Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):o763–o764. doi: 10.1107/S1600536808007885

6-Meth­oxy-2,3,4,9-tetra­hydro-1H-carbazol-1-one

M Sridharan a, K J Rajendra Prasad a, A Thomas Gunaseelan b, A Thiruvalluvar b,*, A Linden c
PMCID: PMC2960955  PMID: 21202152

Abstract

The carbazole unit of the title mol­ecule, C13H13NO2, is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.69 (6)°. The cyclo­hexene ring adopts an envelope conformation. Inter­molecular C—H⋯O and N—H⋯O hydrogen bonds are present in the crystal structure. A C—H⋯π inter­action, involving the benzene ring, is also found in the crystal structure.

Related literature

For related literature, see: Bhattacharya & Chakraborty (1987); Chakraborty & Roy (1991); Chakraborty (1993); Knolker (1986); Lescot et al. (1986); Hook et al. (1990); Hirata et al. (1999); Kapil (1971); Knolker & Reddy (2002); Sowmithran & Rajendra Prasad (1986); Rajendra Prasad & Vijayalakshmi (1994). Gunaseelan et al. (2007a ,b ) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.graphic file with name e-64-0o763-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2

  • M r = 215.24

  • Monoclinic, Inline graphic

  • a = 9.0627 (2) Å

  • b = 14.0285 (3) Å

  • c = 8.5506 (2) Å

  • β = 101.815 (1)°

  • V = 1064.06 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 160 (1) K

  • 0.35 × 0.28 × 0.13 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 28554 measured reflections

  • 3077 independent reflections

  • 2601 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.145

  • S = 1.12

  • 3077 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007885/wn2245sup1.cif

e-64-0o763-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007885/wn2245Isup2.hkl

e-64-0o763-Isup2.hkl (147.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.948 (17) 1.918 (17) 2.8313 (14) 161.2 (15)
C2—H2A⋯O2ii 0.99 2.52 3.4962 (15) 169
C4—H4BCgiii 0.99 2.57 3.492 (1) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg is the centroid of the benzene ring.

Acknowledgments

KJR acknowledges the UGC, New Delhi, India, for the award of a Major Research Project grant F.No.31–122/2005. MS thanks the UGC, New Delhi for the award of a research fellowship.

supplementary crystallographic information

Comment

Heterocylic compounds are encountered in a very large number of groups of organic compounds. They play a vital role in the metabolism of all living cells, which are widely distributed in nature and are essential to life. Among them the carbazole heterocycles have emerged as an important class, based on their fascinating structure and high degree of biological activities (Bhattacharya & Chakraborty,1987; Chakraborty & Roy, 1991; Chakraborty, 1993). A number of carbazole alkaloids with intriguing novel structures and useful biological activities were isolated from natural sources over the past decades; these attracted chemists to frame novel synthetic strategies towards the synthesis of carbazole and its derivatives (Knolker,1986; Lescot et al., 1986). These alkaloids represent a new and interesting variant in the large number of indole alkaloids, which have yielded several important drugs. Several reports have appeared on the synthesis of carbazole derivatives, in connection with the search for newer physiologically active compounds (Hook et al., 1990; Hirata et al., 1999; Kapil, 1971; Knolker & Reddy, 2002). The preparation of 1-oxo compounds via their corresponding hydrazones have been reported (Sowmithran & Rajendra Prasad, 1986; Rajendra Prasad & Vijayalakshmi, 1994).

Gunaseelan et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The carbazole unit of the title molecule is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.69 (6)°. The cyclohexene ring adopts an envelope conformation. Intermolecular C2—H2A···O2(x + 1, y, z + 1) and N9—H9···O1(-x + 1, -y + 1, -z + 1) hydrogen bonds are present in the crystal structure (Fig. 2). A C4—H4B···π(x, 3/2 - y,1/2 + z) interaction involving the benzene ring is also found in the structure, .

Experimental

A solution of 2-(2-(4-methoxyphenyl)hydrazono)cyclohexanone (232 mg, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398-403 K for 2 h. The reaction was monitored by TLC. After completion of the reaction the contents were cooled and poured on to cold water with stirring. The brown solid which separated was purified by passing through a column of silica gel and eluting with a (95:5) petroleum ether-ethyl acetate mixture, yielding the title compound (144 mg, 67%). The compound thus obtained was recrystallized using ethanol.

Refinement

The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = xUeq(parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C13H13NO2 F000 = 456
Mr = 215.24 Dx = 1.344 Mg m3
Monoclinic, P21/c Melting point: 536 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 9.0627 (2) Å Cell parameters from 3175 reflections
b = 14.0285 (3) Å θ = 2.0–30.0º
c = 8.5506 (2) Å µ = 0.09 mm1
β = 101.815 (1)º T = 160 (1) K
V = 1064.06 (4) Å3 Tablet, colourless
Z = 4 0.35 × 0.28 × 0.13 mm

Data collection

Nonius KappaCCD area-detector diffractometer 3077 independent reflections
Radiation source: Nonius FR590 sealed tube generator 2601 reflections with I > 2σ(I)
Monochromator: horizontally mounted graphite crystal Rint = 0.038
Detector resolution: 9 pixels mm-1 θmax = 30.0º
T = 160(1) K θmin = 2.3º
φ and ω scans with κ offsets h = −12→12
Absorption correction: none k = 0→19
28554 measured reflections l = 0→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146   w = 1/[σ2(Fo2) + (0.0825P)2 + 0.2332P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
3077 reflections Δρmax = 0.33 e Å3
149 parameters Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Solvent used: EtOH Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.742 (2) Frames collected: 359 Seconds exposure per frame: 100 Degrees rotation per frame: 2.0 Crystal-Detector distance (mm): 30.0
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53223 (10) 0.52978 (7) 0.72771 (11) 0.0324 (3)
O2 −0.29638 (10) 0.67151 (8) 0.18475 (11) 0.0354 (3)
N9 0.27900 (11) 0.55709 (7) 0.45710 (11) 0.0229 (3)
C1 0.41200 (13) 0.56555 (8) 0.74513 (13) 0.0229 (3)
C2 0.38660 (13) 0.59515 (9) 0.90781 (13) 0.0251 (3)
C3 0.27324 (13) 0.67715 (8) 0.90149 (13) 0.0236 (3)
C4 0.12214 (12) 0.65469 (8) 0.79020 (12) 0.0213 (3)
C4A 0.14868 (12) 0.61976 (7) 0.63321 (12) 0.0196 (3)
C4B 0.05307 (12) 0.61980 (7) 0.47874 (13) 0.0197 (3)
C5 −0.09638 (12) 0.65107 (8) 0.42156 (13) 0.0219 (3)
C6 −0.15394 (12) 0.64344 (8) 0.25953 (13) 0.0241 (3)
C7 −0.06690 (13) 0.60611 (8) 0.15394 (13) 0.0253 (3)
C8 0.07867 (13) 0.57456 (8) 0.20802 (13) 0.0236 (3)
C8A 0.13856 (12) 0.58090 (7) 0.37241 (13) 0.0208 (3)
C9A 0.28448 (12) 0.58046 (8) 0.61527 (13) 0.0213 (3)
C16 −0.38951 (15) 0.71146 (13) 0.28342 (18) 0.0441 (5)
H2A 0.48420 0.61484 0.97491 0.0301*
H2B 0.34978 0.53939 0.95963 0.0301*
H3A 0.25628 0.68946 1.01044 0.0283*
H3B 0.31607 0.73572 0.86390 0.0283*
H4A 0.06803 0.60539 0.83938 0.0256*
H4B 0.05882 0.71278 0.77373 0.0256*
H5 −0.15509 0.67641 0.49192 0.0262*
H7 −0.10988 0.60272 0.04300 0.0303*
H8 0.13633 0.54942 0.13648 0.0284*
H9 0.3587 (19) 0.5296 (12) 0.416 (2) 0.038 (4)*
H16A −0.48742 0.72886 0.21742 0.0661*
H16B −0.34089 0.76845 0.33697 0.0661*
H16C −0.40428 0.66454 0.36374 0.0661*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0269 (5) 0.0436 (5) 0.0274 (4) 0.0137 (4) 0.0075 (3) −0.0016 (4)
O2 0.0230 (4) 0.0513 (6) 0.0293 (5) 0.0061 (4) −0.0008 (3) −0.0103 (4)
N9 0.0239 (5) 0.0262 (5) 0.0202 (4) 0.0049 (3) 0.0084 (3) −0.0009 (3)
C1 0.0245 (5) 0.0232 (5) 0.0222 (5) 0.0045 (4) 0.0076 (4) 0.0004 (4)
C2 0.0249 (5) 0.0302 (6) 0.0205 (5) 0.0067 (4) 0.0054 (4) −0.0010 (4)
C3 0.0235 (5) 0.0252 (5) 0.0227 (5) 0.0028 (4) 0.0064 (4) −0.0045 (4)
C4 0.0224 (5) 0.0233 (5) 0.0196 (5) 0.0030 (4) 0.0073 (4) −0.0010 (4)
C4A 0.0215 (5) 0.0188 (5) 0.0199 (5) 0.0012 (3) 0.0073 (4) 0.0012 (3)
C4B 0.0215 (5) 0.0182 (5) 0.0205 (5) −0.0004 (4) 0.0071 (4) −0.0004 (3)
C5 0.0212 (5) 0.0223 (5) 0.0232 (5) −0.0014 (4) 0.0071 (4) −0.0022 (4)
C6 0.0208 (5) 0.0260 (5) 0.0249 (5) −0.0018 (4) 0.0036 (4) −0.0033 (4)
C7 0.0274 (6) 0.0272 (5) 0.0211 (5) −0.0025 (4) 0.0045 (4) −0.0034 (4)
C8 0.0276 (5) 0.0245 (5) 0.0204 (5) −0.0009 (4) 0.0089 (4) −0.0025 (4)
C8A 0.0231 (5) 0.0200 (5) 0.0210 (5) 0.0001 (4) 0.0085 (4) −0.0005 (3)
C9A 0.0232 (5) 0.0222 (5) 0.0197 (5) 0.0030 (4) 0.0073 (4) 0.0002 (4)
C16 0.0261 (6) 0.0610 (10) 0.0421 (8) 0.0118 (6) 0.0000 (5) −0.0185 (7)

Geometric parameters (Å, °)

O1—C1 1.2360 (15) C6—C7 1.4154 (16)
O2—C6 1.3756 (15) C7—C8 1.3785 (17)
O2—C16 1.4247 (18) C8—C8A 1.4021 (15)
N9—C8A 1.3706 (15) C2—H2A 0.9900
N9—C9A 1.3826 (14) C2—H2B 0.9900
N9—H9 0.948 (17) C3—H3A 0.9900
C1—C9A 1.4446 (16) C3—H3B 0.9900
C1—C2 1.5138 (16) C4—H4A 0.9900
C2—C3 1.5359 (17) C4—H4B 0.9900
C3—C4 1.5318 (16) C5—H5 0.9500
C4—C4A 1.4940 (14) C7—H7 0.9500
C4A—C4B 1.4236 (15) C8—H8 0.9500
C4A—C9A 1.3854 (16) C16—H16A 0.9800
C4B—C8A 1.4189 (15) C16—H16B 0.9800
C4B—C5 1.4124 (16) C16—H16C 0.9800
C5—C6 1.3810 (15)
O1···N9 2.9314 (13) C16···H3Bviii 2.9800
O1···N9i 2.8313 (14) H2A···O2x 2.5200
O1···H9 2.804 (17) H2A···C16x 2.9800
O1···H2Bii 2.8400 H2A···H16Ax 2.5900
O1···H9i 1.918 (17) H2B···O1ii 2.8400
O2···H2Aiii 2.5200 H2B···C2ii 3.0700
N9···O1 2.9314 (13) H3A···C8xi 3.0300
N9···O1i 2.8313 (14) H3A···H8xi 2.5900
C1···C16iv 3.590 (2) H3B···C9A 3.0200
C2···C2ii 3.5370 (17) H3B···C8Av 3.0400
C3···C8Av 3.5983 (15) H3B···C16iv 2.9800
C4B···C4Bvi 3.5353 (14) H3B···H16Aiv 2.4300
C6···C9Avi 3.5958 (16) H4A···C7vi 2.9700
C8A···C3vii 3.5983 (15) H4A···C8vi 2.8400
C9A···C6vi 3.5958 (16) H4B···C4Bv 2.9400
C16···C1viii 3.590 (2) H4B···C5v 2.8200
C1···H16Aiv 3.0500 H4B···C6v 2.7800
C1···H9i 3.028 (17) H4B···C7v 2.8900
C2···H2Bii 3.0700 H4B···C8v 3.0500
C4B···H4Bvii 2.9400 H4B···C8Av 3.0600
C5···H16C 2.7400 H5···C16 2.5300
C5···H4Bvii 2.8200 H5···H16B 2.3100
C5···H16B 2.7400 H5···H16C 2.3100
C6···H4Bvii 2.7800 H8···H3Aix 2.5900
C7···H4Bvii 2.8900 H9···O1 2.804 (17)
C7···H4Avi 2.9700 H9···O1i 1.918 (17)
C8···H4Bvii 3.0500 H9···C1i 3.028 (17)
C8···H4Avi 2.8400 H16A···H2Aiii 2.5900
C8···H3Aix 3.0300 H16A···C1viii 3.0500
C8A···H4Bvii 3.0600 H16A···H3Bviii 2.4300
C8A···H3Bvii 3.0400 H16B···C5 2.7400
C9A···H3B 3.0200 H16B···H5 2.3100
C16···H2Aiii 2.9800 H16C···C5 2.7400
C16···H5 2.5300 H16C···H5 2.3100
C6—O2—C16 116.79 (10) C1—C2—H2A 109.00
C8A—N9—C9A 107.61 (9) C1—C2—H2B 109.00
C9A—N9—H9 125.6 (10) C3—C2—H2A 109.00
C8A—N9—H9 126.8 (10) C3—C2—H2B 109.00
O1—C1—C9A 123.53 (10) H2A—C2—H2B 108.00
O1—C1—C2 121.72 (10) C2—C3—H3A 109.00
C2—C1—C9A 114.73 (10) C2—C3—H3B 109.00
C1—C2—C3 113.55 (9) C4—C3—H3A 109.00
C2—C3—C4 111.98 (9) C4—C3—H3B 109.00
C3—C4—C4A 109.74 (9) H3A—C3—H3B 108.00
C4B—C4A—C9A 106.45 (9) C3—C4—H4A 110.00
C4—C4A—C4B 130.85 (10) C3—C4—H4B 110.00
C4—C4A—C9A 122.69 (10) C4A—C4—H4A 110.00
C5—C4B—C8A 120.56 (10) C4A—C4—H4B 110.00
C4A—C4B—C8A 106.61 (9) H4A—C4—H4B 108.00
C4A—C4B—C5 132.82 (10) C4B—C5—H5 121.00
C4B—C5—C6 117.50 (10) C6—C5—H5 121.00
O2—C6—C5 124.74 (10) C6—C7—H7 119.00
O2—C6—C7 113.70 (10) C8—C7—H7 119.00
C5—C6—C7 121.55 (10) C7—C8—H8 121.00
C6—C7—C8 121.66 (10) C8A—C8—H8 121.00
C7—C8—C8A 117.60 (10) O2—C16—H16A 109.00
N9—C8A—C8 129.88 (10) O2—C16—H16B 109.00
C4B—C8A—C8 121.11 (10) O2—C16—H16C 109.00
N9—C8A—C4B 108.97 (9) H16A—C16—H16B 109.00
C1—C9A—C4A 124.16 (10) H16A—C16—H16C 109.00
N9—C9A—C1 125.48 (10) H16B—C16—H16C 109.00
N9—C9A—C4A 110.36 (10)
C16—O2—C6—C5 0.21 (18) C4B—C4A—C9A—N9 0.74 (12)
C16—O2—C6—C7 −178.89 (12) C9A—C4A—C4B—C8A −0.84 (11)
C9A—N9—C8A—C8 177.52 (11) C4—C4A—C9A—N9 −178.17 (10)
C8A—N9—C9A—C4A −0.35 (12) C4—C4A—C4B—C8A 177.95 (10)
C9A—N9—C8A—C4B −0.20 (12) C9A—C4A—C4B—C5 −179.48 (11)
C8A—N9—C9A—C1 179.00 (10) C5—C4B—C8A—N9 179.49 (10)
C9A—C1—C2—C3 −29.21 (14) C4A—C4B—C8A—N9 0.65 (12)
O1—C1—C2—C3 152.17 (11) C5—C4B—C8A—C8 1.54 (16)
C2—C1—C9A—N9 −178.39 (11) C4A—C4B—C5—C6 177.60 (11)
C2—C1—C9A—C4A 0.87 (16) C8A—C4B—C5—C6 −0.89 (16)
O1—C1—C9A—C4A 179.47 (11) C4A—C4B—C8A—C8 −177.31 (10)
O1—C1—C9A—N9 0.21 (19) C4B—C5—C6—O2 −179.27 (11)
C1—C2—C3—C4 54.63 (13) C4B—C5—C6—C7 −0.24 (16)
C2—C3—C4—C4A −49.23 (12) O2—C6—C7—C8 179.92 (11)
C3—C4—C4A—C4B −156.37 (11) C5—C6—C7—C8 0.80 (18)
C3—C4—C4A—C9A 22.25 (14) C6—C7—C8—C8A −0.17 (17)
C4—C4A—C4B—C5 −0.7 (2) C7—C8—C8A—N9 −178.45 (11)
C4B—C4A—C9A—C1 −178.62 (10) C7—C8—C8A—C4B −0.97 (16)
C4—C4A—C9A—C1 2.47 (17)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z−1; (iv) x+1, −y+3/2, z+1/2; (v) x, −y+3/2, z+1/2; (vi) −x, −y+1, −z+1; (vii) x, −y+3/2, z−1/2; (viii) x−1, −y+3/2, z−1/2; (ix) x, y, z−1; (x) x+1, y, z+1; (xi) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9···O1i 0.948 (17) 1.918 (17) 2.8313 (14) 161.2 (15)
C2—H2A···O2x 0.99 2.52 3.4962 (15) 169
C4—H4B···Cgv 0.99 2.57 3.492 (1) 156

Symmetry codes: (i) −x+1, −y+1, −z+1; (x) x+1, y, z+1; (v) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2245).

References

  1. Bhattacharya, P. & Chakraborty, D. P. (1987). Progress in the Chemistry of Organic Natural Products, Vol. 52, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 299–371. Wien: Springer Verlag.
  2. Chakraborty, D. P. (1993). The Alkaloids, Vol. 44, edited by A. Brossi, pp. 257–282. New York: Academic Press.
  3. Chakraborty, D. P. & Roy, S. (1991). Progress in the Chemistry of Organic Natural Products Vol. 57, edited by W. Herz, H. Grisebach, G. W. Kirby & C. Tamm, pp. 71–110. Wien: Springer Verlag.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.
  6. Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.
  7. Hirata, K., Ito, C., Furukawa, H., Itoigawa, M., Cosentino, L. M. & Lee, K. H. (1999). Bioorg. Med. Chem. Lett.9, 119–122. [DOI] [PubMed]
  8. Hook, D. J., Yacobucci, J. J., O’Connor, S., Lee, M., Kerns, E., Krishnan, B., Matson, J. & Hesler, G. J. (1990). Antibiot.43, 1347–1348. [DOI] [PubMed]
  9. Kapil, R. S. (1971). The Alkaloids, Vol. 13, edited by R. H. F. Manske, p. 273. New York: Academic Press.
  10. Knolker, H. J. (1986). Advances in Nitrogen Heterocycles, Vol. 1, edited by C. J. Moody, p. 273. Geenwich, Connecticut: JAI Press.
  11. Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev.102, 4303–4427. [DOI] [PubMed]
  12. Lescot, E., Muzard, G., Markovits, J., Belleney, J., Roques, B. P. & Le Pecq, J. B. (1986). J. Med. Chem.29, 1731–1737. [DOI] [PubMed]
  13. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.
  15. Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem.33B, 481–482.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711–717.
  18. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  19. Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007885/wn2245sup1.cif

e-64-0o763-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007885/wn2245Isup2.hkl

e-64-0o763-Isup2.hkl (147.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES