Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 12;64(Pt 4):o695. doi: 10.1107/S1600536808006181

1-Benzyl-3-(2-furo­yl)thio­urea

Hiram Pérez a,*, Yvonne Mascarenhas b, Osvaldo Estévez-Hernández c, Sauli Santos Jr d, Julio Duque c
PMCID: PMC2960941  PMID: 21202087

Abstract

In the title compound, C13H12N2O2S, the dihedral angle between the two aromatic ring planes is 87.52 (12)°. The mol­ecule shows an intra­molecular N—H⋯O hydrogen bond. The crystal structure is stabilized by inter­molecular N—H⋯S and C—H⋯O hydrogen bonding.

Related literature

For general background, see: Estévez-Hernández et al. (2007); Otazo et al. (2001). For related structures, see: Arslan et al. (2004); Khawar Rauf et al. (2007). For the synthesis, see: Otazo et al. (2001).graphic file with name e-64-0o695-scheme1.jpg

Experimental

Crystal data

  • C13H12N2O2S

  • M r = 260.31

  • Tetragonal, Inline graphic

  • a = 9.445 (3) Å

  • c = 27.107 (6) Å

  • V = 2418.2 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 150 (2) K

  • 0.3 × 0.1 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 12492 measured reflections

  • 2120 independent reflections

  • 1922 reflections with I > 2σ(I)

  • R int = 0.092

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.085

  • S = 1.06

  • 2120 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 802 Friedel pairs

  • Flack parameter: −0.16 (10)

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006181/xu2401sup1.cif

e-64-0o695-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006181/xu2401Isup2.hkl

e-64-0o695-Isup2.hkl (102.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.88 2.00 2.697 (3) 135
N2—H2⋯S1i 0.88 2.70 3.578 (2) 174
C7—H7⋯O1ii 0.95 2.58 3.423 (3) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the Brazilian agency CAPES (Project 018/05).

supplementary crystallographic information

Comment

Substituted N-acylthioureas have been a subject of investigations, due to their ability to form stable metal complexes and as ionophores in potenciometric and amperometric sensors for Cd(II), Hg(II) and Pb(II) (Otazo et al., 2001; Estévez-Hernández et al., 2007). The title compound, (I) (Fig. 1), is another example of our newly synthesized furoylthiourea derivatives, which show outstanding complexation properties.

Compound (I) is a typical N,N'-disubstituted thiourea derivative with normal geometric parameters. The C2—S1 and C3—O1 bonds (Table 1) both show the expected double-bond character. The short values of the C2—N1, C2—N2 and C3—N2 bonds indicate partial double bond character.

The dihedral angle between the aromatic rings is 87.52 (12)°, and the angles with the thiourea plane are 86.67 (19)° for the benzene ring and 4.81 (12)° for the furan ring. An intramolecular N–H···O hydrogen bond is present (Table 2), forming a six-membered ring commonly observed in this type of compounds (Arslan et al., 2004; Khawar Rauf et al., 2007). The crystal structure of (I) is stabilized by intermolecular N—H···S and C—H···O hydrogen bonding (Table 2).

Experimental

The title compound, (I), was synthesized according to a procedure described by Otazo et al. (2001) by converting furoyl chloride into furoyl isothiocyanate and then condensing with the appropriate amine. The resulting solid product was crystallized from a dichlorometane-methanol (1:1) mixture yielding X-ray quality single crystals. Elemental analysis for C13H12N2O2S found: C 67.73, H 4.75, N 8.23, S 9.34%; calculated: C 67.86, H 4.46, N 8.33, S 9.52%

Refinement

H atoms were placed in calculated positions with C–H = 0.95 Å (aromatic), N–H = 0.88 Å and C–H = 0.99 Å (methylene), and refined in riding model, Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.

Crystal data

C13H12N2O2S Z = 8
Mr = 260.31 F000 = 1088
Tetragonal, P41212 Dx = 1.43 Mg m3
Hall symbol: P 4abw 2nw Melting point: 402.5 K
a = 9.445 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 9.445 (3) Å Cell parameters from 9761 reflections
c = 27.107 (6) Å θ = 2.9–26.0º
α = 90º µ = 0.26 mm1
β = 90º T = 150 (2) K
γ = 90º Block, colourless
V = 2418.2 (12) Å3 0.3 × 0.1 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer Rint = 0.092
ω scans θmax = 25.0º
Absorption correction: none θmin = 3.7º
12492 measured reflections h = −11→9
2120 independent reflections k = −8→11
1922 reflections with I > 2σ(I) l = −32→24

Refinement

Refinement on F2   w = 1/[σ2(Fo2) + (0.0402P)2 + 0.4478P] where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full (Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.035 Δρmax = 0.17 e Å3
wR(F2) = 0.085 Δρmin = −0.19 e Å3
S = 1.06 Extinction correction: none
2120 reflections Absolute structure: Flack (1983), 802 Friedel pairs
163 parameters Flack parameter: −0.16 (10)
H-atom parameters constrained

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7270 (2) 0.4402 (2) 0.16180 (8) 0.0311 (6)
H1A 0.7104 0.3494 0.1791 0.037*
H1B 0.6351 0.4904 0.1597 0.037*
C2 0.7259 (2) 0.4740 (2) 0.07225 (7) 0.0251 (5)
C3 0.8761 (2) 0.3236 (2) 0.01767 (8) 0.0260 (5)
C4 0.9003 (2) 0.2913 (2) −0.03448 (8) 0.0270 (5)
C5 0.9858 (2) 0.1962 (2) −0.05694 (8) 0.0316 (5)
H5 1.0486 0.1313 −0.0415 0.038*
C6 0.9623 (2) 0.2131 (2) −0.10836 (8) 0.0336 (6)
H6 1.0069 0.1616 −0.1341 0.04*
C7 0.8651 (2) 0.3157 (2) −0.11361 (8) 0.0330 (6)
H7 0.8296 0.3482 −0.1444 0.04*
C8 0.8284 (2) 0.5288 (2) 0.19216 (8) 0.0272 (5)
C9 0.9223 (2) 0.6243 (2) 0.17099 (9) 0.0320 (5)
H9 0.9287 0.6313 0.1361 0.038*
C10 1.0065 (3) 0.7093 (3) 0.20046 (10) 0.0389 (6)
H10 1.0706 0.7739 0.1855 0.047*
C11 0.9987 (3) 0.7014 (3) 0.25126 (10) 0.0388 (6)
H11 1.0563 0.7606 0.2713 0.047*
C12 0.9063 (3) 0.6063 (3) 0.27252 (9) 0.0388 (6)
H12 0.9001 0.6 0.3074 0.047*
C13 0.8222 (2) 0.5198 (3) 0.24330 (8) 0.0333 (6)
H13 0.7598 0.4539 0.2584 0.04*
O1 0.94160 (17) 0.26029 (17) 0.04999 (6) 0.0314 (4)
O2 0.82422 (16) 0.36671 (15) −0.06877 (5) 0.0309 (4)
N1 0.7763 (2) 0.41033 (19) 0.11201 (6) 0.0275 (4)
H1 0.8432 0.3465 0.1081 0.033*
N2 0.77589 (19) 0.42680 (19) 0.02701 (6) 0.0262 (4)
H2 0.739 0.4679 0.0009 0.031*
S1 0.60657 (6) 0.60581 (6) 0.072955 (19) 0.03259 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0337 (12) 0.0375 (13) 0.0220 (11) −0.0027 (11) 0.0039 (9) 0.0008 (10)
C2 0.0253 (11) 0.0269 (11) 0.0231 (11) −0.0052 (9) 0.0015 (9) −0.0028 (9)
C3 0.0227 (11) 0.0265 (11) 0.0289 (12) −0.0054 (10) 0.0013 (9) −0.0005 (9)
C4 0.0289 (12) 0.0274 (12) 0.0248 (11) −0.0019 (10) −0.0021 (9) 0.0017 (9)
C5 0.0310 (13) 0.0319 (12) 0.0318 (12) 0.0041 (10) 0.0005 (10) −0.0019 (10)
C6 0.0396 (14) 0.0353 (13) 0.0260 (12) 0.0033 (11) 0.0041 (10) −0.0041 (10)
C7 0.0411 (14) 0.0380 (13) 0.0200 (11) 0.0024 (11) 0.0016 (10) −0.0032 (10)
C8 0.0304 (12) 0.0266 (12) 0.0246 (11) 0.0077 (10) 0.0000 (9) −0.0018 (9)
C9 0.0354 (13) 0.0324 (12) 0.0283 (12) 0.0043 (11) 0.0009 (10) 0.0006 (11)
C10 0.0381 (14) 0.0358 (13) 0.0427 (15) −0.0012 (12) −0.0005 (11) −0.0003 (11)
C11 0.0399 (14) 0.0381 (13) 0.0385 (14) 0.0034 (12) −0.0058 (12) −0.0074 (12)
C12 0.0451 (15) 0.0452 (15) 0.0261 (12) 0.0097 (13) −0.0045 (11) −0.0035 (11)
C13 0.0376 (13) 0.0347 (13) 0.0277 (13) 0.0048 (11) 0.0023 (11) 0.0020 (10)
O1 0.0327 (9) 0.0354 (9) 0.0262 (8) 0.0035 (7) −0.0005 (7) 0.0009 (7)
O2 0.0354 (9) 0.0319 (9) 0.0253 (8) 0.0060 (7) −0.0011 (7) −0.0017 (7)
N1 0.0303 (10) 0.0287 (10) 0.0236 (9) 0.0027 (8) 0.0016 (8) −0.0010 (8)
N2 0.0288 (10) 0.0291 (10) 0.0208 (9) 0.0010 (8) −0.0008 (8) −0.0012 (8)
S1 0.0371 (3) 0.0324 (3) 0.0283 (3) 0.0066 (3) 0.0013 (3) −0.0021 (2)

Geometric parameters (Å, °)

C1—N1 1.456 (3) C7—O2 1.363 (2)
C1—C8 1.515 (3) C7—H7 0.95
C1—H1A 0.99 C8—C9 1.389 (3)
C1—H1B 0.99 C8—C13 1.390 (3)
C2—N1 1.323 (3) C9—C10 1.384 (3)
C2—N2 1.388 (3) C9—H9 0.95
C2—S1 1.679 (2) C10—C11 1.381 (4)
C3—O1 1.228 (3) C10—H10 0.95
C3—N2 1.382 (3) C11—C12 1.379 (4)
C3—C4 1.464 (3) C11—H11 0.95
C4—C5 1.353 (3) C12—C13 1.387 (4)
C4—O2 1.374 (2) C12—H12 0.95
C5—C6 1.420 (3) C13—H13 0.95
C5—H5 0.95 N1—H1 0.88
C6—C7 1.342 (3) N2—H2 0.88
C6—H6 0.95
N1—C1—C8 114.11 (18) C9—C8—C1 122.5 (2)
N1—C1—H1A 108.7 C13—C8—C1 118.8 (2)
C8—C1—H1A 108.7 C10—C9—C8 120.3 (2)
N1—C1—H1B 108.7 C10—C9—H9 119.8
C8—C1—H1B 108.7 C8—C9—H9 119.8
H1A—C1—H1B 107.6 C11—C10—C9 120.9 (2)
N1—C2—N2 116.84 (18) C11—C10—H10 119.6
N1—C2—S1 124.70 (16) C9—C10—H10 119.6
N2—C2—S1 118.46 (15) C12—C11—C10 119.1 (2)
O1—C3—N2 123.90 (19) C12—C11—H11 120.5
O1—C3—C4 120.59 (19) C10—C11—H11 120.5
N2—C3—C4 115.51 (18) C11—C12—C13 120.5 (2)
C5—C4—O2 110.61 (18) C11—C12—H12 119.8
C5—C4—C3 131.8 (2) C13—C12—H12 119.8
O2—C4—C3 117.63 (18) C12—C13—C8 120.6 (2)
C4—C5—C6 105.9 (2) C12—C13—H13 119.7
C4—C5—H5 127.1 C8—C13—H13 119.7
C6—C5—H5 127.1 C7—O2—C4 105.78 (17)
C7—C6—C5 107.0 (2) C2—N1—C1 123.51 (18)
C7—C6—H6 126.5 C2—N1—H1 118.2
C5—C6—H6 126.5 C1—N1—H1 118.2
C6—C7—O2 110.8 (2) C3—N2—C2 128.43 (18)
C6—C7—H7 124.6 C3—N2—H2 115.8
O2—C7—H7 124.6 C2—N2—H2 115.8
C9—C8—C13 118.6 (2)
O1—C3—C4—C5 1.4 (4) C10—C11—C12—C13 0.0 (4)
N2—C3—C4—C5 −178.1 (2) C11—C12—C13—C8 −0.8 (3)
O1—C3—C4—O2 −179.53 (19) C9—C8—C13—C12 1.1 (3)
N2—C3—C4—O2 1.0 (3) C1—C8—C13—C12 −175.5 (2)
O2—C4—C5—C6 0.2 (3) C6—C7—O2—C4 −0.1 (2)
C3—C4—C5—C6 179.3 (2) C5—C4—O2—C7 −0.1 (2)
C4—C5—C6—C7 −0.2 (3) C3—C4—O2—C7 −179.4 (2)
C5—C6—C7—O2 0.2 (3) N2—C2—N1—C1 −175.32 (19)
N1—C1—C8—C9 27.7 (3) S1—C2—N1—C1 4.4 (3)
N1—C1—C8—C13 −155.8 (2) C8—C1—N1—C2 −104.7 (2)
C13—C8—C9—C10 −0.6 (3) O1—C3—N2—C2 −3.1 (3)
C1—C8—C9—C10 175.9 (2) C4—C3—N2—C2 176.4 (2)
C8—C9—C10—C11 −0.3 (4) N1—C2—N2—C3 −2.3 (3)
C9—C10—C11—C12 0.6 (4) S1—C2—N2—C3 178.05 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.88 2.00 2.697 (3) 135
N2—H2···S1i 0.88 2.70 3.578 (2) 174
C7—H7···O1ii 0.95 2.58 3.423 (3) 148

Symmetry codes: (i) y, x, −z; (ii) y+1/2, −x+3/2, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2401).

References

  1. Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem.28, 673–678.
  2. Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sensors Actuators, B120, 766–772.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Khawar Rauf, M., Badshah, A. & Bolte, M. (2007). Acta Cryst. E63, o1256–o1257.
  7. Nonius (2000). COLLECT Enraf–Nonius BV, Delft, The Netherlands.
  8. Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006181/xu2401sup1.cif

e-64-0o695-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006181/xu2401Isup2.hkl

e-64-0o695-Isup2.hkl (102.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES