Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):o711. doi: 10.1107/S1600536808006648

4,6-Bis(diphenyl­phosphino)phenoxazine (nixantphos)

Thashree Marimuthu a, Muhammad D Bala a,*, Holger B Friedrich a
PMCID: PMC2960967  PMID: 21202102

Abstract

The title compound, C36H27NOP2, has been reported as a ligand on rhodium for the catalysis of hydro­formyl­ation reactions. The key feature of the compound is the intra­molecular P⋯P distance of 4.255 (2) Å. The bond angles at the P atoms range from 99.93 (10) to 103.02 (10)°. The phenoxazine ring system is essentially planar and a non-crystallographic mirror plane through the N⋯O vector bis­ects the mol­ecule. The C—O bond lengths range from 1.388 (2) to 1.392 (2) Å and the C—N bond lengths range from 1.398 (3) to 1.403 (3) Å.

Related literature

For related literature, see: Antonio et al. (1989); Claver & van Leeuwen (2000); Deprele & Montchamp (2004); van Leeuwen et al. (2002); Osiński et al. (2005); Petrassi et al. (2000); Ricken et al. (2006a ,b ,c ); Sandee et al. (1999, 2001); Tolman (1977); van der Veen et al. (2000).graphic file with name e-64-0o711-scheme1.jpg

Experimental

Crystal data

  • C36H27NOP2

  • M r = 551.53

  • Triclinic, Inline graphic

  • a = 10.4233 (3) Å

  • b = 10.9113 (3) Å

  • c = 12.9940 (4) Å

  • α = 104.055 (2)°

  • β = 102.555 (2)°

  • γ = 97.459 (2)°

  • V = 1373.04 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 (2) K

  • 0.40 × 0.18 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 15968 measured reflections

  • 5396 independent reflections

  • 3646 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.105

  • S = 0.95

  • 5396 reflections

  • 365 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006648/dn2322sup1.cif

e-64-0o711-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006648/dn2322Isup2.hkl

e-64-0o711-Isup2.hkl (258.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

supplementary crystallographic information

Comment

The titled compound, (1) (Fig. 1), is a xanthene based diphenylphosphine ligand. The synthesis of the ligand has been reported in literature (van der Veen et al., 2000; Petrassi et al., 2000; Antonio et al., 1989), in addition it is commercially available and has been used extensively in synthesis and as a precursor for the synthesis of substituted bis(diphenylphoshino)phenoxazine ligands (Osiński et al., 2005; Ricken et al., 2006a,b). However, this is the first time that the crystal structure is being reported. This ligand and similar xantphos based ligands have been used on Rh as catalysts for the regioselective hydroformylation of 1-octene to octanal (Claver & van Leeuwen, 2000; van der Veen et al., 2000). Moreover, (1) has been successfully immobilized on silica (Sandee et al., 2001, 1999; van Leeuwen et al., 2002), polystyrene (Deprele & Montchamp, 2004), and dendritic supports (Ricken et al., 2006a).

The title compound (1) was prepared following literature procedures (Antonio et al., 1989; Petrassi et al., 2000) as part of our ongoing investigation of scorpionate-type ligands by the alkylation of the amine. The structural elucidation of this compound allows for the determination of important ligand factors such as the cone angle (Tolman, 1977), and the flexibility range of the natural bite angle (van der Veen et al., 2000). It is also useful for studies of the coordination chemistry and catalytic applications of xantphos-type ligands. For example, the intramolecular P···P distance of 4.255 Å for (1) is similar to values reported for nixantphos-type ligands functionalized at the nitrogen (Osiński, et al., 2005; Ricken et al., 2006a,c) indicating that a functionality at N has little influence on the bite angle of the ligand.

Experimental

The compound was synthesized via a three step procedure adapted from literature (Antonio et al., 1989; Petrassi et al., 2000; van der Veen et al., 2000). Yield: 70% of yellow crystals of (1), m.p. 457–459 K. Spectroscopic analysis: 1H NMR (600 MHz, CDCl3, δ, p.p.m): 5.16 (s, 1H; NH), 5.97 (d, 2H; J(H,H) = 6.4 Hz,), 6.34 (bd, 2H;J(H,H) = 7.3 Hz,), 6.58 (t, 2H J(H,H) = 7.7 Hz), 7.17–7.23 (bs, 20H). 13C NMR (600 MHz, CDCl3, δ, p.p.m): 113.7(CH), 123.7(CH), 125.8(CH), 128.1(CH), 128.2(CH), 128.3(C), 128.3 (C), 131.3(bs,CN), 133.9(CH), 134.0(C), 136.7 (C). 31P NMR (600 MHz, CDCl3, δ, p.p.m): -19.0 MS m/z (%): 552.1633 (M + H) calculated = 552.1648 for C36H27NOP2 Elemental Analysis: C, 78.01; H, 4.95; N, 2.47. Found: C, 77.61; H, 4.91; N,2.41. FTIR: cm-1 = 3408(w), (NH), 1565(s), 1452(s), 1398(s), 1286, CN,1256(m), 1206(m), 1090(m), 766(m), 739(m), (NH), 723(m), 690(s).

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atom attached to nitrogen was freely refined.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title complex with the atom labelling scheme. Ellipsoids are drawn at the 50% probability level.

Crystal data

C36H27NOP2 Z = 2
Mr = 551.53 F000 = 576
Triclinic, P1 Dx = 1.334 Mg m3
Hall symbol: -P 1 Melting point: 457(2) K
a = 10.4233 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 10.9113 (3) Å Cell parameters from 3152 reflections
c = 12.9940 (4) Å θ = 2.2–25.5º
α = 104.055 (2)º µ = 0.19 mm1
β = 102.555 (2)º T = 173 (2) K
γ = 97.459 (2)º Triangular, yellow
V = 1373.04 (7) Å3 0.40 × 0.18 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.055
Monochromator: graphite θmax = 26.0º
T = 173(2) K θmin = 1.7º
φ and ω scans h = −10→12
Absorption correction: none k = −13→13
15968 measured reflections l = −16→16
5396 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.048P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95 (Δ/σ)max = 0.001
5396 reflections Δρmax = 0.38 e Å3
365 parameters Δρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0632 (2) 0.3597 (2) 0.56267 (18) 0.0339 (5)
C2 0.1275 (2) 0.4755 (2) 0.63818 (19) 0.0391 (6)
H2 0.1111 0.4968 0.7089 0.047*
C3 0.2159 (2) 0.5608 (2) 0.61113 (19) 0.0401 (6)
H3 0.2593 0.6407 0.6633 0.048*
C4 0.2414 (2) 0.5308 (2) 0.50922 (19) 0.0347 (5)
H4 0.3029 0.5900 0.4921 0.042*
C5 0.1780 (2) 0.41454 (19) 0.43100 (17) 0.0288 (5)
C6 0.0885 (2) 0.33272 (19) 0.45990 (18) 0.0300 (5)
C7 −0.0601 (2) 0.1287 (2) 0.40544 (18) 0.0307 (5)
C8 −0.1125 (2) 0.0139 (2) 0.32431 (18) 0.0311 (5)
C9 −0.1946 (2) −0.0809 (2) 0.34914 (19) 0.0350 (5)
H9 −0.2323 −0.1612 0.2954 0.042*
C10 −0.2214 (2) −0.0594 (2) 0.4502 (2) 0.0393 (6)
H10 −0.2765 −0.1250 0.4660 0.047*
C11 −0.1690 (2) 0.0565 (2) 0.5287 (2) 0.0395 (6)
H11 −0.1897 0.0709 0.5978 0.047*
C12 −0.0863 (2) 0.1525 (2) 0.50796 (19) 0.0341 (5)
C21 0.3147 (2) 0.50031 (19) 0.28652 (17) 0.0283 (5)
C22 0.2595 (2) 0.6054 (2) 0.2703 (2) 0.0390 (6)
H22 0.1680 0.6049 0.2692 0.047*
C23 0.3343 (2) 0.7100 (2) 0.2558 (2) 0.0415 (6)
H23 0.2950 0.7818 0.2470 0.050*
C24 0.4657 (2) 0.7113 (2) 0.25396 (19) 0.0400 (6)
H24 0.5171 0.7829 0.2424 0.048*
C25 0.5217 (2) 0.6081 (2) 0.2690 (2) 0.0423 (6)
H25 0.6126 0.6084 0.2679 0.051*
C26 0.4479 (2) 0.5037 (2) 0.28585 (19) 0.0351 (5)
H26 0.4888 0.4335 0.2971 0.042*
C31 0.3144 (2) 0.24846 (18) 0.31367 (17) 0.0280 (5)
C32 0.4063 (2) 0.26320 (19) 0.41242 (18) 0.0329 (5)
H32 0.4126 0.3345 0.4734 0.040*
C33 0.4891 (2) 0.1757 (2) 0.4233 (2) 0.0401 (6)
H33 0.5516 0.1867 0.4916 0.048*
C34 0.4812 (2) 0.0733 (2) 0.3362 (2) 0.0450 (6)
H34 0.5383 0.0131 0.3440 0.054*
C35 0.3916 (3) 0.0568 (2) 0.2377 (2) 0.0479 (7)
H35 0.3872 −0.0142 0.1770 0.057*
C36 0.3075 (2) 0.1434 (2) 0.2262 (2) 0.0385 (6)
H36 0.2445 0.1309 0.1579 0.046*
C41 −0.1440 (2) −0.1688 (2) 0.12171 (18) 0.0346 (5)
C42 −0.0664 (3) −0.2619 (2) 0.1300 (2) 0.0457 (6)
H42 0.0234 −0.2367 0.1738 0.055*
C43 −0.1170 (3) −0.3900 (2) 0.0759 (2) 0.0570 (8)
H43 −0.0627 −0.4525 0.0831 0.068*
C44 −0.2466 (3) −0.4270 (2) 0.0113 (2) 0.0568 (8)
H44 −0.2820 −0.5152 −0.0263 0.068*
C45 −0.3243 (3) −0.3372 (2) 0.0015 (2) 0.0567 (7)
H45 −0.4137 −0.3629 −0.0432 0.068*
C46 −0.2737 (2) −0.2084 (2) 0.0563 (2) 0.0465 (6)
H46 −0.3288 −0.1467 0.0488 0.056*
C51 −0.1711 (2) 0.09115 (19) 0.13194 (18) 0.0325 (5)
C52 −0.1280 (2) 0.1525 (2) 0.0605 (2) 0.0459 (6)
H52 −0.0439 0.1441 0.0455 0.055*
C53 −0.2058 (3) 0.2257 (3) 0.0107 (2) 0.0557 (7)
H53 −0.1746 0.2680 −0.0375 0.067*
C54 −0.3276 (3) 0.2372 (2) 0.0307 (2) 0.0525 (7)
H54 −0.3819 0.2858 −0.0052 0.063*
C55 −0.3718 (3) 0.1792 (2) 0.1020 (2) 0.0453 (6)
H55 −0.4559 0.1887 0.1166 0.054*
C56 −0.2939 (2) 0.1070 (2) 0.15255 (19) 0.0386 (6)
H56 −0.3249 0.0674 0.2025 0.046*
N1 −0.0284 (2) 0.27159 (19) 0.58580 (18) 0.0414 (5)
H1 −0.018 (3) 0.277 (3) 0.655 (2) 0.079 (11)*
O1 0.02287 (15) 0.21948 (13) 0.37894 (12) 0.0384 (4)
P1 0.20112 (5) 0.36083 (5) 0.29234 (5) 0.03016 (16)
P2 −0.06220 (6) −0.00273 (5) 0.19630 (5) 0.03407 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0333 (13) 0.0373 (13) 0.0362 (14) 0.0149 (10) 0.0118 (11) 0.0126 (10)
C2 0.0404 (14) 0.0482 (14) 0.0305 (14) 0.0187 (11) 0.0101 (11) 0.0078 (11)
C3 0.0358 (13) 0.0364 (13) 0.0387 (15) 0.0118 (11) 0.0014 (11) −0.0018 (11)
C4 0.0260 (12) 0.0330 (12) 0.0406 (14) 0.0056 (9) 0.0035 (10) 0.0066 (10)
C5 0.0252 (11) 0.0298 (11) 0.0323 (13) 0.0114 (9) 0.0042 (10) 0.0100 (9)
C6 0.0275 (11) 0.0285 (11) 0.0325 (13) 0.0092 (9) 0.0058 (10) 0.0057 (9)
C7 0.0253 (11) 0.0354 (12) 0.0376 (14) 0.0088 (9) 0.0108 (10) 0.0177 (10)
C8 0.0231 (11) 0.0348 (12) 0.0363 (13) 0.0068 (9) 0.0041 (10) 0.0142 (10)
C9 0.0246 (12) 0.0394 (13) 0.0404 (14) 0.0024 (9) 0.0038 (10) 0.0161 (10)
C10 0.0285 (12) 0.0452 (14) 0.0503 (16) 0.0036 (10) 0.0099 (11) 0.0267 (12)
C11 0.0325 (13) 0.0562 (16) 0.0419 (15) 0.0157 (11) 0.0179 (11) 0.0251 (12)
C12 0.0312 (12) 0.0396 (13) 0.0378 (14) 0.0139 (10) 0.0113 (11) 0.0167 (11)
C21 0.0295 (12) 0.0278 (11) 0.0261 (12) 0.0030 (9) 0.0050 (9) 0.0077 (9)
C22 0.0348 (13) 0.0386 (13) 0.0498 (16) 0.0118 (10) 0.0137 (11) 0.0188 (11)
C23 0.0503 (15) 0.0314 (13) 0.0462 (15) 0.0139 (11) 0.0113 (12) 0.0151 (11)
C24 0.0403 (14) 0.0307 (12) 0.0446 (15) −0.0036 (10) 0.0051 (11) 0.0130 (11)
C25 0.0273 (12) 0.0406 (14) 0.0569 (17) 0.0009 (10) 0.0057 (11) 0.0174 (12)
C26 0.0293 (12) 0.0290 (12) 0.0462 (15) 0.0044 (9) 0.0051 (11) 0.0141 (10)
C31 0.0272 (11) 0.0237 (11) 0.0336 (13) 0.0002 (8) 0.0110 (10) 0.0085 (9)
C32 0.0359 (13) 0.0277 (11) 0.0355 (14) 0.0068 (9) 0.0093 (11) 0.0091 (9)
C33 0.0360 (13) 0.0389 (13) 0.0486 (16) 0.0067 (10) 0.0092 (12) 0.0201 (12)
C34 0.0409 (14) 0.0321 (13) 0.0689 (19) 0.0132 (11) 0.0205 (14) 0.0182 (12)
C35 0.0511 (16) 0.0307 (13) 0.0604 (19) 0.0103 (11) 0.0233 (14) 0.0007 (12)
C36 0.0361 (13) 0.0352 (13) 0.0388 (14) 0.0006 (10) 0.0091 (11) 0.0040 (10)
C41 0.0373 (13) 0.0336 (12) 0.0352 (14) 0.0092 (10) 0.0109 (11) 0.0112 (10)
C42 0.0488 (15) 0.0455 (15) 0.0458 (16) 0.0169 (12) 0.0128 (13) 0.0140 (12)
C43 0.080 (2) 0.0410 (16) 0.0562 (19) 0.0263 (14) 0.0215 (16) 0.0142 (13)
C44 0.088 (2) 0.0299 (14) 0.0496 (18) 0.0051 (14) 0.0203 (16) 0.0068 (12)
C45 0.0572 (17) 0.0420 (15) 0.0559 (18) 0.0010 (13) 0.0041 (14) 0.0000 (13)
C46 0.0469 (15) 0.0356 (14) 0.0483 (16) 0.0065 (11) 0.0024 (13) 0.0055 (11)
C51 0.0355 (13) 0.0271 (11) 0.0303 (13) −0.0020 (9) 0.0055 (10) 0.0062 (9)
C52 0.0444 (15) 0.0511 (15) 0.0436 (16) 0.0021 (12) 0.0138 (12) 0.0174 (12)
C53 0.0628 (19) 0.0604 (18) 0.0529 (18) 0.0077 (14) 0.0145 (15) 0.0351 (14)
C54 0.0589 (18) 0.0488 (16) 0.0542 (18) 0.0128 (13) 0.0074 (14) 0.0275 (13)
C55 0.0464 (15) 0.0447 (14) 0.0494 (17) 0.0136 (12) 0.0121 (13) 0.0192 (12)
C56 0.0408 (14) 0.0406 (13) 0.0399 (14) 0.0094 (11) 0.0126 (11) 0.0189 (11)
N1 0.0534 (13) 0.0434 (12) 0.0354 (13) 0.0145 (10) 0.0226 (11) 0.0132 (10)
O1 0.0460 (10) 0.0326 (8) 0.0359 (9) −0.0022 (7) 0.0180 (8) 0.0069 (7)
P1 0.0261 (3) 0.0298 (3) 0.0338 (3) 0.0032 (2) 0.0063 (3) 0.0100 (2)
P2 0.0288 (3) 0.0356 (3) 0.0365 (4) 0.0035 (2) 0.0078 (3) 0.0096 (3)

Geometric parameters (Å, °)

C1—C2 1.379 (3) C31—C36 1.386 (3)
C1—C6 1.386 (3) C31—P1 1.836 (2)
C1—N1 1.398 (3) C32—C33 1.379 (3)
C2—C3 1.384 (3) C32—H32 0.9500
C2—H2 0.9500 C33—C34 1.363 (3)
C3—C4 1.377 (3) C33—H33 0.9500
C3—H3 0.9500 C34—C35 1.366 (3)
C4—C5 1.394 (3) C34—H34 0.9500
C4—H4 0.9500 C35—C36 1.383 (3)
C5—C6 1.381 (3) C35—H35 0.9500
C5—P1 1.833 (2) C36—H36 0.9500
C6—O1 1.392 (2) C41—C46 1.381 (3)
C7—C8 1.382 (3) C41—C42 1.387 (3)
C7—O1 1.386 (2) C41—P2 1.826 (2)
C7—C12 1.387 (3) C42—C43 1.377 (3)
C8—C9 1.400 (3) C42—H42 0.9500
C8—P2 1.825 (2) C43—C44 1.376 (4)
C9—C10 1.372 (3) C43—H43 0.9500
C9—H9 0.9500 C44—C45 1.362 (3)
C10—C11 1.374 (3) C44—H44 0.9500
C10—H10 0.9500 C45—C46 1.384 (3)
C11—C12 1.384 (3) C45—H45 0.9500
C11—H11 0.9500 C46—H46 0.9500
C12—N1 1.403 (3) C51—C52 1.384 (3)
C21—C26 1.385 (3) C51—C56 1.388 (3)
C21—C22 1.388 (3) C51—P2 1.828 (2)
C21—P1 1.831 (2) C52—C53 1.380 (3)
C22—C23 1.372 (3) C52—H52 0.9500
C22—H22 0.9500 C53—C54 1.365 (3)
C23—C24 1.374 (3) C53—H53 0.9500
C23—H23 0.9500 C54—C55 1.366 (3)
C24—C25 1.369 (3) C54—H54 0.9500
C24—H24 0.9500 C55—C56 1.377 (3)
C25—C26 1.380 (3) C55—H55 0.9500
C25—H25 0.9500 C56—H56 0.9500
C26—H26 0.9500 N1—H1 0.86 (3)
C31—C32 1.384 (3)
C2—C1—C6 118.3 (2) C31—C32—H32 119.6
C2—C1—N1 122.0 (2) C34—C33—C32 120.0 (2)
C6—C1—N1 119.7 (2) C34—C33—H33 120.0
C1—C2—C3 120.1 (2) C32—C33—H33 120.0
C1—C2—H2 119.9 C33—C34—C35 120.3 (2)
C3—C2—H2 119.9 C33—C34—H34 119.8
C4—C3—C2 120.6 (2) C35—C34—H34 119.8
C4—C3—H3 119.7 C34—C35—C36 120.1 (2)
C2—C3—H3 119.7 C34—C35—H35 120.0
C3—C4—C5 120.7 (2) C36—C35—H35 120.0
C3—C4—H4 119.7 C35—C36—C31 120.5 (2)
C5—C4—H4 119.7 C35—C36—H36 119.8
C6—C5—C4 117.2 (2) C31—C36—H36 119.8
C6—C5—P1 116.86 (15) C46—C41—C42 117.8 (2)
C4—C5—P1 125.91 (18) C46—C41—P2 125.83 (17)
C5—C6—C1 123.1 (2) C42—C41—P2 116.31 (18)
C5—C6—O1 116.04 (19) C43—C42—C41 121.4 (2)
C1—C6—O1 120.89 (19) C43—C42—H42 119.3
C8—C7—O1 115.78 (19) C41—C42—H42 119.3
C8—C7—C12 122.8 (2) C44—C43—C42 119.7 (2)
O1—C7—C12 121.38 (19) C44—C43—H43 120.2
C7—C8—C9 117.3 (2) C42—C43—H43 120.2
C7—C8—P2 116.80 (16) C45—C44—C43 120.0 (2)
C9—C8—P2 125.87 (17) C45—C44—H44 120.0
C10—C9—C8 120.8 (2) C43—C44—H44 120.0
C10—C9—H9 119.6 C44—C45—C46 120.4 (3)
C8—C9—H9 119.6 C44—C45—H45 119.8
C9—C10—C11 120.5 (2) C46—C45—H45 119.8
C9—C10—H10 119.7 C41—C46—C45 120.8 (2)
C11—C10—H10 119.7 C41—C46—H46 119.6
C10—C11—C12 120.6 (2) C45—C46—H46 119.6
C10—C11—H11 119.7 C52—C51—C56 117.8 (2)
C12—C11—H11 119.7 C52—C51—P2 118.61 (18)
C11—C12—C7 118.0 (2) C56—C51—P2 123.61 (18)
C11—C12—N1 122.9 (2) C53—C52—C51 120.9 (2)
C7—C12—N1 119.1 (2) C53—C52—H52 119.6
C26—C21—C22 117.61 (19) C51—C52—H52 119.6
C26—C21—P1 124.86 (16) C54—C53—C52 120.0 (2)
C22—C21—P1 117.19 (16) C54—C53—H53 120.0
C23—C22—C21 121.4 (2) C52—C53—H53 120.0
C23—C22—H22 119.3 C53—C54—C55 120.4 (2)
C21—C22—H22 119.3 C53—C54—H54 119.8
C22—C23—C24 120.3 (2) C55—C54—H54 119.8
C22—C23—H23 119.8 C54—C55—C56 119.7 (2)
C24—C23—H23 119.8 C54—C55—H55 120.1
C25—C24—C23 119.1 (2) C56—C55—H55 120.1
C25—C24—H24 120.4 C55—C56—C51 121.2 (2)
C23—C24—H24 120.4 C55—C56—H56 119.4
C24—C25—C26 120.8 (2) C51—C56—H56 119.4
C24—C25—H25 119.6 C1—N1—C12 119.7 (2)
C26—C25—H25 119.6 C1—N1—H1 115 (2)
C25—C26—C21 120.7 (2) C12—N1—H1 119.0 (19)
C25—C26—H26 119.7 C7—O1—C6 118.82 (17)
C21—C26—H26 119.7 C21—P1—C5 101.96 (10)
C32—C31—C36 118.29 (19) C21—P1—C31 102.20 (9)
C32—C31—P1 123.48 (15) C5—P1—C31 99.98 (9)
C36—C31—P1 118.23 (17) C8—P2—C41 100.81 (10)
C33—C32—C31 120.8 (2) C8—P2—C51 99.93 (10)
C33—C32—H32 119.6 C41—P2—C51 103.02 (10)
C6—C1—C2—C3 −0.8 (3) C41—C42—C43—C44 0.6 (4)
N1—C1—C2—C3 −178.9 (2) C42—C43—C44—C45 −0.2 (4)
C1—C2—C3—C4 −0.5 (3) C43—C44—C45—C46 −0.1 (4)
C2—C3—C4—C5 0.5 (3) C42—C41—C46—C45 0.4 (4)
C3—C4—C5—C6 0.7 (3) P2—C41—C46—C45 178.5 (2)
C3—C4—C5—P1 179.98 (16) C44—C45—C46—C41 0.0 (4)
C4—C5—C6—C1 −2.0 (3) C56—C51—C52—C53 −0.7 (3)
P1—C5—C6—C1 178.60 (16) P2—C51—C52—C53 −179.29 (19)
C4—C5—C6—O1 177.72 (17) C51—C52—C53—C54 −0.7 (4)
P1—C5—C6—O1 −1.7 (2) C52—C53—C54—C55 1.6 (4)
C2—C1—C6—C5 2.1 (3) C53—C54—C55—C56 −1.0 (4)
N1—C1—C6—C5 −179.71 (19) C54—C55—C56—C51 −0.4 (4)
C2—C1—C6—O1 −177.62 (18) C52—C51—C56—C55 1.3 (3)
N1—C1—C6—O1 0.6 (3) P2—C51—C56—C55 179.79 (18)
O1—C7—C8—C9 178.75 (17) C2—C1—N1—C12 −177.0 (2)
C12—C7—C8—C9 −0.3 (3) C6—C1—N1—C12 4.9 (3)
O1—C7—C8—P2 1.3 (2) C11—C12—N1—C1 174.5 (2)
C12—C7—C8—P2 −177.74 (16) C7—C12—N1—C1 −5.5 (3)
C7—C8—C9—C10 0.1 (3) C8—C7—O1—C6 −174.40 (17)
P2—C8—C9—C10 177.27 (16) C12—C7—O1—C6 4.7 (3)
C8—C9—C10—C11 0.7 (3) C5—C6—O1—C7 174.95 (17)
C9—C10—C11—C12 −1.3 (3) C1—C6—O1—C7 −5.3 (3)
C10—C11—C12—C7 1.0 (3) C26—C21—P1—C5 109.83 (19)
C10—C11—C12—N1 −178.9 (2) C22—C21—P1—C5 −77.11 (18)
C8—C7—C12—C11 −0.2 (3) C26—C21—P1—C31 6.7 (2)
O1—C7—C12—C11 −179.27 (18) C22—C21—P1—C31 179.77 (17)
C8—C7—C12—N1 179.68 (19) C6—C5—P1—C21 175.90 (15)
O1—C7—C12—N1 0.7 (3) C4—C5—P1—C21 −3.4 (2)
C26—C21—C22—C23 −1.0 (3) C6—C5—P1—C31 −79.23 (17)
P1—C21—C22—C23 −174.60 (19) C4—C5—P1—C31 101.45 (18)
C21—C22—C23—C24 1.9 (4) C32—C31—P1—C21 73.74 (19)
C22—C23—C24—C25 −1.3 (4) C36—C31—P1—C21 −106.18 (18)
C23—C24—C25—C26 0.0 (4) C32—C31—P1—C5 −30.94 (19)
C24—C25—C26—C21 0.8 (4) C36—C31—P1—C5 149.14 (17)
C22—C21—C26—C25 −0.3 (3) C7—C8—P2—C41 176.03 (16)
P1—C21—C26—C25 172.73 (18) C9—C8—P2—C41 −1.1 (2)
C36—C31—C32—C33 0.1 (3) C7—C8—P2—C51 −78.53 (17)
P1—C31—C32—C33 −179.82 (17) C9—C8—P2—C51 104.31 (19)
C31—C32—C33—C34 0.2 (3) C46—C41—P2—C8 87.2 (2)
C32—C33—C34—C35 0.1 (4) C42—C41—P2—C8 −94.69 (19)
C33—C34—C35—C36 −0.6 (4) C46—C41—P2—C51 −15.8 (2)
C34—C35—C36—C31 0.9 (4) C42—C41—P2—C51 162.34 (18)
C32—C31—C36—C35 −0.7 (3) C52—C51—P2—C8 151.05 (18)
P1—C31—C36—C35 179.27 (18) C56—C51—P2—C8 −27.4 (2)
C46—C41—C42—C43 −0.7 (4) C52—C51—P2—C41 −105.31 (19)
P2—C41—C42—C43 −179.0 (2) C56—C51—P2—C41 76.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2322).

References

  1. Antonio, Y., Barrera, P., Contreas, O., Verlarde, E. & Muchowski, J. M. (1989). J. Am. Chem. Soc.54, 2159–2165.
  2. Bruker (2005). APEX2 and SAINT-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Claver, C. & van Leeuwen, P. W. N. M. (2000). Rhodium Catalyzed Hydroformylation Dordrecht: Kluwer Academic Publishers.
  4. Deprele, S. & Montchamp, J.-L. (2004). Org. Lett.6, 3805–3808. [DOI] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Leeuwen, P. W. N. M. van, Sandee, A. J., Reek, J. N. H. & Kamer, P. C. J. (2002). J. Mol. Catal. A, 182–183, 107–123.
  7. Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115–o3116.
  8. Petrassi, H. M., Klabunde, T., Sacchettini, J. & Kelly, J. W. (2000). J. Am. Chem. Soc.122, 2178–2192.
  9. Ricken, S., Osiński, P. W., Eilbracht, P. & Haag, R. (2006a). J. Mol. Catal. A.257, 78–88.
  10. Ricken, S., Osinski, P. W., Schürmann, M., Preut, H. & Eilbracht, P. (2006b). Acta Cryst. E62, o1807–o1808.
  11. Ricken, S., Schürmann, M., Preut, H. & Eilbracht, P. (2006c). Acta Cryst. E62, o2637–o2638.
  12. Sandee, A. J., Reek, J. N. H., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (2001). J. Am. Chem. Soc.123, 8468–8476. [DOI] [PubMed]
  13. Sandee, A. J., van der Veen, L. A., Reek, J. N. H., Kamer, P. C. J., Lutz, M., Spek, A. L. & van Leeuwen, P. W. N. M. (1999). Angew. Chem. Int. Ed.38, 3231–3235. [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  16. Tolman, C. A. (1977). Chem. Rev.77, 313–348.
  17. Veen, L. A. van der, Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872–883.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006648/dn2322sup1.cif

e-64-0o711-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006648/dn2322Isup2.hkl

e-64-0o711-Isup2.hkl (258.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES