Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):m579–m580. doi: 10.1107/S1600536808007216

Di-μ-chlorido-bis­[bis­(η2-cyclo­octene)iridium(I)]

Tsuneaki Yamagata a,*, Koji Nakajima a, Kenji Arimitsu a, Aika Iseki a, Kazuhide Tani a,b
PMCID: PMC2960958  PMID: 21202029

Abstract

The title complex, [Ir2(μ-Cl)2(C8H14)4], has a dinuclear structure with bridging Cl atoms, a hinge angle of 179.44 (7)° between the two IrCl2 planes, and an Ir⋯Ir distance of 3.7254 (3) Å. Regarding the coordinating C=C bonds as occupying a single coordination site each, the geometry around each Ir atom is square-planar.

Related literature

For related literature, see: Cotton et al. (1986); De Ridder & Imhoff (1994); Dorta et al. (1997); Herde et al. (1974); Pettinari et al. (2002); Tani et al. (1985, 1995); Yamagata et al. (1997, 2007a ,b ).graphic file with name e-64-0m579-scheme1.jpg

Experimental

Crystal data

  • [Ir2Cl2(C8H14)4]

  • M r = 896.07

  • Monoclinic, Inline graphic

  • a = 12.3410 (5) Å

  • b = 10.7713 (3) Å

  • c = 23.6450 (6) Å

  • β = 91.7873 (13)°

  • V = 3141.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.65 mm−1

  • T = 100 (1) K

  • 0.19 × 0.09 × 0.05 mm

Data collection

  • Rigaku R-AXIS RAPID Imaging Plate diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999) T min = 0.585, T max = 0.830

  • 39295 measured reflections

  • 7172 independent reflections

  • 6321 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.068

  • S = 1.08

  • 7172 reflections

  • 349 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.46 e Å−3

  • Δρmin = −1.67 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007216/cf2181sup1.cif

e-64-0m579-sup1.cif (35.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007216/cf2181Isup2.hkl

e-64-0m579-Isup2.hkl (351KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ir1—C10 2.113 (5)
Ir1—C2 2.123 (5)
Ir1—C1 2.138 (6)
Ir1—C9 2.139 (5)
Ir1—Cl1 2.3980 (12)
Ir1—Cl2 2.4188 (12)
Ir1⋯Ir2 3.7254 (3)
Ir2—C26 2.117 (5)
Ir2—C18 2.117 (5)
Ir2—C25 2.139 (5)
Ir2—C17 2.153 (5)
Ir2—Cl1 2.4036 (12)
Ir2—Cl2 2.4203 (12)
Cl1—Ir1—Cl2 78.84 (4)
Cl1—Ir2—Cl2 78.70 (4)
Ir1—Cl1—Ir2 101.77 (5)
Ir1—Cl2—Ir2 100.69 (4)

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

supplementary crystallographic information

Comment

1,5-Cyclooctadiene (cod) or cyclooctene (coe) complexes of rhodium(I) and iridium(I) with general formulae [MX(cod)]2 or [MX(coe)2]2 (M = IrI or RhI; X = Cl or Br or I) have been used as key starting compounds for various rhodium and iridium complexes. For example, an excellent asymmetric catalyst precursor, [Rh{(R)-binap}2]ClO4 (Tani et al., 1985) or [Ir(µ-Cl){(R)-binap}]2 (Yamagata et al., 1997; Dorta, et al., 1997; Tani et al., 1995), has been prepared from the reaction of [RhCl(cod)]2 or the title compound, [Ir(µ-Cl)(C8H14)2]2 (I), respectively, with (R)-BINAP {(R)-(+)-2,2'-bis(diphenylphosphino)-1–1'-binaphthyl}. The X-ray structure analyses of a series of the cod complexes have been reported. However, the crystal structures of the coe complexes have not been determined. Thus, we report here the preparation and the crystal structure of the title complex (I), which reveals also a dinuclear iridium complex (Fig. 1). The coordination geometry defined by bridging chlorine atoms and centroids of double bonds around Ir1 and Ir2 is essentially square planar. The hinge angle ((Ir1 Cl1 Cl2)/(Ir2 Cl1 Cl2) = 179.44 (7)°) is nearly 180° and the Ir···Ir distance is 3.7254 (3) Å. All the cod complexes have an analogous halogen-bridged dinuclear structure. The rhodium complex, [Rh(µ-Cl)(cod)]2 (De Ridder & Imhoff, 1994), showed an almost planar structure (the hinge angle is 169.1 (3)°), whereas [Ir(µ-I)(cod)]2 (Yamagata, et al., 2007a), [Ir(µ-Br)(cod)]2 (Yamagata et al., 2007b), [Ir(µ-Cl)(cod)]2 (Cotton et al., 1986), and [Rh(µ-Br)(cod)]2 (Pettinari et al., 2002) show bent structures, with hinge angles of 95.26 (1)°, 101.58 (3)°, 109.4 (3)°, and 148.7 (3)°, respectively. The M···M distances in [Ir(µ-I)(cod)]2, [Ir(µ-Br)(cod)]2, [Ir(µ-Cl)(cod)]2, and [Rh(µ-Br)(cod)]2 are 2.9228 (6) Å, 2.9034 (5) Å, 2.910 (1) Å, and 3.565 Å, respectively. The degree of bending is Ir > Rh and I > Br > Cl. By replacing a cod ligand with two coe ligands the coordination geometries change considerably.

Experimental

The title compound was prepared according to a modified literature method (Herde et al., 1974). All manipulations of air-sensitive materials were performed under argon using standard Schlenk and vacuum techniques (8 x 10 -2 Torr). IrCl3.3H2O (2.0 g, 5.67 mmol) was placed in a 100 ml round-bottomed flask. To this were added water (12 ml) and 2-propanol (22 ml). After addition of cyclooctene (3.5 ml), the reaction mixture was refluxed at 353 K for 3 hr. The colour of the reaction mixture turned from dark red to orange-yellow and a yellow suspension was formed. The reaction mixture was cooled to ambient temperature. The yellow precipitate was collected, washed with ice-cooled methanol (20 ml x 2), and then dried in vacuo to afford 2.04 g (2.28 mmol, 80%) of the pure product. NMR (270.05 MHz, CDCl3, 308 K, δ, p.p.m.): 2.17–2.08 (m, 4H), 1.92–1.85 (m, 2H), 1.67–1.60 (m, 2H), 1.53–1.32 (m, 6H). Orange single crystals for X-ray analysis were grown from a solution in THF under argon.

Refinement

The C12—C13 and C13—C14 bond lengths and C12···C14 distance were restrained to 1.53 (2) Å and 2.50 (2) Å, respectively. All H atoms were located in a difference Fourier map. H atoms except the olefinic H atoms were included with a riding model (C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C)). The atomic coordinates of the olefinic H atoms were refined, with C1—H1 and C2—H2 restrained to 0.95 (2) Å. The final difference Fourier map gave a maximum peak (2.463 e Å-3), which was present near the atom C13 (1.10 Å). The deepest hole of the final difference Fourier map was -1.668 e Å-3 (0.78 Å from Ir1).

Figures

Fig. 1.

Fig. 1.

The molecular structure, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms are omitted. Ca, Cb, Cc and Cd are the centroids of the coordinated C?C bonds.

Crystal data

[Ir2Cl2(C8H14)4] F000 = 1744
Mr = 896.07 Dx = 1.895 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 78044 reflections
a = 12.3410 (5) Å θ = 2.1–31.6º
b = 10.7713 (3) Å µ = 8.65 mm1
c = 23.6450 (6) Å T = 100 (1) K
β = 91.7873 (13)º Block, orange
V = 3141.57 (16) Å3 0.19 × 0.09 × 0.05 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID Imaging Plate diffractometer 7172 independent reflections
Radiation source: normal-focus sealed tube 6321 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.055
Detector resolution: 10.00 pixels mm-1 θmax = 27.5º
T = 100(1) K θmin = 2.5º
ω scans h = −16→15
Absorption correction: numerical(NUMABS; Higashi, 1999) k = −13→13
Tmin = 0.585, Tmax = 0.830 l = −30→30
39295 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068   w = 1/[σ2(Fo2) + (0.0182P)2 + 25.7043P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
7172 reflections Δρmax = 2.46 e Å3
349 parameters Δρmin = −1.67 e Å3
5 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Indexing was performed from 2 oscillations which were exposed for 500 s. The camera radiuswas 127.40 mm. Readout performed in the 0.100 mm pixel mode. #1 Phi= 90.0, chi=55.0, omega=50.0 to 230.0 with 3.0deg step #2 Phi=300.0, chi=40.0, omega=70.0 to 250.0 with 3.0deg stepA total of 120 images, corresponding to 360.0 °. osillation angles, were collected with 2 different goniometer setting. Exposure time was 100 s per degree. The camera radiuswas 127.40 mm. Readout performed in the 0.100 mm pixel mode.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)2.1389 (0.0071) x + 3.6982 (0.0062) y + 21.6879 (0.0063) z = 3.5218 (0.0013)* 0.0000 (0.0000) Ir1 * 0.0000 (0.0000) Cl1 * 0.0000 (0.0000) Cl2 0.0181 (0.0020) Ir2Rms deviation of fitted atoms = 0.00002.0283 (0.0066) x + 3.7376 (0.0066) y + 21.7009 (0.0061) z = 3.4830 (0.0032)Angle to previous plane (with approximate e.s.d.) = 0.56 (0.07)* 0.0000 (0.0000) Ir2 * 0.0000 (0.0000) Cl1 * 0.0000 (0.0000) Cl2 0.0180 (0.0020) Ir1Rms deviation of fitted atoms = 0.0000
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ir1 0.230075 (15) 0.075614 (17) 0.126802 (8) 0.01383 (5)
Ir2 0.509155 (15) −0.055152 (17) 0.122410 (8) 0.01382 (5)
Cl1 0.40939 (10) 0.13086 (12) 0.09970 (6) 0.0223 (3)
Cl2 0.32842 (10) −0.11317 (11) 0.14929 (6) 0.0189 (2)
C1 0.0736 (4) −0.0096 (6) 0.1264 (3) 0.0243 (12)
H1 0.025 (4) 0.031 (6) 0.101 (2) 0.029*
C2 0.1000 (4) 0.0349 (5) 0.1804 (2) 0.0191 (11)
H2 0.064 (5) 0.109 (4) 0.192 (3) 0.023*
C3 0.1213 (5) −0.0501 (6) 0.2304 (2) 0.0277 (13)
H3A 0.1752 −0.0113 0.2568 0.033*
H3B 0.1518 −0.1296 0.2172 0.033*
C4 0.0165 (5) −0.0750 (6) 0.2613 (3) 0.0286 (13)
H4A −0.0035 0.0013 0.2818 0.034*
H4B 0.0308 −0.1406 0.2899 0.034*
C5 −0.0811 (5) −0.1151 (6) 0.2238 (3) 0.0280 (13)
H5A −0.1426 −0.1325 0.2484 0.034*
H5B −0.1023 −0.0446 0.1990 0.034*
C6 −0.0632 (6) −0.2276 (6) 0.1870 (3) 0.0376 (16)
H6A −0.1274 −0.2822 0.1895 0.045*
H6B −0.0002 −0.2739 0.2030 0.045*
C7 −0.0436 (6) −0.2035 (7) 0.1243 (3) 0.0421 (18)
H7A −0.1015 −0.1477 0.1093 0.050*
H7B −0.0507 −0.2832 0.1037 0.050*
C8 0.0669 (6) −0.1457 (7) 0.1110 (3) 0.0413 (18)
H8A 0.1249 −0.1914 0.1321 0.050*
H8B 0.0797 −0.1553 0.0701 0.050*
C9 0.1533 (5) 0.2178 (5) 0.0768 (2) 0.0221 (11)
H9 0.075 (6) 0.202 (6) 0.071 (3) 0.027*
C10 0.1791 (5) 0.2624 (5) 0.1318 (3) 0.0217 (11)
H10 0.120 (6) 0.270 (6) 0.154 (3) 0.026*
C11 0.2647 (5) 0.3610 (5) 0.1432 (3) 0.0283 (13)
H11A 0.3238 0.3510 0.1161 0.034*
H11B 0.2961 0.3503 0.1819 0.034*
C12 0.2155 (6) 0.4936 (6) 0.1370 (3) 0.0365 (16)
H12A 0.2756 0.5543 0.1359 0.044*
H12B 0.1738 0.5119 0.1711 0.044*
C13 0.1382 (7) 0.5137 (7) 0.0825 (4) 0.067 (3)
H13A 0.0751 0.4576 0.0855 0.081*
H13B 0.1104 0.5999 0.0833 0.081*
C14 0.1858 (9) 0.4931 (8) 0.0281 (4) 0.067 (3)
H14A 0.2657 0.4956 0.0335 0.080*
H14B 0.1649 0.5632 0.0030 0.080*
C15 0.1567 (6) 0.3761 (7) −0.0015 (3) 0.0381 (16)
H15A 0.1782 0.3831 −0.0414 0.046*
H15B 0.0770 0.3664 −0.0016 0.046*
C16 0.2089 (6) 0.2587 (6) 0.0241 (3) 0.0327 (14)
H16A 0.2051 0.1909 −0.0042 0.039*
H16B 0.2863 0.2752 0.0335 0.039*
C17 0.5778 (4) −0.2077 (5) 0.1702 (2) 0.0178 (10)
H17 0.641 (5) −0.177 (6) 0.185 (3) 0.021*
C18 0.5765 (5) −0.2340 (5) 0.1113 (2) 0.0198 (11)
H18 0.637 (6) −0.223 (6) 0.093 (3) 0.024*
C19 0.5016 (5) −0.3272 (5) 0.0825 (2) 0.0221 (11)
H19A 0.4916 −0.3038 0.0422 0.027*
H19B 0.4299 −0.3228 0.1000 0.027*
C20 0.5427 (6) −0.4622 (6) 0.0858 (3) 0.0321 (14)
H20A 0.5005 −0.5126 0.0579 0.039*
H20B 0.6194 −0.4638 0.0748 0.039*
C21 0.5347 (6) −0.5229 (6) 0.1440 (3) 0.0385 (16)
H21A 0.5444 −0.6136 0.1395 0.046*
H21B 0.4606 −0.5090 0.1576 0.046*
C22 0.6160 (6) −0.4773 (6) 0.1896 (3) 0.0377 (16)
H22A 0.6761 −0.4352 0.1706 0.045*
H22B 0.6469 −0.5509 0.2094 0.045*
C23 0.5727 (5) −0.3885 (5) 0.2345 (3) 0.0248 (12)
H23A 0.6348 −0.3580 0.2580 0.030*
H23B 0.5251 −0.4361 0.2595 0.030*
C24 0.5088 (5) −0.2753 (5) 0.2112 (2) 0.0229 (11)
H24A 0.4407 −0.3032 0.1919 0.027*
H24B 0.4900 −0.2194 0.2426 0.027*
C25 0.6372 (4) 0.0087 (5) 0.0709 (2) 0.0174 (10)
H25 0.665 (5) −0.068 (6) 0.052 (3) 0.021*
C26 0.6671 (4) 0.0212 (5) 0.1290 (2) 0.0173 (10)
H26 0.714 (5) −0.046 (6) 0.143 (3) 0.021*
C27 0.6759 (4) 0.1413 (5) 0.1608 (2) 0.0207 (11)
H27A 0.6663 0.1242 0.2015 0.025*
H27B 0.6158 0.1963 0.1478 0.025*
C28 0.7842 (5) 0.2112 (5) 0.1542 (2) 0.0232 (11)
H28A 0.7878 0.2791 0.1824 0.028*
H28B 0.8442 0.1530 0.1637 0.028*
C29 0.8044 (5) 0.2672 (5) 0.0956 (3) 0.0261 (12)
H29A 0.7412 0.3192 0.0844 0.031*
H29B 0.8683 0.3226 0.0990 0.031*
C30 0.8236 (5) 0.1735 (6) 0.0481 (2) 0.0252 (12)
H30A 0.8426 0.0925 0.0656 0.030*
H30B 0.8870 0.2015 0.0268 0.030*
C31 0.7280 (4) 0.1540 (6) 0.0061 (2) 0.0227 (11)
H31A 0.7174 0.2311 −0.0162 0.027*
H31B 0.7474 0.0873 −0.0206 0.027*
C32 0.6204 (4) 0.1200 (5) 0.0324 (2) 0.0192 (10)
H32A 0.5934 0.1911 0.0543 0.023*
H32B 0.5658 0.1001 0.0022 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ir1 0.01035 (9) 0.01310 (9) 0.01811 (10) 0.00069 (7) 0.00157 (7) 0.00070 (7)
Ir2 0.01052 (9) 0.01305 (9) 0.01793 (10) 0.00124 (7) 0.00105 (7) 0.00185 (7)
Cl1 0.0112 (6) 0.0164 (6) 0.0395 (8) 0.0024 (4) 0.0046 (5) 0.0088 (5)
Cl2 0.0111 (5) 0.0150 (5) 0.0308 (7) 0.0018 (4) 0.0035 (5) 0.0038 (5)
C1 0.013 (3) 0.034 (3) 0.026 (3) −0.004 (2) −0.002 (2) 0.007 (2)
C2 0.011 (2) 0.016 (2) 0.031 (3) −0.0025 (19) 0.009 (2) 0.002 (2)
C3 0.024 (3) 0.034 (3) 0.025 (3) −0.013 (2) −0.001 (2) 0.006 (2)
C4 0.022 (3) 0.039 (3) 0.025 (3) −0.009 (3) 0.004 (2) 0.007 (2)
C5 0.021 (3) 0.034 (3) 0.030 (3) −0.002 (2) 0.004 (2) 0.007 (2)
C6 0.024 (3) 0.029 (3) 0.060 (5) −0.011 (3) 0.010 (3) −0.003 (3)
C7 0.025 (3) 0.047 (4) 0.054 (5) −0.021 (3) 0.008 (3) −0.020 (3)
C8 0.032 (4) 0.054 (4) 0.038 (4) −0.026 (3) 0.016 (3) −0.027 (3)
C9 0.017 (3) 0.022 (3) 0.027 (3) 0.005 (2) 0.001 (2) 0.007 (2)
C10 0.016 (3) 0.017 (3) 0.033 (3) 0.004 (2) 0.005 (2) 0.008 (2)
C11 0.023 (3) 0.016 (3) 0.047 (4) −0.007 (2) 0.008 (3) −0.005 (2)
C12 0.042 (4) 0.017 (3) 0.051 (4) −0.001 (3) 0.019 (3) −0.002 (3)
C13 0.053 (5) 0.028 (4) 0.121 (9) 0.019 (4) 0.020 (5) 0.025 (5)
C14 0.082 (7) 0.045 (5) 0.072 (6) 0.002 (5) −0.024 (5) 0.021 (4)
C15 0.041 (4) 0.039 (4) 0.034 (4) 0.006 (3) −0.003 (3) 0.018 (3)
C16 0.033 (4) 0.037 (3) 0.028 (3) 0.013 (3) 0.004 (3) 0.014 (3)
C17 0.012 (2) 0.016 (2) 0.025 (3) 0.0028 (19) −0.004 (2) 0.0051 (19)
C18 0.017 (3) 0.017 (2) 0.025 (3) 0.002 (2) 0.001 (2) 0.008 (2)
C19 0.026 (3) 0.016 (2) 0.024 (3) 0.004 (2) −0.002 (2) −0.002 (2)
C20 0.042 (4) 0.023 (3) 0.032 (3) 0.010 (3) −0.001 (3) −0.005 (2)
C21 0.042 (4) 0.017 (3) 0.056 (5) 0.000 (3) −0.008 (3) 0.002 (3)
C22 0.041 (4) 0.022 (3) 0.050 (4) 0.005 (3) −0.013 (3) 0.006 (3)
C23 0.020 (3) 0.023 (3) 0.032 (3) 0.003 (2) −0.002 (2) 0.011 (2)
C24 0.023 (3) 0.023 (3) 0.023 (3) 0.004 (2) 0.003 (2) 0.008 (2)
C25 0.011 (2) 0.019 (2) 0.022 (3) −0.0007 (19) 0.0032 (19) 0.000 (2)
C26 0.011 (2) 0.015 (2) 0.026 (3) 0.0004 (19) −0.0008 (19) 0.003 (2)
C27 0.015 (3) 0.022 (3) 0.024 (3) 0.000 (2) 0.002 (2) −0.002 (2)
C28 0.021 (3) 0.021 (3) 0.027 (3) −0.003 (2) −0.002 (2) −0.002 (2)
C29 0.019 (3) 0.025 (3) 0.034 (3) −0.007 (2) −0.002 (2) 0.005 (2)
C30 0.016 (3) 0.031 (3) 0.028 (3) −0.006 (2) 0.001 (2) 0.008 (2)
C31 0.016 (3) 0.032 (3) 0.020 (3) −0.005 (2) 0.002 (2) 0.008 (2)
C32 0.016 (3) 0.019 (2) 0.023 (3) −0.0026 (19) −0.001 (2) 0.002 (2)

Geometric parameters (Å, °)

Ir1—C10 2.113 (5) C14—H14B 0.990
Ir1—C2 2.123 (5) C15—C16 1.536 (8)
Ir1—C1 2.138 (6) C15—H15A 0.990
Ir1—C9 2.139 (5) C15—H15B 0.990
Ir1—Cl1 2.3980 (12) C16—H16A 0.990
Ir1—Cl2 2.4188 (12) C16—H16B 0.990
Ir1—Ir2 3.7254 (3) C17—C18 1.420 (8)
Ir2—C26 2.117 (5) C17—C24 1.499 (7)
Ir2—C18 2.117 (5) C17—H17 0.91 (7)
Ir2—C25 2.139 (5) C18—C19 1.512 (8)
Ir2—C17 2.153 (5) C18—H18 0.88 (7)
Ir2—Cl1 2.4036 (12) C19—C20 1.541 (8)
Ir2—Cl2 2.4203 (12) C19—H19A 0.990
C1—C2 1.395 (8) C19—H19B 0.990
C1—C8 1.512 (9) C20—C21 1.529 (9)
C1—H1 0.94 (2) C20—H20A 0.990
C2—C3 1.512 (8) C20—H20B 0.990
C2—H2 0.96 (2) C21—C22 1.531 (9)
C3—C4 1.530 (8) C21—H21A 0.990
C3—H3A 0.990 C21—H21B 0.990
C3—H3B 0.990 C22—C23 1.536 (9)
C4—C5 1.535 (8) C22—H22A 0.990
C4—H4A 0.990 C22—H22B 0.990
C4—H4B 0.990 C23—C24 1.545 (7)
C5—C6 1.511 (9) C23—H23A 0.990
C5—H5A 0.990 C23—H23B 0.990
C5—H5B 0.990 C24—H24A 0.990
C6—C7 1.531 (10) C24—H24B 0.990
C6—H6A 0.990 C25—C26 1.418 (8)
C6—H6B 0.990 C25—C32 1.515 (7)
C7—C8 1.541 (8) C25—H25 1.01 (6)
C7—H7A 0.990 C26—C27 1.499 (7)
C7—H7B 0.990 C26—H26 0.98 (6)
C8—H8A 0.990 C27—C28 1.546 (7)
C8—H8B 0.990 C27—H27A 0.990
C9—C10 1.414 (8) C27—H27B 0.990
C9—C16 1.506 (8) C28—C29 1.539 (8)
C9—H9 0.98 (7) C28—H28A 0.990
C10—C11 1.516 (8) C28—H28B 0.990
C10—H10 0.92 (7) C29—C30 1.533 (9)
C11—C12 1.557 (8) C29—H29A 0.990
C11—H11A 0.990 C29—H29B 0.990
C11—H11B 0.990 C30—C31 1.534 (8)
C12—C13 1.594 (11) C30—H30A 0.990
C12—H12A 0.990 C30—H30B 0.990
C12—H12B 0.990 C31—C32 1.527 (7)
C13—C14 1.449 (11) C31—H31A 0.990
C13—H13A 0.990 C31—H31B 0.990
C13—H13B 0.990 C32—H32A 0.990
C14—C15 1.480 (12) C32—H32B 0.990
C14—H14A 0.990
C10—Ir1—C2 86.1 (2) C15—C14—H14A 108.1
C10—Ir1—C1 98.0 (2) C13—C14—H14B 108.1
C2—Ir1—C1 38.2 (2) C15—C14—H14B 108.1
C10—Ir1—C9 38.9 (2) H14A—C14—H14B 107.3
C2—Ir1—C9 98.5 (2) C14—C15—C16 114.9 (6)
C1—Ir1—C9 85.4 (2) C14—C15—H15A 108.5
C10—Ir1—Cl1 93.30 (16) C16—C15—H15A 108.5
C2—Ir1—Cl1 158.83 (16) C14—C15—H15B 108.5
C1—Ir1—Cl1 161.11 (17) C16—C15—H15B 108.5
C9—Ir1—Cl1 94.08 (16) H15A—C15—H15B 107.5
C10—Ir1—Cl2 159.49 (17) C9—C16—C15 111.8 (5)
C2—Ir1—Cl2 94.51 (15) C9—C16—H16A 109.3
C1—Ir1—Cl2 95.00 (17) C15—C16—H16A 109.3
C9—Ir1—Cl2 159.14 (16) C9—C16—H16B 109.3
Cl1—Ir1—Cl2 78.84 (4) C15—C16—H16B 109.3
C26—Ir2—C18 89.9 (2) H16A—C16—H16B 107.9
C26—Ir2—C25 38.9 (2) C18—C17—C24 123.2 (5)
C18—Ir2—C25 85.5 (2) C18—C17—Ir2 69.2 (3)
C26—Ir2—C17 84.9 (2) C24—C17—Ir2 119.2 (4)
C18—Ir2—C17 38.8 (2) C18—C17—H17 115 (4)
C25—Ir2—C17 105.0 (2) C24—C17—H17 115 (4)
C26—Ir2—Cl1 99.00 (14) Ir2—C17—H17 104 (4)
C18—Ir2—Cl1 158.57 (16) C17—C18—C19 124.2 (5)
C25—Ir2—Cl1 89.26 (14) C17—C18—Ir2 71.9 (3)
C17—Ir2—Cl1 160.74 (15) C19—C18—Ir2 115.1 (4)
C26—Ir2—Cl2 159.24 (15) C17—C18—H18 118 (4)
C18—Ir2—Cl2 99.55 (15) C19—C18—H18 113 (4)
C25—Ir2—Cl2 159.37 (15) Ir2—C18—H18 106 (4)
C17—Ir2—Cl2 90.91 (15) C18—C19—C20 114.1 (5)
Cl1—Ir2—Cl2 78.70 (4) C18—C19—H19A 108.7
Ir1—Cl1—Ir2 101.77 (5) C20—C19—H19A 108.7
Ir1—Cl2—Ir2 100.69 (4) C18—C19—H19B 108.7
C2—C1—C8 124.3 (6) C20—C19—H19B 108.7
C2—C1—Ir1 70.3 (3) H19A—C19—H19B 107.6
C8—C1—Ir1 117.4 (4) C21—C20—C19 114.8 (5)
C2—C1—H1 123 (4) C21—C20—H20A 108.6
C8—C1—H1 106 (4) C19—C20—H20A 108.6
Ir1—C1—H1 111 (4) C21—C20—H20B 108.6
C1—C2—C3 122.6 (5) C19—C20—H20B 108.6
C1—C2—Ir1 71.5 (3) H20A—C20—H20B 107.5
C3—C2—Ir1 118.4 (4) C20—C21—C22 116.0 (6)
C1—C2—H2 116 (4) C20—C21—H21A 108.3
C3—C2—H2 111 (4) C22—C21—H21A 108.3
Ir1—C2—H2 111 (4) C20—C21—H21B 108.3
C2—C3—C4 110.5 (5) C22—C21—H21B 108.3
C2—C3—H3A 109.6 H21A—C21—H21B 107.4
C4—C3—H3A 109.6 C21—C22—C23 116.9 (6)
C2—C3—H3B 109.6 C21—C22—H22A 108.1
C4—C3—H3B 109.6 C23—C22—H22A 108.1
H3A—C3—H3B 108.1 C21—C22—H22B 108.1
C3—C4—C5 115.7 (5) C23—C22—H22B 108.1
C3—C4—H4A 108.4 H22A—C22—H22B 107.3
C5—C4—H4A 108.4 C22—C23—C24 115.5 (5)
C3—C4—H4B 108.4 C22—C23—H23A 108.4
C5—C4—H4B 108.4 C24—C23—H23A 108.4
H4A—C4—H4B 107.4 C22—C23—H23B 108.4
C6—C5—C4 115.6 (5) C24—C23—H23B 108.4
C6—C5—H5A 108.4 H23A—C23—H23B 107.5
C4—C5—H5A 108.4 C17—C24—C23 108.7 (5)
C6—C5—H5B 108.4 C17—C24—H24A 110.0
C4—C5—H5B 108.4 C23—C24—H24A 110.0
H5A—C5—H5B 107.4 C17—C24—H24B 110.0
C5—C6—C7 116.8 (6) C23—C24—H24B 110.0
C5—C6—H6A 108.1 H24A—C24—H24B 108.3
C7—C6—H6A 108.1 C26—C25—C32 122.2 (5)
C5—C6—H6B 108.1 C26—C25—Ir2 69.7 (3)
C7—C6—H6B 108.1 C32—C25—Ir2 120.5 (4)
H6A—C6—H6B 107.3 C26—C25—H25 116 (4)
C6—C7—C8 115.7 (6) C32—C25—H25 115 (4)
C6—C7—H7A 108.3 Ir2—C25—H25 105 (3)
C8—C7—H7A 108.3 C25—C26—C27 125.6 (5)
C6—C7—H7B 108.3 C25—C26—Ir2 71.4 (3)
C8—C7—H7B 108.3 C27—C26—Ir2 115.1 (4)
H7A—C7—H7B 107.4 C25—C26—H26 113 (4)
C1—C8—C7 112.6 (6) C27—C26—H26 116 (4)
C1—C8—H8A 109.1 Ir2—C26—H26 106 (4)
C7—C8—H8A 109.1 C26—C27—C28 114.7 (4)
C1—C8—H8B 109.1 C26—C27—H27A 108.6
C7—C8—H8B 109.1 C28—C27—H27A 108.6
H8A—C8—H8B 107.8 C26—C27—H27B 108.6
C10—C9—C16 124.5 (6) C28—C27—H27B 108.6
C10—C9—Ir1 69.6 (3) H27A—C27—H27B 107.6
C16—C9—Ir1 117.5 (4) C29—C28—C27 116.5 (5)
C10—C9—H9 113 (4) C29—C28—H28A 108.2
C16—C9—H9 113 (4) C27—C28—H28A 108.2
Ir1—C9—H9 112 (4) C29—C28—H28B 108.2
C9—C10—C11 122.4 (5) C27—C28—H28B 108.2
C9—C10—Ir1 71.6 (3) H28A—C28—H28B 107.3
C11—C10—Ir1 118.0 (4) C30—C29—C28 115.7 (5)
C9—C10—H10 113 (4) C30—C29—H29A 108.4
C11—C10—H10 114 (4) C28—C29—H29A 108.4
Ir1—C10—H10 111 (4) C30—C29—H29B 108.4
C10—C11—C12 111.0 (5) C28—C29—H29B 108.4
C10—C11—H11A 109.4 H29A—C29—H29B 107.4
C12—C11—H11A 109.4 C29—C30—C31 115.5 (5)
C10—C11—H11B 109.4 C29—C30—H30A 108.4
C12—C11—H11B 109.4 C31—C30—H30A 108.4
H11A—C11—H11B 108.0 C29—C30—H30B 108.4
C11—C12—C13 114.9 (5) C31—C30—H30B 108.4
C11—C12—H12A 108.5 H30A—C30—H30B 107.5
C13—C12—H12A 108.5 C32—C31—C30 115.5 (5)
C11—C12—H12B 108.5 C32—C31—H31A 108.4
C13—C12—H12B 108.5 C30—C31—H31A 108.4
H12A—C12—H12B 107.5 C32—C31—H31B 108.4
C14—C13—C12 116.7 (7) C30—C31—H31B 108.4
C14—C13—H13A 108.1 H31A—C31—H31B 107.5
C12—C13—H13A 108.1 C25—C32—C31 109.3 (4)
C14—C13—H13B 108.1 C25—C32—H32A 109.8
C12—C13—H13B 108.1 C31—C32—H32A 109.8
H13A—C13—H13B 107.3 C25—C32—H32B 109.8
C13—C14—C15 116.9 (8) C31—C32—H32B 109.8
C13—C14—H14A 108.1 H32A—C32—H32B 108.3
C10—Ir1—Ir2—C26 4.6 (3) C1—Ir1—C9—C16 −132.1 (5)
C2—Ir1—Ir2—C26 −122.4 (3) Cl1—Ir1—C9—C16 29.0 (5)
C1—Ir1—Ir2—C26 −174.4 (3) Cl2—Ir1—C9—C16 −40.1 (8)
C9—Ir1—Ir2—C26 56.2 (3) Ir2—Ir1—C9—C16 13.0 (6)
Cl1—Ir1—Ir2—C26 30.4 (2) C16—C9—C10—C11 2.1 (8)
Cl2—Ir1—Ir2—C26 −150.3 (2) Ir1—C9—C10—C11 112.0 (5)
C10—Ir1—Ir2—C18 −174.3 (3) C16—C9—C10—Ir1 −110.0 (5)
C2—Ir1—Ir2—C18 58.6 (3) C2—Ir1—C10—C9 −108.8 (3)
C1—Ir1—Ir2—C18 6.7 (3) C1—Ir1—C10—C9 −72.4 (4)
C9—Ir1—Ir2—C18 −122.8 (3) Cl1—Ir1—C10—C9 92.4 (3)
Cl1—Ir1—Ir2—C18 −148.6 (2) Cl2—Ir1—C10—C9 158.9 (4)
Cl2—Ir1—Ir2—C18 30.8 (2) Ir2—Ir1—C10—C9 108.4 (3)
C10—Ir1—Ir2—C25 −46.3 (3) C2—Ir1—C10—C11 133.6 (5)
C2—Ir1—Ir2—C25 −173.4 (3) C1—Ir1—C10—C11 170.0 (5)
C1—Ir1—Ir2—C25 134.7 (3) C9—Ir1—C10—C11 −117.6 (6)
C9—Ir1—Ir2—C25 5.2 (3) Cl1—Ir1—C10—C11 −25.2 (5)
Cl1—Ir1—Ir2—C25 −20.58 (19) Cl2—Ir1—C10—C11 41.3 (8)
Cl2—Ir1—Ir2—C25 158.75 (18) Ir2—Ir1—C10—C11 −9.2 (6)
C10—Ir1—Ir2—C17 133.3 (3) C9—C10—C11—C12 86.9 (7)
C2—Ir1—Ir2—C17 6.2 (3) Ir1—C10—C11—C12 172.0 (4)
C1—Ir1—Ir2—C17 −45.7 (3) C10—C11—C12—C13 −45.3 (8)
C9—Ir1—Ir2—C17 −175.2 (3) C11—C12—C13—C14 −59.2 (9)
Cl1—Ir1—Ir2—C17 159.0 (2) C12—C13—C14—C15 104.1 (9)
Cl2—Ir1—Ir2—C17 −21.6 (2) C13—C14—C15—C16 −72.8 (10)
C10—Ir1—Ir2—Cl1 −25.7 (2) C10—C9—C16—C15 −86.5 (7)
C2—Ir1—Ir2—Cl1 −152.8 (2) Ir1—C9—C16—C15 −169.6 (5)
C1—Ir1—Ir2—Cl1 155.3 (2) C14—C15—C16—C9 77.0 (9)
C9—Ir1—Ir2—Cl1 25.8 (2) C26—Ir2—C17—C18 −96.2 (3)
Cl2—Ir1—Ir2—Cl1 179.32 (8) C25—Ir2—C17—C18 −62.5 (3)
C10—Ir1—Ir2—Cl2 154.9 (2) Cl1—Ir2—C17—C18 160.9 (4)
C2—Ir1—Ir2—Cl2 27.9 (2) Cl2—Ir2—C17—C18 104.2 (3)
C1—Ir1—Ir2—Cl2 −24.0 (2) Ir1—Ir2—C17—C18 117.8 (3)
C9—Ir1—Ir2—Cl2 −153.5 (2) C26—Ir2—C17—C24 146.5 (5)
Cl1—Ir1—Ir2—Cl2 −179.32 (8) C18—Ir2—C17—C24 −117.3 (6)
C10—Ir1—Cl1—Ir2 160.45 (17) C25—Ir2—C17—C24 −179.9 (4)
C2—Ir1—Cl1—Ir2 72.9 (4) Cl1—Ir2—C17—C24 43.6 (7)
C1—Ir1—Cl1—Ir2 −72.8 (5) Cl2—Ir2—C17—C24 −13.2 (4)
C9—Ir1—Cl1—Ir2 −160.62 (17) Ir1—Ir2—C17—C24 0.5 (5)
Cl2—Ir1—Cl1—Ir2 −0.44 (5) C24—C17—C18—C19 3.6 (8)
C26—Ir2—Cl1—Ir1 −158.60 (15) Ir2—C17—C18—C19 −108.5 (5)
C18—Ir2—Cl1—Ir1 87.8 (4) C24—C17—C18—Ir2 112.0 (5)
C25—Ir2—Cl1—Ir1 163.58 (15) C26—Ir2—C18—C17 82.0 (3)
C17—Ir2—Cl1—Ir1 −58.1 (5) C25—Ir2—C18—C17 120.7 (3)
Cl2—Ir2—Cl1—Ir1 0.44 (5) Cl1—Ir2—C18—C17 −162.8 (3)
C10—Ir1—Cl2—Ir2 −68.5 (4) Cl2—Ir2—C18—C17 −79.4 (3)
C2—Ir1—Cl2—Ir2 −159.26 (16) Ir1—Ir2—C18—C17 −98.8 (3)
C1—Ir1—Cl2—Ir2 162.39 (17) C26—Ir2—C18—C19 −158.0 (4)
C9—Ir1—Cl2—Ir2 72.1 (5) C25—Ir2—C18—C19 −119.3 (4)
Cl1—Ir1—Cl2—Ir2 0.44 (5) C17—Ir2—C18—C19 120.0 (5)
C26—Ir2—Cl2—Ir1 85.2 (4) Cl1—Ir2—C18—C19 −42.8 (7)
C18—Ir2—Cl2—Ir1 −158.71 (16) Cl2—Ir2—C18—C19 40.6 (4)
C25—Ir2—Cl2—Ir1 −55.8 (4) Ir1—Ir2—C18—C19 21.3 (5)
C17—Ir2—Cl2—Ir1 163.23 (15) C17—C18—C19—C20 −83.5 (7)
Cl1—Ir2—Cl2—Ir1 −0.43 (5) Ir2—C18—C19—C20 −168.0 (4)
C10—Ir1—C1—C2 −73.1 (4) C18—C19—C20—C21 73.4 (7)
C9—Ir1—C1—C2 −110.0 (4) C19—C20—C21—C22 −72.6 (8)
Cl1—Ir1—C1—C2 160.8 (4) C20—C21—C22—C23 103.7 (7)
Cl2—Ir1—C1—C2 90.9 (3) C21—C22—C23—C24 −50.8 (8)
Ir2—Ir1—C1—C2 106.1 (3) C18—C17—C24—C23 90.5 (6)
C10—Ir1—C1—C8 167.7 (5) Ir2—C17—C24—C23 173.7 (4)
C2—Ir1—C1—C8 −119.2 (6) C22—C23—C24—C17 −54.3 (7)
C9—Ir1—C1—C8 130.8 (5) C18—Ir2—C25—C26 −95.4 (3)
Cl1—Ir1—C1—C8 41.6 (8) C17—Ir2—C25—C26 −61.5 (3)
Cl2—Ir1—C1—C8 −28.3 (5) Cl1—Ir2—C25—C26 105.4 (3)
Ir2—Ir1—C1—C8 −13.1 (6) Cl2—Ir2—C25—C26 159.2 (3)
C8—C1—C2—C3 −2.1 (9) Ir1—Ir2—C25—C26 118.2 (3)
Ir1—C1—C2—C3 −112.4 (5) C26—Ir2—C25—C32 −116.2 (5)
C8—C1—C2—Ir1 110.3 (6) C18—Ir2—C25—C32 148.3 (4)
C10—Ir1—C2—C1 108.2 (4) C17—Ir2—C25—C32 −177.7 (4)
C9—Ir1—C2—C1 71.3 (4) Cl1—Ir2—C25—C32 −10.9 (4)
Cl1—Ir1—C2—C1 −162.9 (3) Cl2—Ir2—C25—C32 43.0 (7)
Cl2—Ir1—C2—C1 −92.4 (3) Ir1—Ir2—C25—C32 1.9 (5)
Ir2—Ir1—C2—C1 −109.8 (3) C32—C25—C26—C27 5.9 (8)
C10—Ir1—C2—C3 −134.1 (5) Ir2—C25—C26—C27 −108.0 (5)
C1—Ir1—C2—C3 117.7 (6) C32—C25—C26—Ir2 114.0 (5)
C9—Ir1—C2—C3 −171.0 (4) C18—Ir2—C26—C25 83.0 (3)
Cl1—Ir1—C2—C3 −45.1 (7) C17—Ir2—C26—C25 121.5 (3)
Cl2—Ir1—C2—C3 25.4 (4) Cl1—Ir2—C26—C25 −77.5 (3)
Ir2—Ir1—C2—C3 7.9 (5) Cl2—Ir2—C26—C25 −159.3 (3)
C1—C2—C3—C4 −90.9 (7) Ir1—Ir2—C26—C25 −96.3 (3)
Ir1—C2—C3—C4 −176.1 (4) C18—Ir2—C26—C27 −155.7 (4)
C2—C3—C4—C5 49.5 (7) C25—Ir2—C26—C27 121.3 (5)
C3—C4—C5—C6 55.4 (8) C17—Ir2—C26—C27 −117.1 (4)
C4—C5—C6—C7 −102.3 (7) Cl1—Ir2—C26—C27 43.9 (4)
C5—C6—C7—C8 71.4 (9) Cl2—Ir2—C26—C27 −38.0 (7)
C2—C1—C8—C7 83.8 (8) Ir1—Ir2—C26—C27 25.1 (5)
Ir1—C1—C8—C7 167.7 (5) C25—C26—C27—C28 −82.6 (7)
C6—C7—C8—C1 −74.2 (9) Ir2—C26—C27—C28 −166.9 (4)
C2—Ir1—C9—C10 72.7 (3) C26—C27—C28—C29 69.1 (7)
C1—Ir1—C9—C10 108.7 (4) C27—C28—C29—C30 −69.2 (7)
Cl1—Ir1—C9—C10 −90.2 (3) C28—C29—C30—C31 104.2 (6)
Cl2—Ir1—C9—C10 −159.2 (4) C29—C30—C31—C32 −53.8 (7)
Ir2—Ir1—C9—C10 −106.2 (3) C26—C25—C32—C31 89.4 (6)
C10—Ir1—C9—C16 119.2 (6) Ir2—C25—C32—C31 173.4 (4)
C2—Ir1—C9—C16 −168.1 (5) C30—C31—C32—C25 −53.2 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2181).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Cotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153–157.
  3. De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569–1572.
  4. Dorta, R., Egli, P., Zücher, E. & Togni, A. (1997). J. Am. Chem. Soc.119, 10857–10858.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Herde, J. L., Lambert, J. C. & Senoff, C. V. (1974). Inorg. Synth.15, 18–20.
  7. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  8. Pettinari, C., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem.651, 5–14.
  9. Rigaku, (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  10. Rigaku/MSC, (2004). TEXSAN Rigaku/MSC, The Woodlands, Teaxs, USA.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tani, K., Onouchi, J., Yamagata, T. & Kataoka, Y. (1995). Chem. Lett. pp. 955–956.
  13. Tani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. Engl.24, 217–219.
  14. Yamagata, T., Iseki, A. & Tani, K. (1997). Chem. Lett. pp. 1255–1256.
  15. Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498.
  16. Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007216/cf2181sup1.cif

e-64-0m579-sup1.cif (35.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007216/cf2181Isup2.hkl

e-64-0m579-Isup2.hkl (351KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES