Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):o762. doi: 10.1107/S1600536808007769

6-Hydr­oxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a,10,10a-hexa­hydro­phenanthren-9(1H)-one

Nezha Rajouani a, My Youssef Ait Itto a, Ahmed Benharref a, Aziz Auhmani a, Jean-Claude Daran b,*
PMCID: PMC2960938  PMID: 21202151

Abstract

The title compound, C20H28O2, commonly named Sugiol, is a natural oxygenated diterpene that we have isolated for the first time from a hexane extract of the fruits of Juniperus Oxycedrus L. Its X-ray crystal structure determination confirms an abietane skeleton which was predicted by spectroscopic analysis, mainly by 1H and 13C NMR. The cyclo­hexane ring adopts a flattened chair conformation, while the cyclo­hexene ring adopts an envelope conformation. The mol­ecules are linked through O—H⋯O hydrogen bonds to form a zigzag chain extending parallel to the c axis.

Related literature

For related literature, see: Bai-Ping & Isao (1991); Bouhlal et al. (1988); Cremer & Pople (1975); Iwamato et al. (2003); Politi et al. (2003); Ulubelen et al. (1997).graphic file with name e-64-0o762-scheme1.jpg

Experimental

Crystal data

  • C20H28O2

  • M r = 300.42

  • Orthorhombic, Inline graphic

  • a = 9.6060 (4) Å

  • b = 12.6617 (6) Å

  • c = 14.0920 (7) Å

  • V = 1713.99 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 180 (2) K

  • 0.31 × 0.16 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 13398 measured reflections

  • 2003 independent reflections

  • 1212 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.154

  • S = 1.05

  • 2003 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007769/pk2088sup1.cif

e-64-0o762-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007769/pk2088Isup2.hkl

e-64-0o762-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O9i 0.82 1.84 2.642 (4) 165

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Juniperus oxycedrus L. has been used in traditional folk medicine for the treatment of chronic eczema and other several skin diseases (Bouhlal et al., 1988). Diterpenes are among the identified chemical constituents of this plant. They are of great interest with respect to their biological activity including antitumor, antituberculous and antimalarial effects (Iwamato et al., 2003; Politi et al., 2003; Ulubelen et al., 1997).

The structure of the title compound is built up by three fused six-membered rings A, B and C (Fig. 1). B displays an envelope conformation with puckering parameters, Q=0.510 (4) Å, θ= 124.6 (4)° and φ= 227.1 (6)° (Cremer & Pople, 1975) whereas C has a flattened chair conformation with Q= 0.546 (4) Å, θ = 5.0 (4) and φ = 234 (5)°. A is an aromatic ring and it is perfectly planar. The molecules are linked through O—H···O hydrogen bonds involving the hydroxyl group as a donor and the ketone oxygen as an acceptor yielding a zig zag chain developing parallel to the c axis (Fig. 2, Table 1).

Experimental

In order to isolate similar compounds, we have studied the chemical composition of the fruits of Juniperus oxycedrus L. Thus, 203 g of pulverized cones was extracted with hexane. The solvent was evaporated under reduced pressure to give 14.3 g of the crude hexanic extract which was purified on silica gel column chromatography using hexane–AcOEt (97:3) as eluent, to give crystals of Sugiol (I). All 1H and 13C NMR spectroscopic data of the isolated product were in full accord with the litterature (Bai-Ping & Isao, 1991).

Refinement

All H atoms attached to C and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.98 Å (methine), 0.97 Å (methylene), 0.96 Å (methyl) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq or Uiso(H) = 1.5Ueq(methyl, OH).

In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.

Fig. 1.

Molecular view of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view of the compound, showing the formation of the zig zag chain parallel to the c axis and built from O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. [symmetry codes: (i) -x + 1/2,-y + 1, z + 1/2].

Crystal data

C20H28O2 F000 = 656
Mr = 300.42 Dx = 1.164 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3571 reflections
a = 9.6060 (4) Å θ = 2.7–32.1º
b = 12.6617 (6) Å µ = 0.07 mm1
c = 14.0920 (7) Å T = 180 (2) K
V = 1713.99 (14) Å3 Flattened box, colorless
Z = 4 0.31 × 0.16 × 0.07 mm

Data collection

Oxford Diffraction Xcalibur diffractometer 2003 independent reflections
Radiation source: fine-focus sealed tube 1212 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.068
Detector resolution: 8.2632 pixels mm-1 θmax = 26.4º
T = 180(2) K θmin = 2.7º
ω and φ scans h = −12→12
Absorption correction: none k = −15→15
13398 measured reflections l = −14→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.154   w = 1/[σ2(Fo2) + (0.0842P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2003 reflections Δρmax = 0.36 e Å3
205 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0789 (4) 0.8588 (3) 0.0839 (3) 0.0291 (10)
C2 0.1754 (4) 0.9176 (3) 0.1515 (3) 0.0339 (11)
H2A 0.2674 0.9211 0.1234 0.041*
H2B 0.1418 0.9894 0.1588 0.041*
C3 0.1869 (5) 0.8673 (3) 0.2486 (3) 0.0366 (11)
H3A 0.0966 0.8681 0.2794 0.044*
H3B 0.2511 0.9077 0.2874 0.044*
C4 0.2389 (4) 0.7525 (3) 0.2400 (3) 0.0296 (10)
H4A 0.2430 0.7215 0.3029 0.036*
H4B 0.3327 0.7531 0.2145 0.036*
C4A 0.1464 (4) 0.6828 (3) 0.1762 (3) 0.0217 (9)
C4B 0.2182 (4) 0.5776 (3) 0.1555 (3) 0.0202 (9)
C5 0.3090 (4) 0.5314 (3) 0.2203 (3) 0.0252 (9)
H5 0.3286 0.5661 0.2768 0.030*
C6 0.3699 (4) 0.4356 (3) 0.2023 (3) 0.0255 (9)
C7 0.3444 (4) 0.3792 (3) 0.1186 (3) 0.0296 (10)
C8 0.2533 (4) 0.4252 (3) 0.0564 (3) 0.0244 (10)
H8 0.2335 0.3898 0.0002 0.029*
C8A 0.1892 (4) 0.5211 (3) 0.0724 (3) 0.0219 (9)
C9 0.0961 (4) 0.5626 (3) 0.0010 (3) 0.0220 (9)
C10 0.0395 (4) 0.6713 (3) 0.0137 (3) 0.0307 (10)
H10A −0.0545 0.6663 0.0384 0.037*
H10B 0.0344 0.7054 −0.0479 0.037*
C10A 0.1257 (4) 0.7408 (3) 0.0804 (3) 0.0227 (9)
H10C 0.2186 0.7426 0.0518 0.027*
C11 0.0945 (5) 0.9073 (3) −0.0143 (3) 0.0455 (13)
H11A 0.0847 0.9826 −0.0099 0.068*
H11B 0.0239 0.8795 −0.0556 0.068*
H11C 0.1847 0.8905 −0.0393 0.068*
C12 −0.0741 (4) 0.8754 (3) 0.1138 (3) 0.0397 (12)
H12A −0.1013 0.9468 0.1006 0.060*
H12B −0.0836 0.8618 0.1805 0.060*
H12C −0.1328 0.8278 0.0790 0.060*
C13 0.0112 (4) 0.6551 (3) 0.2292 (3) 0.0333 (11)
H13A −0.0494 0.6162 0.1879 0.050*
H13B −0.0343 0.7190 0.2490 0.050*
H13C 0.0328 0.6130 0.2839 0.050*
C14 0.4133 (5) 0.2730 (3) 0.1025 (3) 0.0322 (11)
H14 0.5100 0.2792 0.1240 0.039*
C15 0.4171 (6) 0.2384 (4) 0.0019 (4) 0.0672 (18)
H15A 0.3239 0.2261 −0.0201 0.101*
H15B 0.4701 0.1743 −0.0032 0.101*
H15C 0.4598 0.2923 −0.0362 0.101*
C16 0.3443 (6) 0.1868 (4) 0.1627 (4) 0.0614 (16)
H16A 0.2516 0.1744 0.1399 0.092*
H16B 0.3406 0.2093 0.2277 0.092*
H16C 0.3976 0.1229 0.1582 0.092*
O6 0.4598 (3) 0.3917 (2) 0.2654 (2) 0.0353 (8)
H6 0.4641 0.4287 0.3131 0.053*
O9 0.0639 (3) 0.5113 (2) −0.06942 (18) 0.0304 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.033 (2) 0.018 (2) 0.036 (2) 0.0086 (18) −0.001 (2) 0.0033 (19)
C2 0.033 (2) 0.021 (2) 0.048 (3) 0.0042 (19) 0.000 (2) −0.002 (2)
C3 0.032 (2) 0.029 (2) 0.048 (3) 0.001 (2) −0.008 (2) −0.014 (2)
C4 0.032 (2) 0.027 (2) 0.029 (2) 0.0046 (19) −0.0046 (19) −0.0085 (19)
C4A 0.022 (2) 0.021 (2) 0.022 (2) −0.0028 (16) −0.0010 (18) 0.0000 (17)
C4B 0.0183 (18) 0.0196 (19) 0.023 (2) −0.0009 (16) 0.0041 (18) 0.0026 (17)
C5 0.028 (2) 0.025 (2) 0.023 (2) −0.0008 (18) 0.000 (2) −0.0038 (18)
C6 0.029 (2) 0.028 (2) 0.019 (2) 0.0069 (19) 0.0023 (18) 0.0033 (19)
C7 0.032 (3) 0.025 (2) 0.032 (2) 0.0043 (19) 0.007 (2) 0.002 (2)
C8 0.028 (2) 0.023 (2) 0.022 (2) 0.0025 (19) −0.0002 (18) 0.0010 (18)
C8A 0.026 (2) 0.0196 (19) 0.020 (2) −0.0039 (17) −0.0026 (19) 0.0021 (18)
C9 0.024 (2) 0.021 (2) 0.020 (2) −0.0005 (17) 0.0018 (18) 0.0018 (18)
C10 0.033 (2) 0.032 (2) 0.027 (2) 0.0024 (19) −0.006 (2) −0.0011 (19)
C10A 0.021 (2) 0.024 (2) 0.023 (2) 0.0048 (16) −0.0008 (18) −0.0035 (18)
C11 0.059 (3) 0.029 (3) 0.049 (3) 0.008 (2) 0.001 (3) 0.011 (2)
C12 0.035 (3) 0.035 (3) 0.048 (3) 0.013 (2) −0.009 (2) −0.010 (2)
C13 0.030 (2) 0.033 (2) 0.037 (3) 0.0033 (19) 0.003 (2) 0.003 (2)
C14 0.036 (3) 0.025 (2) 0.035 (2) 0.010 (2) −0.002 (2) 0.0025 (18)
C15 0.093 (5) 0.065 (4) 0.044 (3) 0.045 (4) 0.001 (3) −0.011 (3)
C16 0.067 (4) 0.036 (3) 0.080 (4) 0.006 (3) 0.017 (3) 0.006 (3)
O6 0.0436 (18) 0.0353 (17) 0.0271 (17) 0.0196 (15) −0.0073 (15) −0.0031 (14)
O9 0.0393 (17) 0.0288 (15) 0.0231 (15) 0.0002 (14) −0.0061 (14) −0.0076 (13)

Geometric parameters (Å, °)

C1—C11 1.521 (6) C8A—C9 1.445 (5)
C1—C2 1.524 (6) C9—O9 1.226 (4)
C1—C12 1.543 (6) C9—C10 1.491 (5)
C1—C10A 1.561 (5) C10—C10A 1.530 (5)
C2—C3 1.514 (6) C10—H10A 0.9700
C2—H2A 0.9700 C10—H10B 0.9700
C2—H2B 0.9700 C10A—H10C 0.9800
C3—C4 1.542 (5) C11—H11A 0.9600
C3—H3A 0.9700 C11—H11B 0.9600
C3—H3B 0.9700 C11—H11C 0.9600
C4—C4A 1.542 (5) C12—H12A 0.9600
C4—H4A 0.9700 C12—H12B 0.9600
C4—H4B 0.9700 C12—H12C 0.9600
C4A—C4B 1.528 (5) C13—H13A 0.9600
C4A—C13 1.539 (5) C13—H13B 0.9600
C4A—C10A 1.550 (5) C13—H13C 0.9600
C4B—C5 1.391 (5) C14—C15 1.485 (6)
C4B—C8A 1.401 (5) C14—C16 1.532 (6)
C5—C6 1.370 (5) C14—H14 0.9800
C5—H5 0.9300 C15—H15A 0.9600
C6—O6 1.359 (4) C15—H15B 0.9600
C6—C7 1.401 (5) C15—H15C 0.9600
C7—C8 1.369 (5) C16—H16A 0.9600
C7—C14 1.517 (5) C16—H16B 0.9600
C8—C8A 1.380 (5) C16—H16C 0.9600
C8—H8 0.9300 O6—H6 0.8200
C11—C1—C2 108.1 (4) C8A—C9—C10 118.6 (3)
C11—C1—C12 106.7 (4) C9—C10—C10A 114.0 (3)
C2—C1—C12 110.0 (3) C9—C10—H10A 108.7
C11—C1—C10A 109.3 (3) C10A—C10—H10A 108.7
C2—C1—C10A 108.2 (3) C9—C10—H10B 108.7
C12—C1—C10A 114.4 (3) C10A—C10—H10B 108.7
C3—C2—C1 113.9 (3) H10A—C10—H10B 107.6
C3—C2—H2A 108.8 C10—C10A—C4A 109.4 (3)
C1—C2—H2A 108.8 C10—C10A—C1 114.4 (3)
C3—C2—H2B 108.8 C4A—C10A—C1 117.6 (3)
C1—C2—H2B 108.8 C10—C10A—H10C 104.6
H2A—C2—H2B 107.7 C4A—C10A—H10C 104.6
C2—C3—C4 110.4 (3) C1—C10A—H10C 104.6
C2—C3—H3A 109.6 C1—C11—H11A 109.5
C4—C3—H3A 109.6 C1—C11—H11B 109.5
C2—C3—H3B 109.6 H11A—C11—H11B 109.5
C4—C3—H3B 109.6 C1—C11—H11C 109.5
H3A—C3—H3B 108.1 H11A—C11—H11C 109.5
C3—C4—C4A 113.5 (3) H11B—C11—H11C 109.5
C3—C4—H4A 108.9 C1—C12—H12A 109.5
C4A—C4—H4A 108.9 C1—C12—H12B 109.5
C3—C4—H4B 108.9 H12A—C12—H12B 109.5
C4A—C4—H4B 108.9 C1—C12—H12C 109.5
H4A—C4—H4B 107.7 H12A—C12—H12C 109.5
C4B—C4A—C13 106.0 (3) H12B—C12—H12C 109.5
C4B—C4A—C4 110.5 (3) C4A—C13—H13A 109.5
C13—C4A—C4 109.5 (3) C4A—C13—H13B 109.5
C4B—C4A—C10A 107.8 (3) H13A—C13—H13B 109.5
C13—C4A—C10A 115.0 (3) C4A—C13—H13C 109.5
C4—C4A—C10A 108.1 (3) H13A—C13—H13C 109.5
C5—C4B—C8A 117.3 (3) H13B—C13—H13C 109.5
C5—C4B—C4A 121.6 (3) C15—C14—C7 114.6 (4)
C8A—C4B—C4A 121.0 (3) C15—C14—C16 109.2 (4)
C6—C5—C4B 121.3 (4) C7—C14—C16 111.0 (4)
C6—C5—H5 119.4 C15—C14—H14 107.2
C4B—C5—H5 119.4 C7—C14—H14 107.2
O6—C6—C5 120.9 (4) C16—C14—H14 107.2
O6—C6—C7 117.0 (3) C14—C15—H15A 109.5
C5—C6—C7 122.2 (4) C14—C15—H15B 109.5
C8—C7—C6 115.8 (3) H15A—C15—H15B 109.5
C8—C7—C14 124.1 (4) C14—C15—H15C 109.5
C6—C7—C14 120.1 (4) H15A—C15—H15C 109.5
C7—C8—C8A 123.7 (4) H15B—C15—H15C 109.5
C7—C8—H8 118.2 C14—C16—H16A 109.5
C8A—C8—H8 118.2 C14—C16—H16B 109.5
C8—C8A—C4B 119.8 (4) H16A—C16—H16B 109.5
C8—C8A—C9 118.9 (3) C14—C16—H16C 109.5
C4B—C8A—C9 121.3 (3) H16A—C16—H16C 109.5
O9—C9—C8A 121.7 (3) H16B—C16—H16C 109.5
O9—C9—C10 119.6 (4) C6—O6—H6 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6···O9i 0.82 1.84 2.642 (4) 165

Symmetry codes: (i) −x+1/2, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2088).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bai-Ping, Y. & Isao, K. (1991). Phytochemistry, 30, 1951–1955.
  3. Bouhlal, K., Meynadier, J. M., Peyron, J. L., Peyron, L., Marion, J. P., Bonetti, G. & Meynadier, J. (1988). Parfums Cosmét. Arômes, 83, 73–82.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Iwamato, M., Minami, T., Tokuda, H., Ohtsu, H. & Tanaka, R. (2003). Planta Med.69, 69–72. [DOI] [PubMed]
  9. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  10. Politi, M., Braca, A., Tommasi, N. D., Morelli, I., Manunuta, A., Battinell, L. & Mazzanti, G. (2003). Planta Med.69, 468–470. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Ulubelen, A., Topcu, G. & Johansson, C. B. (1997). J. Nat. Prod.60, 1275–1280. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007769/pk2088sup1.cif

e-64-0o762-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007769/pk2088Isup2.hkl

e-64-0o762-Isup2.hkl (96.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES