—H11C 0.9600 C21—Fe1 2.045 (3)
C11—H11D 0.9600 C21—H21 0.9300
C11—H11E 0.9600 N1—O1 1.206 (3)
C11—H11F 0.9600 N1—O2 1.221 (3)
C12—C16 1.424 (4) N2—N3 1.405 (3)
C12—C13 1.434 (4)
C6—C1—C2 115.7 (2) C12—C16—H16 125.9
C6—C1—C7 120.9 (2) Fe1—C16—H16 125.2
C2—C1—C7 123.3 (2) C21—C17—C18 108.0 (3)
C3—C2—C1 122.4 (3) C21—C17—Fe1 70.08 (17)
C3—C2—N1 116.3 (3) C18—C17—Fe1 69.33 (18)
C1—C2—N1 121.3 (2) C21—C17—H17 126.0
C4—C3—C2 119.8 (3) C18—C17—H17 126.0
C4—C3—H3 120.1 Fe1—C17—H17 126.1
C2—C3—H3 120.1 C17—C18—C19 107.6 (3)
C3—C4—C5 119.6 (3) C17—C18—Fe1 70.44 (18)
C3—C4—H4 120.2 C19—C18—Fe1 69.60 (18)
C5—C4—H4 120.2 C17—C18—H18 126.2
C4—C5—C6 120.2 (3) C19—C18—H18 126.2
C4—C5—H5 119.9 Fe1—C18—H18 125.4
C6—C5—H5 119.9 C20—C19—C18 107.2 (3)
C1—C6—C5 122.2 (3) C20—C19—Fe1 70.00 (17)
C1—C6—H6 118.9 C18—C19—Fe1 69.32 (17)
C5—C6—H6 118.9 C20—C19—H19 126.4
N2—C7—C1 112.7 (2) C18—C19—H19 126.4
N2—C7—C8 101.87 (19) Fe1—C19—H19 125.8
C1—C7—C8 112.7 (2) C19—C20—C21 108.6 (3)
N2—C7—H7 109.8 C19—C20—Fe1 70.08 (16)
C1—C7—H7 109.8 C21—C20—Fe1 70.33 (16)
C8—C7—H7 109.8 C19—C20—H20 125.7
C9—C8—C7 102.7 (2) C21—C20—H20 125.7
C9—C8—H8A 111.2 Fe1—C20—H20 125.5
C7—C8—H8A 111.2 C17—C21—C20 108.6 (3)
C9—C8—H8B 111.2 C17—C21—Fe1 70.24 (16)
C7—C8—H8B 111.2 C20—C21—Fe1 69.58 (16)
H8A—C8—H8B 109.1 C17—C21—H21 125.7
N3—C9—C12 122.1 (2) C20—C21—H21 125.7
N3—C9—C8 114.8 (2) Fe1—C21—H21 126.1
C12—C9—C8 123.1 (2) O1—N1—O2 122.3 (3)
O3—C10—N2 120.0 (2) O1—N1—C2 119.8 (2)
O3—C10—C11 123.3 (3) O2—N1—C2 117.9 (3)
N2—C10—C11 116.7 (3) C10—N2—N3 122.3 (2)
C10—C11—H11A 109.5 C10—N2—C7 123.1 (2)
C10—C11—H11B 109.5 N3—N2—C7 112.77 (19)
H11A—C11—H11B 109.5 C9—N3—N2 107.67 (19)
C10—C11—H11C 109.5 C16—Fe1—C18 122.47 (13)
H11A—C11—H11C 109.5 C16—Fe1—C15 40.78 (12)
H11B—C11—H11C 109.5 C18—Fe1—C15 108.04 (13)
C10—C11—H11D 109.5 C16—Fe1—C12 41.17 (11)
H11A—C11—H11D 141.1 C18—Fe1—C12 158.50 (14)
H11B—C11—H11D 56.3 C15—Fe1—C12 68.71 (11)
H11C—C11—H11D 56.3 C16—Fe1—C20 120.16 (13)
C10—C11—H11E 109.5 C18—Fe1—C20 67.76 (12)
H11A—C11—H11E 56.3 C15—Fe1—C20 156.25 (14)
H11B—C11—H11E 141.1 C12—Fe1—C20 106.19 (11)
H11C—C11—H11E 56.3 C16—Fe1—C19 105.08 (13)
H11D—C11—H11E 109.5 C18—Fe1—C19 41.08 (13)
C10—C11—H11F 109.5 C15—Fe1—C19 121.42 (14)
H11A—C11—H11F 56.3 C12—Fe1—C19 121.10 (13)
H11B—C11—H11F 56.3 C20—Fe1—C19 39.92 (12)
H11C—C11—H11F 141.1 C16—Fe1—C13 68.97 (12)
H11D—C11—H11F 109.5 C18—Fe1—C13 159.13 (14)
H11E—C11—H11F 109.5 C15—Fe1—C13 68.14 (12)
C16—C12—C13 107.0 (2) C12—Fe1—C13 41.18 (11)
C16—C12—C9 127.6 (3) C20—Fe1—C13 124.17 (12)
C13—C12—C9 125.1 (2) C19—Fe1—C13 158.78 (13)
C16—C12—Fe1 68.67 (15) C16—Fe1—C21 156.74 (12)
C13—C12—Fe1 69.73 (16) C18—Fe1—C21 67.26 (13)
C9—C12—Fe1 121.89 (18) C15—Fe1—C21 161.94 (14)
C14—C13—C12 108.0 (3) C12—Fe1—C21 122.28 (12)
C14—C13—Fe1 70.04 (17) C20—Fe1—C21 40.08 (12)
C12—C13—Fe1 69.09 (15) C19—Fe1—C21 67.40 (13)
C14—C13—H13 126.0 C13—Fe1—C21 109.62 (12)
C12—C13—H13 126.0 C16—Fe1—C17 160.09 (13)
Fe1—C13—H13 126.5 C18—Fe1—C17 40.24 (13)
C15—C14—C13 108.1 (3) C15—Fe1—C17 125.55 (13)
C15—C14—Fe1 69.23 (17) C12—Fe1—C17 158.46 (12)
C13—C14—Fe1 69.50 (16) C20—Fe1—C17 67.35 (12)
C15—C14—H14 126.0 C19—Fe1—C17 68.06 (14)
C13—C14—H14 126.0 C13—Fe1—C17 124.09 (13)
Fe1—C14—H14 126.9 C21—Fe1—C17 39.68 (12)
C14—C15—C16 108.7 (3) C16—Fe1—C14 68.53 (13)
C14—C15—Fe1 70.50 (16) C18—Fe1—C14 123.41 (13)
C16—C15—Fe1 68.89 (15) C15—Fe1—C14 40.27 (13)
C14—C15—H15 125.6 C12—Fe1—C14 68.73 (12)
C16—C15—H15 125.6 C20—Fe1—C14 161.46 (12)
Fe1—C15—H15 126.5 C19—Fe1—C14 158.08 (13)
C15—C16—C12 108.2 (3) C13—Fe1—C14 40.47 (11)
C15—C16—Fe1 70.33 (16) C21—Fe1—C14 126.43 (13)
C12—C16—Fe1 70.16 (15) C17—Fe1—C14 110.47 (13)
C15—C16—H16 125.9
C6—C1—C2—C3 0.7 (4) C16—C15—Fe1—C14 −120.1 (3)
C7—C1—C2—C3 −177.3 (3) C13—C12—Fe1—C16 −118.6 (2)
C6—C1—C2—N1 179.6 (3) C9—C12—Fe1—C16 121.9 (3)
C7—C1—C2—N1 1.7 (4) C16—C12—Fe1—C18 −47.3 (4)
C1—C2—C3—C4 −0.1 (5) C13—C12—Fe1—C18 −166.0 (3)
N1—C2—C3—C4 −179.1 (3) C9—C12—Fe1—C18 74.6 (4)
C2—C3—C4—C5 0.1 (5) C16—C12—Fe1—C15 37.92 (18)
C3—C4—C5—C6 −0.7 (5) C13—C12—Fe1—C15 −80.71 (18)
C2—C1—C6—C5 −1.3 (4) C9—C12—Fe1—C15 159.9 (3)
C7—C1—C6—C5 176.7 (3) C16—C12—Fe1—C20 −117.56 (18)
C4—C5—C6—C1 1.3 (5) C13—C12—Fe1—C20 123.81 (17)
C6—C1—C7—N2 19.3 (3) C9—C12—Fe1—C20 4.4 (2)
C2—C1—C7—N2 −162.9 (2) C16—C12—Fe1—C19 −76.8 (2)
C6—C1—C7—C8 −95.4 (3) C13—C12—Fe1—C19 164.57 (17)
C2—C1—C7—C8 82.5 (3) C9—C12—Fe1—C19 45.1 (3)
N2—C7—C8—C9 −3.4 (3) C16—C12—Fe1—C13 118.6 (2)
C1—C7—C8—C9 117.6 (2) C9—C12—Fe1—C13 −119.4 (3)
C7—C8—C9—N3 3.9 (3) C16—C12—Fe1—C21 −158.19 (18)
C7—C8—C9—C12 −175.3 (2) C13—C12—Fe1—C21 83.18 (18)
N3—C9—C12—C16 −6.5 (4) C9—C12—Fe1—C21 −36.3 (3)
C8—C9—C12—C16 172.7 (3) C16—C12—Fe1—C17 173.3 (3)
N3—C9—C12—C13 −179.4 (3) C13—C12—Fe1—C17 54.7 (4)
C8—C9—C12—C13 −0.3 (4) C9—C12—Fe1—C17 −64.7 (4)
N3—C9—C12—Fe1 −93.0 (3) C16—C12—Fe1—C14 81.28 (19)
C8—C9—C12—Fe1 86.2 (3) C13—C12—Fe1—C14 −37.35 (16)
C16—C12—C13—C14 0.7 (3) C9—C12—Fe1—C14 −156.8 (2)
C9—C12—C13—C14 174.8 (3) C19—C20—Fe1—C16 77.0 (2)
Fe1—C12—C13—C14 59.4 (2) C21—C20—Fe1—C16 −163.69 (18)
C16—C12—C13—Fe1 −58.77 (19) C19—C20—Fe1—C18 −38.7 (2)
C9—C12—C13—Fe1 115.4 (3) C21—C20—Fe1—C18 80.6 (2)
C12—C13—C14—C15 −0.2 (3) C19—C20—Fe1—C15 45.6 (4)
Fe1—C13—C14—C15 58.6 (2) C21—C20—Fe1—C15 165.0 (3)
C12—C13—C14—Fe1 −58.83 (19) C19—C20—Fe1—C12 119.41 (19)
C13—C14—C15—C16 −0.4 (3) C21—C20—Fe1—C12 −121.23 (19)
Fe1—C14—C15—C16 58.4 (2) C21—C20—Fe1—C19 119.4 (3)
C13—C14—C15—Fe1 −58.8 (2) C19—C20—Fe1—C13 160.80 (19)
C14—C15—C16—C12 0.8 (3) C21—C20—Fe1—C13 −79.8 (2)
Fe1—C15—C16—C12 60.21 (19) C19—C20—Fe1—C21 −119.4 (3)
C14—C15—C16—Fe1 −59.4 (2) C19—C20—Fe1—C17 −82.4 (2)
C13—C12—C16—C15 −0.9 (3) C21—C20—Fe1—C17 36.95 (19)
C9—C12—C16—C15 −174.8 (3) C19—C20—Fe1—C14 −169.4 (4)
Fe1—C12—C16—C15 −60.3 (2) C21—C20—Fe1—C14 −50.0 (5)
C13—C12—C16—Fe1 59.44 (19) C20—C19—Fe1—C16 −119.27 (19)
C9—C12—C16—Fe1 −114.5 (3) C18—C19—Fe1—C16 122.48 (19)
C21—C17—C18—C19 −0.3 (4) C20—C19—Fe1—C18 118.2 (3)
Fe1—C17—C18—C19 −59.9 (2) C20—C19—Fe1—C15 −160.29 (19)
C21—C17—C18—Fe1 59.7 (2) C18—C19—Fe1—C15 81.5 (2)
C17—C18—C19—C20 0.4 (3) C20—C19—Fe1—C12 −77.7 (2)
Fe1—C18—C19—C20 −60.0 (2) C18—C19—Fe1—C12 164.07 (18)
C17—C18—C19—Fe1 60.4 (2) C18—C19—Fe1—C20 −118.2 (3)
C18—C19—C20—C21 −0.4 (3) C20—C19—Fe1—C13 −48.7 (4)
Fe1—C19—C20—C21 −60.0 (2) C18—C19—Fe1—C13 −167.0 (3)
C18—C19—C20—Fe1 59.6 (2) C20—C19—Fe1—C21 37.44 (19)
C18—C17—C21—C20 0.0 (4) C18—C19—Fe1—C21 −80.8 (2)
Fe1—C17—C21—C20 59.2 (2) C20—C19—Fe1—C17 80.5 (2)
C18—C17—C21—Fe1 −59.2 (2) C18—C19—Fe1—C17 −37.78 (19)
C19—C20—C21—C17 0.2 (3) C20—C19—Fe1—C14 171.0 (3)
Fe1—C20—C21—C17 −59.6 (2) C18—C19—Fe1—C14 52.7 (4)
C19—C20—C21—Fe1 59.9 (2) C14—C13—Fe1—C16 −81.2 (2)
C3—C2—N1—O1 161.2 (3) C12—C13—Fe1—C16 38.25 (15)
C1—C2—N1—O1 −17.8 (4) C14—C13—Fe1—C18 46.1 (4)
C3—C2—N1—O2 −18.3 (4) C12—C13—Fe1—C18 165.5 (3)
C1—C2—N1—O2 162.7 (3) C14—C13—Fe1—C15 −37.22 (19)
O3—C10—N2—N3 −176.0 (2) C12—C13—Fe1—C15 82.21 (17)
C11—C10—N2—N3 5.6 (4) C14—C13—Fe1—C12 −119.4 (2)
O3—C10—N2—C7 −12.4 (4) C14—C13—Fe1—C20 165.90 (19)
C11—C10—N2—C7 169.3 (2) C12—C13—Fe1—C20 −74.68 (19)
C1—C7—N2—C10 76.4 (3) C14—C13—Fe1—C19 −158.4 (3)
C8—C7—N2—C10 −162.6 (2) C12—C13—Fe1—C19 −39.0 (4)
C1—C7—N2—N3 −118.6 (2) C14—C13—Fe1—C21 123.6 (2)
C8—C7—N2—N3 2.4 (3) C12—C13—Fe1—C21 −116.97 (16)
C12—C9—N3—N2 176.7 (2) C14—C13—Fe1—C17 81.8 (2)
C8—C9—N3—N2 −2.5 (3) C12—C13—Fe1—C17 −158.78 (15)
C10—N2—N3—C9 165.0 (2) C12—C13—Fe1—C14 119.4 (2)
C7—N2—N3—C9 −0.1 (3) C17—C21—Fe1—C16 157.6 (3)
C15—C16—Fe1—C18 −79.9 (2) C20—C21—Fe1—C16 37.9 (4)
C12—C16—Fe1—C18 161.37 (17) C17—C21—Fe1—C18 37.7 (2)
C12—C16—Fe1—C15 −118.8 (3) C20—C21—Fe1—C18 −82.0 (2)
C15—C16—Fe1—C12 118.8 (3) C17—C21—Fe1—C15 −40.6 (5)
C15—C16—Fe1—C20 −161.29 (19) C20—C21—Fe1—C15 −160.3 (4)
C12—C16—Fe1—C20 80.0 (2) C17—C21—Fe1—C12 −164.09 (19)
C15—C16—Fe1—C19 −120.9 (2) C20—C21—Fe1—C12 76.2 (2)
C12—C16—Fe1—C19 120.30 (18) C17—C21—Fe1—C20 119.7 (3)
C15—C16—Fe1—C13 80.5 (2) C17—C21—Fe1—C19 82.4 (2)
C12—C16—Fe1—C13 −38.25 (16) C20—C21—Fe1—C19 −37.29 (18)
C15—C16—Fe1—C21 171.5 (3) C17—C21—Fe1—C13 −120.1 (2)
C12—C16—Fe1—C21 52.7 (4) C20—C21—Fe1—C13 120.17 (19)
C15—C16—Fe1—C17 −54.1 (5) C20—C21—Fe1—C17 −119.7 (3)
C12—C16—Fe1—C17 −172.8 (3) C17—C21—Fe1—C14 −77.9 (2)
C15—C16—Fe1—C14 36.94 (19) C20—C21—Fe1—C14 162.37 (18)
C12—C16—Fe1—C14 −81.82 (18) C21—C17—Fe1—C16 −153.8 (3)
C17—C18—Fe1—C16 166.73 (17) C18—C17—Fe1—C16 −34.7 (5)
C19—C18—Fe1—C16 −74.9 (2) C21—C17—Fe1—C18 −119.2 (3)
C17—C18—Fe1—C15 124.18 (19) C21—C17—Fe1—C15 165.6 (2)
C19—C18—Fe1—C15 −117.4 (2) C18—C17—Fe1—C15 −75.2 (2)
C17—C18—Fe1—C12 −158.3 (3) C21—C17—Fe1—C12 39.1 (4)
C19—C18—Fe1—C12 −39.9 (4) C18—C17—Fe1—C12 158.3 (3)
C17—C18—Fe1—C20 −80.74 (19) C21—C17—Fe1—C20 −37.31 (18)
C19—C18—Fe1—C20 37.64 (18) C18—C17—Fe1—C20 81.9 (2)
C17—C18—Fe1—C19 −118.4 (3) C21—C17—Fe1—C19 −80.6 (2)
C17—C18—Fe1—C13 48.4 (4) C18—C17—Fe1—C19 38.56 (18)
C19—C18—Fe1—C13 166.8 (3) C21—C17—Fe1—C13 79.6 (2)
C17—C18—Fe1—C21 −37.20 (18) C18—C17—Fe1—C13 −161.24 (18)
C19—C18—Fe1—C21 81.2 (2) C18—C17—Fe1—C21 119.2 (3)
C19—C18—Fe1—C17 118.4 (3) C21—C17—Fe1—C14 122.9 (2)
C17—C18—Fe1—C14 82.5 (2) C18—C17—Fe1—C14 −118.0 (2)
C19—C18—Fe1—C14 −159.15 (19) C15—C14—Fe1—C16 −37.39 (18)
C14—C15—Fe1—C16 120.1 (3) C13—C14—Fe1—C16 82.35 (19)
C14—C15—Fe1—C18 −120.8 (2) C15—C14—Fe1—C18 78.2 (2)
C16—C15—Fe1—C18 119.1 (2) C13—C14—Fe1—C18 −162.08 (19)
C14—C15—Fe1—C12 81.82 (19) C13—C14—Fe1—C15 119.7 (3)
C16—C15—Fe1—C12 −38.28 (18) C15—C14—Fe1—C12 −81.75 (19)
C14—C15—Fe1—C20 163.6 (3) C13—C14—Fe1—C12 37.98 (17)
C16—C15—Fe1—C20 43.5 (4) C15—C14—Fe1—C20 −159.1 (4)
C14—C15—Fe1—C19 −163.88 (18) C13—C14—Fe1—C20 −39.3 (5)
C16—C15—Fe1—C19 76.0 (2) C15—C14—Fe1—C19 39.4 (4)
C14—C15—Fe1—C13 37.39 (18) C13—C14—Fe1—C19 159.1 (3)
C16—C15—Fe1—C13 −82.7 (2) C15—C14—Fe1—C13 −119.7 (3)
C14—C15—Fe1—C21 −49.0 (5) C15—C14—Fe1—C21 163.10 (19)
C16—C15—Fe1—C21 −169.1 (4) C13—C14—Fe1—C21 −77.2 (2)
C14—C15—Fe1—C17 −79.7 (2) C15—C14—Fe1—C17 121.3 (2)
C16—C15—Fe1—C17 160.19 (19) C13—C14—Fe1—C17 −118.96 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C11—H11A···N3 0.96 2.29 2.788 (4) 112
C8—H8A···O3i 0.97 2.57 3.476 (3) 154
C8—H8B···O2ii 0.97 2.63 3.551 (4) 158
C21—H21···O2ii 0.93 2.46 3.136 (4) 130

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2116).

References

  1. Amr, A. E. E., Abdel-Latif, N. A. & Abdalla, M. M. (2006). Bioorg. Med. Chem.14, 373–384. [DOI] [PubMed]
  2. Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem.689, 4678–4682.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Fang, J., Jin, Z., Li, Z. & Liu, W. (2003). J. Organomet. Chem.674, 1–9.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem.21, 613–625.
  8. Guirado, A., Martiz, B. & Andreu, R. (2004). Tetrahedron Lett.45, 8523–8526.
  9. Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem.11, 2505–2517. [DOI] [PubMed]
  10. Karthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem.42, 30–36. [DOI] [PubMed]
  11. Küçükgüzel, G. Ş., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C. & Vidin, A. (2000). Eur. J. Med. Chem.35, 761–771. [DOI] [PubMed]
  12. Kudar, V., Mady-Zsoldos, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem.690, 4018–4026.
  13. Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem.42, 373–379. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shi, Y.-C., Sui, C.-X. & Zhu, B.-B. (2006). Acta Cryst. E62, m1954–m1955.
  16. Shi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006a). Acta Cryst. C62, m577–m580. [DOI] [PubMed]
  17. Shi, Y.-C., Zhu, B.-B. & Sui, C.-X. (2006b). Acta Cryst. E62, m1651–m1653.
  18. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  19. Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
  20. Zora, M., Açıkgöz, C., Tumay, T. A., Odabaşoğlu, M. & Büyükgüngör, O. (2006). Acta Cryst. C62, m327–m330. [DOI] [PubMed]
  21. Zora, M., Pınar, A. N., Odabaşoğlu, M., Büyükgüngör, O. & Turgut Cin, G. (2008). J. Organomet. Chem.693, 145–154.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004236/hy2116sup1.cif

e-64-0m514-sup1.cif (30.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004236/hy2116Isup2.hkl

e-64-0m514-Isup2.hkl (173.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES