Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 12;64(Pt 4):o691. doi: 10.1107/S1600536808006065

2-Hydr­oxy-3-methoxy­benzoic acid monohydrate

Zhan-Qiang Fang a,*, Rong-Hua Zeng a, Mei Yang a, Hui Liu a, Xiao-Lei Chen a
PMCID: PMC2960960  PMID: 21202083

Abstract

The asymmetric unit of the title compound, C8H8O4·H2O, contains two organic mol­ecules which are connected by the two water mol­ecules through O—H⋯O hydrogen bonds, forming an R 4 4(12) ring. Further O—H⋯O hydrogen bonds assemble these rings through R 6 6(18) rings, giving rise to infinite helical chains arranged around the b axis. These helical chains are assembled by offset π–π stacking inter­actions [centroid–centroid distance = 3.6432 (8) Å] between the aromatic rings of neigboring chains, forming a supra­molecular network.

Related literature

For related literature, see: Kozlevcar et al. (2006); Moncol et al. (2006); Liu et al. (2007); Bernstein et al. (1995); Etter et al. (1990).graphic file with name e-64-0o691-scheme1.jpg

Experimental

Crystal data

  • C8H8O4·H2O

  • M r = 186.16

  • Monoclinic, Inline graphic

  • a = 17.9642 (4) Å

  • b = 14.5225 (3) Å

  • c = 6.8864 (2) Å

  • β = 91.770 (1)°

  • V = 1795.70 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 17337 measured reflections

  • 4111 independent reflections

  • 2658 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.110

  • S = 1.04

  • 4111 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006065/dn2309sup1.cif

e-64-0o691-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006065/dn2309Isup2.hkl

e-64-0o691-Isup2.hkl (201.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.90 2.6142 (14) 144
O4—H4A⋯O2W 0.82 1.77 2.5634 (16) 164
O5—H5A⋯O1W 0.82 1.78 2.5763 (16) 165
O7—H7⋯O6 0.82 1.88 2.5946 (14) 145
O1W—H1W⋯O3 0.85 1.96 2.8082 (16) 171
O2W—H4W⋯O6 0.85 1.97 2.8071 (16) 170
O1W—H2W⋯O1i 0.84 2.11 2.8741 (17) 150
O1W—H2W⋯O2i 0.84 2.49 3.1930 (16) 141
O2W—H3W⋯O8ii 0.84 2.13 2.8866 (19) 149
O2W—H3W⋯O7ii 0.84 2.33 3.0331 (15) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge South China Normal University for supporting this work.

supplementary crystallographic information

Comment

Hydrogen-bonding interactions between ligands are specific and directional. In this sense, 2-hydroxy-3-methoxybenzoic acid is an excellent candidate for the construction of supramolecular complexes, which have multiple coordination modes and form regular hydrogen bonds functioning as both a hydrogen-bond donor and acceptor (Kozlevcar et al., 2006, Liu et al., 2007, Moncol et al., 2006). Recently, we obtained the title compound of (I) under hydrothermal condition.

The asymmetric unit of the title compound (I) contains two molecules which are connected by the water molecules trough O—H···O hydrogen bonds building up a R44(12) ring (Etter et al., 1990; Bernstein et al., 1995) (Table 1, Fig. 1). The C—C and C—O distances ranging from 1.225 (2) to 1.425 (2) Å, show no remarkable features. These rings are further connected to each other by O—H···O hydrogen bonds buiding a R66 (18) ring to form helical chains arranged around the [0 1/2 0] axis (Table 1, Fig. 2). These helical chains are further assembled through offset π-π stacking interactions between the aromatic rings of neigboring chains (centroid to centroid distance of 3.6432 (8) Å [Symmetry code: 1 - x,1 - y,-1 - z]; interplanar distance of 3.44 Å and slippest distances of 1.20 Å) to form a supramolecular network.

Experimental

2-Hydroxy-3-methoxybenzoic acid was dissolved in hot water with stirring. Colorless single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement

H atoms on 2-hydroxy-3-methoxybenzoic acid were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å (aromatic ring) or 0.96 Å (methyl group), O—H = 0.82 Å (hydroxyl and carboxylate groups) and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.85 Å and H···H = 1.39 Å, each within a standard deviation of 0.01 Å, and with Uiso(H) = 1.5 Ueq(O). In the last stage of refinement, the H attached to water molecule were treated as riding on their parent O atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Partial packing view showing the intermolecular hydrogen bonding interactions as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (I) 1 - x, 1 - y, -z; (ii) 2 - x, 1 - y, -z]

Crystal data

C8H8O4·H2O F000 = 784
Mr = 186.16 Dx = 1.377 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3600 reflections
a = 17.9642 (4) Å θ = 1.4–28.0º
b = 14.5225 (3) Å µ = 0.12 mm1
c = 6.8864 (2) Å T = 296 (2) K
β = 91.770 (1)º Block, colorless
V = 1795.70 (8) Å3 0.30 × 0.25 × 0.20 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer 2658 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
Monochromator: graphite θmax = 27.5º
T = 296(2) K θmin = 1.1º
φ and ω scans h = −23→23
Absorption correction: none k = −18→16
17337 measured reflections l = −8→8
4111 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.110   w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2399P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4111 reflections Δρmax = 0.12 e Å3
241 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.32586 (10) 0.67219 (16) −0.6058 (3) 0.0809 (6)
H1A 0.3210 0.6377 −0.7244 0.121*
H1B 0.3391 0.7346 −0.6347 0.121*
H1C 0.2794 0.6714 −0.5406 0.121*
C2 0.45420 (8) 0.63558 (10) −0.5448 (2) 0.0460 (4)
C3 0.47543 (9) 0.66626 (11) −0.7236 (2) 0.0549 (4)
H3 0.4396 0.6869 −0.8138 0.066*
C4 0.54984 (9) 0.66664 (11) −0.7702 (2) 0.0560 (4)
H4 0.5638 0.6874 −0.8915 0.067*
C5 0.60295 (9) 0.63668 (11) −0.6385 (2) 0.0515 (4)
H5 0.6528 0.6367 −0.6711 0.062*
C6 0.58266 (8) 0.60588 (10) −0.4548 (2) 0.0428 (3)
C7 0.50804 (8) 0.60518 (10) −0.4073 (2) 0.0414 (3)
C8 0.63923 (8) 0.57528 (11) −0.3100 (2) 0.0498 (4)
C9 0.86646 (8) 0.35192 (11) 0.1597 (2) 0.0455 (4)
C10 0.92233 (7) 0.27809 (10) 0.16407 (19) 0.0399 (3)
C11 0.90153 (9) 0.18508 (10) 0.1659 (2) 0.0498 (4)
H11 0.8514 0.1691 0.1681 0.060*
C12 0.95461 (10) 0.11785 (11) 0.1646 (2) 0.0555 (4)
H12 0.9404 0.0563 0.1647 0.067*
C13 1.02955 (10) 0.14065 (12) 0.1631 (2) 0.0550 (4)
H13 1.0653 0.0943 0.1628 0.066*
C14 1.05131 (8) 0.23114 (11) 0.1620 (2) 0.0464 (4)
C15 0.99746 (8) 0.30129 (10) 0.1617 (2) 0.0400 (3)
C16 1.18105 (11) 0.19618 (16) 0.1478 (4) 0.0897 (7)
H16A 1.1824 0.1585 0.2623 0.135*
H16B 1.2279 0.2272 0.1366 0.135*
H16C 1.1720 0.1582 0.0354 0.135*
O1 0.38246 (5) 0.63195 (9) −0.48365 (16) 0.0625 (3)
O2 0.48284 (5) 0.57751 (8) −0.23382 (15) 0.0536 (3)
H2 0.5180 0.5596 −0.1648 0.080*
O3 0.62337 (6) 0.54527 (9) −0.15029 (17) 0.0642 (3)
O4 0.70797 (6) 0.58220 (11) −0.36507 (19) 0.0769 (4)
H4A 0.7365 0.5686 −0.2742 0.115*
O5 0.79730 (6) 0.32376 (8) 0.1628 (2) 0.0676 (4)
H5A 0.7694 0.3684 0.1624 0.101*
O6 0.88288 (6) 0.43402 (8) 0.15148 (17) 0.0549 (3)
O7 1.02269 (5) 0.38892 (7) 0.15833 (16) 0.0502 (3)
H7 0.9872 0.4245 0.1510 0.075*
O8 1.12298 (6) 0.26247 (8) 0.16093 (18) 0.0635 (3)
O1W 0.69046 (7) 0.44218 (10) 0.1525 (2) 0.0860 (5)
H1W 0.6738 0.4780 0.0633 0.129*
H2W 0.6557 0.4307 0.2287 0.129*
O2W 0.81581 (7) 0.55507 (10) −0.1193 (2) 0.0943 (5)
H3W 0.8486 0.5957 −0.1336 0.141*
H4W 0.8309 0.5188 −0.0299 0.141*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0531 (11) 0.1004 (17) 0.0885 (14) 0.0254 (10) −0.0105 (9) 0.0183 (12)
C2 0.0432 (8) 0.0408 (9) 0.0540 (9) 0.0038 (7) 0.0006 (7) 0.0023 (7)
C3 0.0601 (10) 0.0499 (10) 0.0543 (10) 0.0075 (8) −0.0055 (8) 0.0082 (8)
C4 0.0676 (11) 0.0505 (10) 0.0502 (9) −0.0019 (8) 0.0068 (8) 0.0091 (7)
C5 0.0490 (9) 0.0484 (10) 0.0575 (10) −0.0037 (7) 0.0098 (7) 0.0030 (7)
C6 0.0417 (8) 0.0371 (8) 0.0497 (8) −0.0026 (6) 0.0019 (6) 0.0015 (6)
C7 0.0440 (8) 0.0338 (8) 0.0464 (8) −0.0013 (6) 0.0027 (6) 0.0009 (6)
C8 0.0412 (8) 0.0511 (10) 0.0570 (10) −0.0026 (7) 0.0017 (7) 0.0022 (8)
C9 0.0425 (8) 0.0477 (10) 0.0460 (8) −0.0029 (7) −0.0014 (6) 0.0013 (7)
C10 0.0445 (8) 0.0391 (8) 0.0360 (7) −0.0014 (6) −0.0006 (6) 0.0010 (6)
C11 0.0559 (9) 0.0446 (10) 0.0486 (9) −0.0072 (7) −0.0033 (7) 0.0038 (7)
C12 0.0756 (12) 0.0376 (9) 0.0529 (9) −0.0016 (8) −0.0031 (8) 0.0041 (7)
C13 0.0683 (11) 0.0469 (10) 0.0498 (9) 0.0154 (8) 0.0030 (8) 0.0028 (7)
C14 0.0469 (8) 0.0511 (10) 0.0411 (8) 0.0069 (7) 0.0031 (6) 0.0021 (7)
C15 0.0451 (8) 0.0403 (9) 0.0346 (7) −0.0007 (6) 0.0007 (6) 0.0004 (6)
C16 0.0574 (12) 0.0963 (18) 0.1162 (18) 0.0313 (11) 0.0147 (11) 0.0095 (13)
O1 0.0400 (6) 0.0788 (9) 0.0686 (7) 0.0130 (5) −0.0003 (5) 0.0157 (6)
O2 0.0429 (6) 0.0693 (8) 0.0487 (6) 0.0036 (5) 0.0049 (5) 0.0124 (5)
O3 0.0484 (6) 0.0880 (9) 0.0562 (7) 0.0054 (6) −0.0007 (5) 0.0164 (6)
O4 0.0377 (6) 0.1133 (11) 0.0795 (9) −0.0058 (7) 0.0002 (6) 0.0279 (8)
O5 0.0390 (6) 0.0566 (8) 0.1071 (10) −0.0032 (5) −0.0005 (6) 0.0053 (7)
O6 0.0484 (6) 0.0409 (7) 0.0751 (8) 0.0013 (5) −0.0012 (5) 0.0016 (5)
O7 0.0420 (6) 0.0414 (7) 0.0670 (7) −0.0031 (5) 0.0010 (5) −0.0005 (5)
O8 0.0418 (6) 0.0673 (8) 0.0816 (8) 0.0115 (5) 0.0084 (5) 0.0044 (6)
O1W 0.0604 (8) 0.1133 (12) 0.0857 (9) 0.0343 (7) 0.0227 (7) 0.0390 (8)
O2W 0.0522 (7) 0.0961 (11) 0.1329 (13) −0.0188 (7) −0.0272 (8) 0.0534 (9)

Geometric parameters (Å, °)

C1—O1 1.4247 (19) C10—C11 1.402 (2)
C1—H1A 0.9600 C11—C12 1.365 (2)
C1—H1B 0.9600 C11—H11 0.9300
C1—H1C 0.9600 C12—C13 1.387 (2)
C2—O1 1.3692 (17) C12—H12 0.9300
C2—C3 1.374 (2) C13—C14 1.371 (2)
C2—C7 1.4036 (19) C13—H13 0.9300
C3—C4 1.384 (2) C14—O8 1.3657 (18)
C3—H3 0.9300 C14—C15 1.405 (2)
C4—C5 1.367 (2) C15—O7 1.3514 (17)
C4—H4 0.9300 C16—O8 1.425 (2)
C5—C6 1.401 (2) C16—H16A 0.9600
C5—H5 0.9300 C16—H16B 0.9600
C6—C7 1.3895 (19) C16—H16C 0.9600
C6—C8 1.470 (2) O2—H2 0.8200
C7—O2 1.3520 (17) O4—H4A 0.8200
C8—O3 1.2250 (19) O5—H5A 0.8200
C8—O4 1.3067 (18) O7—H7 0.8200
C9—O6 1.2299 (18) O1W—H1W 0.8516
C9—O5 1.3088 (17) O1W—H2W 0.8440
C9—C10 1.468 (2) O2W—H3W 0.8422
C10—C15 1.3916 (19) O2W—H4W 0.8477
O1—C1—H1A 109.5 C15—C10—C9 119.05 (13)
O1—C1—H1B 109.5 C11—C10—C9 121.44 (13)
H1A—C1—H1B 109.5 C12—C11—C10 120.19 (15)
O1—C1—H1C 109.5 C12—C11—H11 119.9
H1A—C1—H1C 109.5 C10—C11—H11 119.9
H1B—C1—H1C 109.5 C11—C12—C13 120.51 (15)
O1—C2—C3 125.31 (13) C11—C12—H12 119.7
O1—C2—C7 114.58 (13) C13—C12—H12 119.7
C3—C2—C7 120.11 (14) C14—C13—C12 120.39 (15)
C2—C3—C4 120.36 (14) C14—C13—H13 119.8
C2—C3—H3 119.8 C12—C13—H13 119.8
C4—C3—H3 119.8 O8—C14—C13 126.03 (14)
C5—C4—C3 120.29 (15) O8—C14—C15 114.06 (14)
C5—C4—H4 119.9 C13—C14—C15 119.91 (14)
C3—C4—H4 119.9 O7—C15—C10 123.65 (13)
C4—C5—C6 120.33 (15) O7—C15—C14 116.84 (13)
C4—C5—H5 119.8 C10—C15—C14 119.50 (13)
C6—C5—H5 119.8 O8—C16—H16A 109.5
C7—C6—C5 119.62 (13) O8—C16—H16B 109.5
C7—C6—C8 119.36 (13) H16A—C16—H16B 109.5
C5—C6—C8 121.01 (13) O8—C16—H16C 109.5
O2—C7—C6 124.17 (12) H16A—C16—H16C 109.5
O2—C7—C2 116.55 (13) H16B—C16—H16C 109.5
C6—C7—C2 119.27 (14) C2—O1—C1 117.63 (13)
O3—C8—O4 122.41 (14) C7—O2—H2 109.5
O3—C8—C6 122.77 (14) C8—O4—H4A 109.5
O4—C8—C6 114.82 (14) C9—O5—H5A 109.5
O6—C9—O5 122.19 (14) C15—O7—H7 109.5
O6—C9—C10 122.96 (13) C14—O8—C16 117.88 (15)
O5—C9—C10 114.85 (14) H1W—O1W—H2W 108.6
C15—C10—C11 119.49 (13) H3W—O2W—H4W 108.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O3 0.82 1.90 2.6142 (14) 144
O4—H4A···O2W 0.82 1.77 2.5634 (16) 164
O5—H5A···O1W 0.82 1.78 2.5763 (16) 165
O7—H7···O6 0.82 1.88 2.5946 (14) 145
O1W—H1W···O3 0.85 1.96 2.8082 (16) 171
O2W—H4W···O6 0.85 1.97 2.8071 (16) 170
O1W—H2W···O1i 0.84 2.11 2.8741 (17) 150
O1W—H2W···O2i 0.84 2.49 3.1930 (16) 141
O2W—H3W···O8ii 0.84 2.13 2.8866 (19) 149
O2W—H3W···O7ii 0.84 2.33 3.0331 (15) 141

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2309).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2004). APEX2 and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Kozlevcar, B., Odlazek, D., Golobic, A., Pevec, A., Strauch, P. & Segedin, P. (2006). Polyhedron, 25, 1161–1166.
  7. Liu, Z.-H., Qiu, Y.-C., Li, Y.-H., Zeng, R.-H. & Deng, H. (2007). Acta Cryst. E63, o2616–o2617.
  8. Moncol, J., Púčeková, Z., Lis, T. & Valigura, D. (2006). Acta Cryst. E62, m448–m450. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006065/dn2309sup1.cif

e-64-0o691-sup1.cif (17.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006065/dn2309Isup2.hkl

e-64-0o691-Isup2.hkl (201.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES