Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 7;64(Pt 4):o678. doi: 10.1107/S1600536808005746

2-Phenyl-4-(3,4,5-trimethoxy­benzyl­idene)-1,3-oxazol-5(4H)-one

Yi-Feng Sun a,b,*, Yi-Ping Cui a
PMCID: PMC2960957  PMID: 21202071

Abstract

The title compound, C19H17NO5, was synthesized as part of a continuing project involving the structures of oxazolone derivatives. The mol­ecule adopts a Z configuration about the central olefinic bond. The 2-phenyl ring is slightly twisted out of the plane of the oxazolone ring system by 11.2 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background literature, see: Aaglawe et al. (2003); Grassi et al. (2004); Khan et al. (2006); Song et al. (2001). For related structures, see: Sun et al. (2007); Imhof & Garms (2005); Song et al. (2004); Vasuki et al. (2001).graphic file with name e-64-0o678-scheme1.jpg

Experimental

Crystal data

  • C19H17NO5

  • M r = 339.34

  • Triclinic, Inline graphic

  • a = 7.3897 (5) Å

  • b = 8.1532 (6) Å

  • c = 14.0023 (9) Å

  • α = 86.917 (5)°

  • β = 83.306 (4)°

  • γ = 82.471 (5)°

  • V = 830.02 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.985, T max = 0.990

  • 4665 measured reflections

  • 2904 independent reflections

  • 2056 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.121

  • S = 1.04

  • 2904 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005746/pk2085sup1.cif

e-64-0o678-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005746/pk2085Isup2.hkl

e-64-0o678-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.59 3.503 (2) 168
C6—H6⋯O3ii 0.93 2.62 3.420 (2) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (grant No. 0701001B).

supplementary crystallographic information

Comment

The development of highly efficient nonlinear optical crystals is extremely important for laser spectroscopy and laser processing. Oxazolone derivatives are highly versatile intermediates used for the synthesis of several biologically active organic molecules, such as amino acids, peptides, antimicrobial or antitumor compounds, immunomodulators, heterocyclic precursors for biosensor coupling, and photosensitive composition devices for proteins (Aaglawe et al., 2003; Grassi et al., 2004; Khan et al., 2006). It has been reported (Song et al., 2001) that some oxazolone derivatives exhibit promising nonlinear optical properties. The second-harmonic generation (SHG) value of the title compound is 1.821, as compared with urea powder. In this contribution, we report the crystal structure of the title compound.

The molecule possesses normal geometric parameters and adopts a Z configuration about the central olefinic bond (Fig. 1). The C11–C16 phenyl ring and the oxazolone ring are almost coplanar. However, the C4–C9 phenyl ring is slightly twisted out of the plane of the oxazolone ring system by 11.2 (2) °. Comparison with 2,6-dimethoxy-4- (5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)-phenyl acetate (Sun et al., 2007) suggests that the presence of the 4-methoxy group leads to this deviation from coplanarity. Also, while O3, O4, O5, C17 and C19 are approximately coplanar with their attached benzene ring, C18 deviate from their mother benzene ring (Fig. 1). The crystal structure is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1).

Similar structures have been observed in the related oxazolone analogues reported by Sun et al. (2007), Imhof & Garms (2005), Song et al. (2004), and by Vasuki et al. (2001).

Experimental

The title compound was synthesized from 3,4,5-trimethoxybenzaldehyde and hippuric acid as reported by Song et al. (2001). A mixture of hippuric acid (2.2 mmol), 3,4,5-trimethoxybenzaldehyde (2 mmol), sodium acetate (3 mmol) in acetic anhydride (8 ml) was refluxed for 5 hr. It was then cooled and ethanol (10 ml) was added to it. The resulting mixture was left over night at room temp. The solid thus obtained was filtered, dried and crystallized from ethanol to yield the title compound in 73% yield. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating from ethanol at room temperature.

Refinement

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Crystal data

C19H17NO5 Z = 2
Mr = 339.34 F000 = 356
Triclinic, P1 Dx = 1.358 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.3897 (5) Å Cell parameters from 1358 reflections
b = 8.1532 (6) Å θ = 2.9–24.7º
c = 14.0023 (9) Å µ = 0.10 mm1
α = 86.917 (5)º T = 273 (2) K
β = 83.306 (4)º Block, yellow
γ = 82.471 (5)º 0.15 × 0.12 × 0.10 mm
V = 830.02 (10) Å3

Data collection

Bruker SMART CCD area detector diffractometer 2904 independent reflections
Radiation source: fine-focus sealed tube 2056 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.020
T = 273(2) K θmax = 25.1º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.985, Tmax = 0.990 k = −9→8
4665 measured reflections l = −16→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0602P)2 + 0.0668P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2904 reflections Δρmax = 0.12 e Å3
229 parameters Δρmin = −0.15 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5421 (2) 0.11697 (18) −0.16116 (10) 0.0843 (5)
O2 0.47613 (18) 0.36419 (17) −0.23924 (9) 0.0666 (4)
O3 −0.0038 (2) 0.77451 (16) 0.17976 (10) 0.0760 (4)
O4 −0.0466 (2) 0.58784 (18) 0.33970 (10) 0.0759 (4)
O5 0.09472 (19) 0.26856 (16) 0.34793 (9) 0.0685 (4)
N1 0.3293 (2) 0.51906 (19) −0.11774 (10) 0.0559 (4)
C1 0.4742 (3) 0.2583 (3) −0.15782 (14) 0.0626 (5)
C2 0.3888 (2) 0.5149 (2) −0.20767 (13) 0.0560 (5)
C3 0.3759 (2) 0.3591 (2) −0.07986 (13) 0.0546 (4)
C4 0.3748 (2) 0.6523 (2) −0.27805 (12) 0.0567 (5)
C5 0.3176 (3) 0.8105 (3) −0.24711 (14) 0.0656 (5)
H5 0.2910 0.8276 −0.1816 0.079*
C6 0.2996 (3) 0.9427 (3) −0.31155 (15) 0.0720 (6)
H6 0.2600 1.0486 −0.2898 0.086*
C7 0.3402 (3) 0.9181 (3) −0.40840 (15) 0.0764 (6)
H7 0.3282 1.0074 −0.4524 0.092*
C8 0.3981 (3) 0.7630 (3) −0.43997 (15) 0.0836 (7)
H8 0.4258 0.7471 −0.5056 0.100*
C9 0.4161 (3) 0.6292 (3) −0.37596 (14) 0.0742 (6)
H9 0.4558 0.5237 −0.3983 0.089*
C10 0.3399 (2) 0.2976 (2) 0.01042 (13) 0.0566 (5)
H10 0.3867 0.1873 0.0207 0.068*
C11 0.2390 (2) 0.3772 (2) 0.09430 (12) 0.0509 (4)
C12 0.1654 (2) 0.5438 (2) 0.09198 (13) 0.0551 (4)
H12 0.1786 0.6078 0.0352 0.066*
C13 0.0733 (2) 0.6129 (2) 0.17411 (13) 0.0560 (4)
C14 0.0515 (2) 0.5183 (2) 0.25978 (12) 0.0561 (5)
C15 0.1226 (2) 0.3522 (2) 0.26160 (12) 0.0535 (4)
C16 0.2174 (2) 0.2820 (2) 0.17932 (12) 0.0541 (4)
H16 0.2666 0.1710 0.1810 0.065*
C17 0.0240 (3) 0.8792 (2) 0.09656 (15) 0.0776 (6)
H17A 0.1533 0.8797 0.0785 0.116*
H17B −0.0321 0.9897 0.1101 0.116*
H17C −0.0303 0.8391 0.0448 0.116*
C18 0.0640 (4) 0.6488 (3) 0.40255 (16) 0.1007 (8)
H18A 0.1511 0.5600 0.4234 0.151*
H18B −0.0125 0.6940 0.4575 0.151*
H18C 0.1284 0.7337 0.3694 0.151*
C19 0.1573 (3) 0.0968 (3) 0.35144 (15) 0.0724 (6)
H19A 0.1064 0.0437 0.3030 0.109*
H19B 0.1190 0.0500 0.4137 0.109*
H19C 0.2889 0.0802 0.3399 0.109*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1024 (12) 0.0654 (10) 0.0810 (10) 0.0056 (8) −0.0041 (8) −0.0184 (8)
O2 0.0715 (8) 0.0709 (9) 0.0554 (7) −0.0040 (7) 0.0000 (6) −0.0128 (7)
O3 0.0942 (11) 0.0559 (8) 0.0699 (9) 0.0064 (7) 0.0051 (7) 0.0006 (7)
O4 0.0790 (9) 0.0789 (9) 0.0652 (8) −0.0073 (7) 0.0123 (7) −0.0120 (7)
O5 0.0813 (9) 0.0644 (8) 0.0575 (8) −0.0123 (7) 0.0021 (6) 0.0062 (6)
N1 0.0542 (9) 0.0615 (10) 0.0526 (9) −0.0109 (7) −0.0033 (7) −0.0048 (7)
C1 0.0636 (12) 0.0642 (13) 0.0608 (11) −0.0072 (10) −0.0074 (9) −0.0108 (10)
C2 0.0492 (10) 0.0639 (12) 0.0564 (11) −0.0098 (8) −0.0043 (8) −0.0124 (9)
C3 0.0531 (10) 0.0557 (11) 0.0561 (10) −0.0084 (8) −0.0068 (8) −0.0067 (9)
C4 0.0490 (10) 0.0685 (12) 0.0537 (10) −0.0114 (9) −0.0047 (8) −0.0052 (9)
C5 0.0624 (12) 0.0762 (14) 0.0563 (11) −0.0055 (10) −0.0022 (9) −0.0031 (10)
C6 0.0673 (13) 0.0734 (14) 0.0740 (14) −0.0078 (10) −0.0058 (10) 0.0020 (11)
C7 0.0715 (13) 0.0897 (16) 0.0693 (13) −0.0199 (12) −0.0095 (11) 0.0132 (12)
C8 0.0985 (17) 0.0996 (18) 0.0541 (12) −0.0228 (14) −0.0034 (11) −0.0001 (12)
C9 0.0891 (15) 0.0769 (14) 0.0570 (12) −0.0157 (11) −0.0004 (10) −0.0088 (10)
C10 0.0578 (11) 0.0521 (10) 0.0613 (11) −0.0089 (8) −0.0086 (9) −0.0049 (8)
C11 0.0502 (10) 0.0510 (10) 0.0530 (10) −0.0107 (8) −0.0063 (8) −0.0042 (8)
C12 0.0585 (11) 0.0547 (11) 0.0520 (10) −0.0098 (8) −0.0044 (8) 0.0010 (8)
C13 0.0556 (10) 0.0509 (10) 0.0606 (11) −0.0049 (8) −0.0042 (9) −0.0030 (9)
C14 0.0527 (10) 0.0600 (11) 0.0552 (10) −0.0097 (8) 0.0014 (8) −0.0076 (9)
C15 0.0521 (10) 0.0579 (11) 0.0519 (10) −0.0137 (8) −0.0054 (8) 0.0020 (8)
C16 0.0542 (10) 0.0495 (10) 0.0600 (11) −0.0100 (8) −0.0086 (8) −0.0010 (8)
C17 0.0939 (16) 0.0551 (12) 0.0790 (14) 0.0018 (11) −0.0067 (12) 0.0070 (10)
C18 0.146 (2) 0.0862 (17) 0.0716 (14) −0.0273 (16) 0.0020 (15) −0.0237 (12)
C19 0.0762 (13) 0.0681 (14) 0.0708 (13) −0.0087 (11) −0.0078 (11) 0.0161 (10)

Geometric parameters (Å, °)

O1—C1 1.196 (2) C8—C9 1.377 (3)
O2—C2 1.381 (2) C8—H8 0.9300
O2—C1 1.393 (2) C9—H9 0.9300
O3—C13 1.368 (2) C10—C11 1.452 (2)
O3—C17 1.418 (2) C10—H10 0.9300
O4—C14 1.368 (2) C11—C16 1.391 (2)
O4—C18 1.418 (3) C11—C12 1.396 (2)
O5—C15 1.363 (2) C12—C13 1.374 (2)
O5—C19 1.417 (2) C12—H12 0.9300
N1—C2 1.285 (2) C13—C14 1.396 (3)
N1—C3 1.397 (2) C14—C15 1.387 (3)
C1—C3 1.466 (3) C15—C16 1.387 (2)
C2—C4 1.453 (3) C16—H16 0.9300
C3—C10 1.345 (3) C17—H17A 0.9600
C4—C5 1.380 (3) C17—H17B 0.9600
C4—C9 1.387 (3) C17—H17C 0.9600
C5—C6 1.371 (3) C18—H18A 0.9600
C5—H5 0.9300 C18—H18B 0.9600
C6—C7 1.374 (3) C18—H18C 0.9600
C6—H6 0.9300 C19—H19A 0.9600
C7—C8 1.361 (3) C19—H19B 0.9600
C7—H7 0.9300 C19—H19C 0.9600
C2—O2—C1 105.35 (14) C16—C11—C10 117.84 (16)
C13—O3—C17 117.23 (15) C12—C11—C10 122.32 (16)
C14—O4—C18 113.61 (16) C13—C12—C11 119.65 (16)
C15—O5—C19 117.33 (15) C13—C12—H12 120.2
C2—N1—C3 105.67 (15) C11—C12—H12 120.2
O1—C1—O2 121.82 (18) O3—C13—C12 124.40 (16)
O1—C1—C3 133.22 (19) O3—C13—C14 114.73 (16)
O2—C1—C3 104.96 (17) C12—C13—C14 120.87 (17)
N1—C2—O2 115.89 (16) O4—C14—C15 120.64 (16)
N1—C2—C4 126.61 (17) O4—C14—C13 119.91 (17)
O2—C2—C4 117.50 (15) C15—C14—C13 119.39 (16)
C10—C3—N1 129.17 (16) O5—C15—C16 124.20 (16)
C10—C3—C1 122.71 (18) O5—C15—C14 115.69 (16)
N1—C3—C1 108.10 (15) C16—C15—C14 120.10 (16)
C5—C4—C9 118.72 (18) C15—C16—C11 120.14 (16)
C5—C4—C2 119.35 (16) C15—C16—H16 119.9
C9—C4—C2 121.92 (18) C11—C16—H16 119.9
C6—C5—C4 120.99 (18) O3—C17—H17A 109.5
C6—C5—H5 119.5 O3—C17—H17B 109.5
C4—C5—H5 119.5 H17A—C17—H17B 109.5
C5—C6—C7 119.7 (2) O3—C17—H17C 109.5
C5—C6—H6 120.1 H17A—C17—H17C 109.5
C7—C6—H6 120.1 H17B—C17—H17C 109.5
C8—C7—C6 120.0 (2) O4—C18—H18A 109.5
C8—C7—H7 120.0 O4—C18—H18B 109.5
C6—C7—H7 120.0 H18A—C18—H18B 109.5
C7—C8—C9 120.8 (2) O4—C18—H18C 109.5
C7—C8—H8 119.6 H18A—C18—H18C 109.5
C9—C8—H8 119.6 H18B—C18—H18C 109.5
C8—C9—C4 119.8 (2) O5—C19—H19A 109.5
C8—C9—H9 120.1 O5—C19—H19B 109.5
C4—C9—H9 120.1 H19A—C19—H19B 109.5
C3—C10—C11 129.81 (17) O5—C19—H19C 109.5
C3—C10—H10 115.1 H19A—C19—H19C 109.5
C11—C10—H10 115.1 H19B—C19—H19C 109.5
C16—C11—C12 119.84 (16)
C2—O2—C1—O1 −179.16 (18) C1—C3—C10—C11 −177.22 (17)
C2—O2—C1—C3 1.44 (18) C3—C10—C11—C16 178.06 (17)
C3—N1—C2—O2 −0.07 (19) C3—C10—C11—C12 −2.3 (3)
C3—N1—C2—C4 −179.39 (16) C16—C11—C12—C13 0.5 (3)
C1—O2—C2—N1 −0.9 (2) C10—C11—C12—C13 −179.12 (16)
C1—O2—C2—C4 178.45 (15) C17—O3—C13—C12 −4.2 (3)
C2—N1—C3—C10 −177.93 (18) C17—O3—C13—C14 176.14 (17)
C2—N1—C3—C1 1.01 (18) C11—C12—C13—O3 179.96 (16)
O1—C1—C3—C10 −1.8 (3) C11—C12—C13—C14 −0.4 (3)
O2—C1—C3—C10 177.47 (16) C18—O4—C14—C15 87.7 (2)
O1—C1—C3—N1 179.2 (2) C18—O4—C14—C13 −95.3 (2)
O2—C1—C3—N1 −1.55 (19) O3—C13—C14—O4 2.2 (2)
N1—C2—C4—C5 10.3 (3) C12—C13—C14—O4 −177.52 (16)
O2—C2—C4—C5 −168.97 (16) O3—C13—C14—C15 179.23 (15)
N1—C2—C4—C9 −169.19 (18) C12—C13—C14—C15 −0.5 (3)
O2—C2—C4—C9 11.5 (3) C19—O5—C15—C16 −4.0 (2)
C9—C4—C5—C6 0.8 (3) C19—O5—C15—C14 176.91 (16)
C2—C4—C5—C6 −178.80 (17) O4—C14—C15—O5 −2.7 (2)
C4—C5—C6—C7 −0.5 (3) C13—C14—C15—O5 −179.76 (15)
C5—C6—C7—C8 0.0 (3) O4—C14—C15—C16 178.17 (15)
C6—C7—C8—C9 0.2 (3) C13—C14—C15—C16 1.1 (3)
C7—C8—C9—C4 0.0 (3) O5—C15—C16—C11 180.00 (15)
C5—C4—C9—C8 −0.5 (3) C14—C15—C16—C11 −1.0 (3)
C2—C4—C9—C8 179.02 (19) C12—C11—C16—C15 0.1 (2)
N1—C3—C10—C11 1.6 (3) C10—C11—C16—C15 179.81 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C16—H16···O1i 0.93 2.59 3.503 (2) 168
C6—H6···O3ii 0.93 2.62 3.420 (2) 144

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2085).

References

  1. Aaglawe, M. J., Dhule, S. S., Bahekar, S. S., Wakte, P. S. & Shinde, D. B. (2003). J. Korean Chem. Soc.47, 133–136.
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Grassi, G., Foti, F., Risitano, F., Cordaro, M., Nicolo, F. & Bruno, G. (2004). J. Mol. Struct.698, 81–86.
  4. Imhof, W. & Garms, S. (2005). Acta Cryst. E61, m1413–m1415.
  5. Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem.14, 6027–6033. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, H.-C., Sun, Y.-F., Li, W.-M., Xu, Z.-L., Zhang, L.-Z. & Cai, Z.-G. (2001). Acta Chim. Sinica, 59, 1563–1565.
  9. Song, H.-C., Wen, H. & Li, W.-M. (2004). Spectrochim. Acta Part A, 60, 1587–1591. [DOI] [PubMed]
  10. Sun, Y.-F., Wang, X.-L., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o4426.
  11. Vasuki, G., Parthasarathi, V., Ramamurthi, K., Singh, R. M. & Srivastava, A. (2001). Acta Cryst. E57, o120–o121.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005746/pk2085sup1.cif

e-64-0o678-sup1.cif (19.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005746/pk2085Isup2.hkl

e-64-0o678-Isup2.hkl (142.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES