Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):m577. doi: 10.1107/S1600536808007174

Iodidotris(triphenyl­phosphine)copper(I) acetonitrile solvate

Ramaiyer Venkatraman a, Frank R Fronczek b,*
PMCID: PMC2960968  PMID: 21202027

Abstract

The title compound, [CuI(C18H15P)3]·C2H3N, was obtained from the reaction of triphenyl­phosphine and copper(I) iodide in acetonitrile. The monomeric form of the complex has slightly distorted coordination of Cu by the I atom and three P atoms. The crystal structure is stabilized by C—H⋯π inter­actions between phenyl H atoms and phenyl rings. In addition, the complex mol­ecules exhibit C—H⋯N hydrogen bonds between phenyl H atoms and acetonitrile N atoms. The crystal used was an inversion twin, with nearly equal component populations of 0.522 (8) and 0.478 (8).

Related literature

For details of the crystal structures of organophosphine­copper(I) halide derivatives, see: Caulton et al. (1990); Bowmaker et al. (2000); Eller et al. (1977); Hamel et al. (2002); Hanna et al. (2005); Venkatraman et al. (2006); Barron et al. (1987); Kräuter & Newmüller (1996). graphic file with name e-64-0m577-scheme1.jpg

Experimental

Crystal data

  • [CuI(C18H15P)3]·C2H3N

  • M r = 1018.30

  • Orthorhombic, Inline graphic

  • a = 18.5726 (10) Å

  • b = 20.2631 (12) Å

  • c = 12.7839 (5) Å

  • V = 4811.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.23 mm−1

  • T = 115 (2) K

  • 0.30 × 0.25 × 0.17 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.709, T max = 0.818

  • 156685 measured reflections

  • 15969 independent reflections

  • 13488 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.068

  • S = 1.03

  • 15969 reflections

  • 561 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack (1983), 7443 Friedel pairs

  • Flack parameter: 0.478 (8)

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007174/lx2043sup1.cif

e-64-0m577-sup1.cif (36.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007174/lx2043Isup2.hkl

e-64-0m577-Isup2.hkl (780.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.95 2.94 3.732 141
C40—H40⋯Cg2i 0.95 2.94 3.696 137
C39—H39⋯N1Sii 0.95 2.58 3.468 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 phenyl rings, respectively.

Acknowledgments

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Organophosphinecopper (I) halides have widely investigated system due to the formation of varying types of crystal structures (Caulton et al., 1990). Eller et al. (1977) used the organophosphinecopper (I) systems for the direct Cu–SO2 adduct formation. Recently Hanna et al. (2005) reported the structural and solid state NMR studies of the four coordinate copper (I) complexes with different cations except iodide. During our study on the interaction of heterocyclic thiosemicarbazones with copper (I) halides, we were able to isolate the title compound (1), Venkatraman et al., (2006).

The structure consists of CuI(PPh3)3 unit similar to the structure described by Eller et al. (1977) for CuI(PPh2Me)3. The asymmetric unit of (1) contains one formula unit of the complex with no crystallographically imposed symmetry (Fig.1), and one acetonitrile solvent molecule. The Cu atom is surrounded by three phosphorus atoms and the iodide atom in a distorted tetrahedral geometry. The three independent Cu—P distances are not grossly different (2.3421 (6), 2.3463 (6), and 2.3295 (7) Å) for P1, P2, and P3, respectively, and the Cu—I distance is 2.6843 (3) Å. The Cu—P bond lengths in compound (1) are similar to values recorded for a range of other [Cu-(PPh3)3X] complexes [Bowmaker et al., (2000)]. The three P—Cu—I angles are 104.75 (2), 113.66 (2), and 97.69 (2)°, for P1, P2, and P3, respectively, [average 105.2°], and sums to 316.0°. The wide range of P—Cu—P/I angles indicate an irregular tetrahedral structure.

The molecular packing (Fig. 2) is stabilized by CH2—H···π interactions between the hydrogen of phenyl group and the phenyl ring, with C9—H9···Cg1i and C40—H40···Cg2i separations of 2.94 Å (Fig. 2 & Table 1) (Cg1 and Cg2 are the centroids of C1—C6 and C7—C12 phenyl rings, respectively). Further stability comes from weak C—H···N1Sii hydrogen bond in Fig. 2 and Table 1. A l l symmetry codes as in Table 1.

Experimental

To a solution of copper (I) iodide (Aldrich; 0.190 g, 1 mmol) in acetonitrile (Aldrich; 50 ml) was added solid triphenylphosphine (Aldrich; 0.262 g, 2 mmol) in presence 0.5 ml HCl. The resulting mixture was stirred overnight. The clear solution was filtered and allowed to evaporate at room temperature in the presence of air. A colorless crystalline product suitable for X-ray diffraction was formed (yield ca 70%).

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and Uiso(H) = 1.5Ueq(C) for methyl H atoms. A torsional parameter was refined for the methyl group. Refinement of the Flack (1983) parameter, using 7443 Friedel pairs indicated that the crystal used was an inversion twin with approximately equal components.

Figures

Fig. 1.

Fig. 1.

Numbering scheme and ellipsoids at the 50% level. H atoms are not shown.

Fig. 2.

Fig. 2.

C—H···N and C—H···π interactions. Geometric parameters and symmetry operations are given in the Table 1.

Crystal data

[CuI(C18H15P)3]·C2H3N F000 = 2072
Mr = 1018.30 Dx = 1.406 Mg m3
Orthorhombic, Pna21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 8935 reflections
a = 18.573 (1) Å θ = 2.5–31.8º
b = 20.263 (1) Å µ = 1.23 mm1
c = 12.7839 (5) Å T = 115 (2) K
V = 4811.2 (4) Å3 Fragment, colorless
Z = 4 0.30 × 0.25 × 0.17 mm

Data collection

Nonius KappaCCD diffractometer (with an Oxford Cryosystems Cryostream cooler) 15969 independent reflections
Radiation source: fine-focus sealed tube 13488 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.0000
T = 115(2) K θmax = 31.8º
ω scans with κ offsets θmin = 2.8º
Absorption correction: multi-scan(SCALEPACK; Otwinowski & Minor, 1997) h = −27→27
Tmin = 0.709, Tmax = 0.818 k = −29→30
156685 measured reflections l = −18→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033   w = 1/[σ2(Fo2) + (0.0253P)2 + 3.4731P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.62 e Å3
15969 reflections Δρmin = −0.66 e Å3
561 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: 0.478 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I 0.217564 (7) 0.266851 (6) 0.441186 (16) 0.02077 (3)
Cu 0.240945 (12) 0.397554 (11) 0.44517 (3) 0.01359 (5)
P1 0.13455 (3) 0.44254 (3) 0.51291 (5) 0.01432 (10)
P2 0.33677 (3) 0.42893 (3) 0.55393 (5) 0.01575 (11)
P3 0.25929 (3) 0.41255 (3) 0.26648 (4) 0.01450 (10)
C1 0.13962 (12) 0.45371 (12) 0.65502 (18) 0.0178 (4)
C2 0.12435 (12) 0.51230 (12) 0.70821 (19) 0.0207 (5)
H2 0.1108 0.5506 0.6700 0.025*
C3 0.12884 (14) 0.51494 (14) 0.8170 (2) 0.0273 (6)
H3 0.1185 0.5549 0.8527 0.033*
C4 0.14844 (14) 0.45912 (16) 0.8732 (2) 0.0301 (6)
H4 0.1513 0.4609 0.9473 0.036*
C5 0.16373 (14) 0.40114 (15) 0.8213 (2) 0.0283 (6)
H5 0.1773 0.3630 0.8598 0.034*
C6 0.15930 (14) 0.39828 (13) 0.7130 (2) 0.0217 (5)
H6 0.1698 0.3581 0.6779 0.026*
C7 0.11119 (12) 0.52434 (11) 0.46264 (16) 0.0175 (5)
C8 0.05030 (12) 0.53500 (12) 0.40169 (18) 0.0191 (4)
H8 0.0173 0.4999 0.3900 0.023*
C9 0.03727 (13) 0.59699 (13) 0.3575 (2) 0.0228 (5)
H9 −0.0040 0.6036 0.3148 0.027*
C10 0.08404 (14) 0.64869 (13) 0.3755 (2) 0.0249 (5)
H10 0.0749 0.6908 0.3455 0.030*
C11 0.14434 (11) 0.63916 (10) 0.4375 (3) 0.0234 (4)
H11 0.1760 0.6750 0.4509 0.028*
C12 0.15866 (13) 0.57737 (12) 0.48005 (19) 0.0205 (5)
H12 0.2007 0.5709 0.5211 0.025*
C13 0.04853 (12) 0.39823 (11) 0.50234 (19) 0.0186 (4)
C14 0.03752 (13) 0.35252 (12) 0.4235 (2) 0.0268 (6)
H14 0.0753 0.3423 0.3762 0.032*
C15 −0.02950 (15) 0.32139 (13) 0.4135 (2) 0.0336 (7)
H15 −0.0372 0.2908 0.3584 0.040*
C16 −0.08436 (15) 0.33469 (14) 0.4829 (3) 0.0360 (7)
H16 −0.1295 0.3130 0.4758 0.043*
C17 −0.07363 (14) 0.37963 (15) 0.5628 (2) 0.0337 (6)
H17 −0.1112 0.3885 0.6113 0.040*
C18 −0.00801 (13) 0.41170 (14) 0.5719 (2) 0.0256 (5)
H18 −0.0012 0.4432 0.6261 0.031*
C19 0.42750 (12) 0.41851 (12) 0.49989 (19) 0.0196 (5)
C20 0.48602 (14) 0.45677 (13) 0.5321 (2) 0.0300 (6)
H20 0.4792 0.4912 0.5816 0.036*
C21 0.55453 (14) 0.44453 (15) 0.4916 (3) 0.0359 (7)
H21 0.5939 0.4715 0.5121 0.043*
C22 0.56534 (14) 0.39352 (14) 0.4220 (2) 0.0314 (7)
H22 0.6121 0.3852 0.3950 0.038*
C23 0.50823 (15) 0.35457 (15) 0.3917 (2) 0.0293 (6)
H23 0.5159 0.3191 0.3445 0.035*
C24 0.43900 (12) 0.36709 (12) 0.4301 (2) 0.0230 (5)
H24 0.3998 0.3403 0.4084 0.028*
C25 0.33421 (12) 0.51645 (11) 0.59215 (19) 0.0176 (4)
C26 0.29808 (12) 0.53569 (12) 0.6835 (2) 0.0205 (5)
H26 0.2781 0.5032 0.7284 0.025*
C27 0.29136 (14) 0.60257 (14) 0.7087 (2) 0.0266 (6)
H27 0.2668 0.6153 0.7706 0.032*
C28 0.32047 (15) 0.65019 (13) 0.6435 (2) 0.0313 (6)
H28 0.3166 0.6955 0.6615 0.038*
C29 0.35523 (14) 0.63185 (13) 0.5523 (2) 0.0297 (6)
H29 0.3743 0.6647 0.5070 0.036*
C30 0.36235 (13) 0.56523 (12) 0.5268 (2) 0.0226 (5)
H30 0.3866 0.5529 0.4643 0.027*
C31 0.34799 (14) 0.38716 (13) 0.6806 (2) 0.0192 (5)
C32 0.31740 (14) 0.32518 (13) 0.6941 (2) 0.0232 (5)
H32 0.2918 0.3052 0.6381 0.028*
C33 0.32387 (16) 0.29223 (14) 0.7889 (2) 0.0319 (6)
H33 0.3025 0.2500 0.7977 0.038*
C34 0.36150 (18) 0.32092 (15) 0.8706 (2) 0.0377 (7)
H34 0.3649 0.2989 0.9361 0.045*
C35 0.39419 (18) 0.38161 (14) 0.8570 (2) 0.0372 (7)
H35 0.4210 0.4008 0.9125 0.045*
C36 0.38781 (16) 0.41478 (14) 0.7618 (2) 0.0302 (6)
H36 0.4107 0.4563 0.7524 0.036*
C37 0.18119 (13) 0.38725 (13) 0.18883 (19) 0.0193 (5)
C38 0.18054 (15) 0.33782 (12) 0.1132 (2) 0.0261 (5)
H38 0.2234 0.3143 0.0971 0.031*
C39 0.11603 (19) 0.32291 (14) 0.0607 (2) 0.0367 (7)
H39 0.1155 0.2893 0.0089 0.044*
C40 0.05379 (17) 0.35655 (16) 0.0839 (3) 0.0403 (8)
H40 0.0102 0.3453 0.0492 0.048*
C41 0.05425 (16) 0.40674 (18) 0.1574 (3) 0.0413 (8)
H41 0.0114 0.4305 0.1726 0.050*
C42 0.11817 (14) 0.42195 (16) 0.2089 (2) 0.0303 (6)
H42 0.1187 0.4567 0.2587 0.036*
C43 0.26948 (12) 0.49703 (12) 0.21873 (19) 0.0182 (4)
C44 0.28124 (15) 0.54660 (13) 0.2903 (2) 0.0262 (5)
H44 0.2849 0.5360 0.3625 0.031*
C45 0.28790 (17) 0.61243 (14) 0.2582 (3) 0.0380 (7)
H45 0.2969 0.6462 0.3081 0.046*
C46 0.28136 (16) 0.62768 (15) 0.1545 (3) 0.0367 (7)
H46 0.2858 0.6723 0.1325 0.044*
C47 0.26847 (14) 0.57923 (15) 0.0817 (2) 0.0320 (6)
H47 0.2632 0.5906 0.0100 0.038*
C48 0.26316 (14) 0.51345 (14) 0.1126 (2) 0.0253 (5)
H48 0.2553 0.4799 0.0620 0.030*
C49 0.33584 (14) 0.36919 (13) 0.20742 (19) 0.0182 (5)
C50 0.33779 (14) 0.30007 (13) 0.2073 (2) 0.0228 (5)
H50 0.2983 0.2759 0.2350 0.027*
C51 0.39711 (15) 0.26645 (13) 0.1669 (2) 0.0260 (5)
H51 0.3976 0.2196 0.1663 0.031*
C52 0.45517 (15) 0.30119 (15) 0.1277 (2) 0.0299 (6)
H52 0.4953 0.2783 0.0994 0.036*
C53 0.45462 (15) 0.36930 (15) 0.1297 (2) 0.0299 (6)
H53 0.4950 0.3932 0.1042 0.036*
C54 0.39532 (13) 0.40330 (13) 0.1690 (2) 0.0218 (5)
H54 0.3955 0.4502 0.1696 0.026*
N1S 0.0790 (2) 0.23273 (17) 0.8365 (3) 0.0715 (12)
C1S 0.05774 (19) 0.22818 (15) 0.7540 (3) 0.0409 (7)
C2S 0.0311 (2) 0.22160 (19) 0.6481 (3) 0.0474 (8)
H21S 0.0714 0.2250 0.5989 0.071*
H22S −0.0038 0.2567 0.6338 0.071*
H23S 0.0077 0.1786 0.6400 0.071*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I 0.02420 (6) 0.01553 (5) 0.02259 (6) −0.00050 (5) −0.00066 (8) 0.00298 (8)
Cu 0.01321 (10) 0.01381 (10) 0.01374 (10) 0.00034 (8) −0.00041 (14) 0.00155 (13)
P1 0.0120 (2) 0.0155 (2) 0.0155 (2) −0.0003 (2) −0.0003 (2) 0.0000 (2)
P2 0.0126 (2) 0.0172 (3) 0.0174 (3) −0.0001 (2) −0.0028 (2) 0.0018 (2)
P3 0.0143 (2) 0.0160 (2) 0.0132 (2) 0.0010 (2) 0.0002 (2) 0.0014 (2)
C1 0.0116 (10) 0.0240 (11) 0.0179 (11) −0.0007 (8) 0.0006 (8) −0.0002 (9)
C2 0.0157 (10) 0.0236 (12) 0.0230 (12) −0.0015 (9) 0.0021 (9) −0.0027 (9)
C3 0.0206 (12) 0.0366 (15) 0.0249 (13) −0.0027 (10) 0.0038 (10) −0.0104 (11)
C4 0.0241 (13) 0.0509 (18) 0.0154 (12) −0.0049 (12) 0.0013 (10) −0.0033 (11)
C5 0.0244 (13) 0.0401 (15) 0.0206 (12) 0.0013 (11) −0.0017 (10) 0.0055 (11)
C6 0.0206 (12) 0.0228 (12) 0.0218 (12) −0.0005 (10) −0.0002 (10) 0.0006 (10)
C7 0.0169 (9) 0.0173 (9) 0.0185 (14) 0.0015 (7) 0.0008 (8) 0.0002 (8)
C8 0.0177 (10) 0.0211 (11) 0.0185 (10) 0.0006 (9) −0.0022 (8) −0.0024 (9)
C9 0.0200 (12) 0.0283 (13) 0.0203 (11) 0.0055 (9) −0.0036 (9) 0.0039 (10)
C10 0.0249 (12) 0.0218 (12) 0.0280 (13) 0.0035 (10) 0.0030 (10) 0.0092 (10)
C11 0.0222 (9) 0.0189 (9) 0.0291 (11) −0.0037 (7) 0.0009 (13) 0.0022 (13)
C12 0.0157 (10) 0.0226 (11) 0.0232 (11) −0.0019 (9) −0.0031 (8) 0.0029 (9)
C13 0.0150 (10) 0.0178 (10) 0.0230 (12) −0.0018 (8) −0.0027 (9) 0.0026 (9)
C14 0.0248 (11) 0.0211 (10) 0.0346 (18) −0.0005 (9) −0.0096 (11) −0.0008 (10)
C15 0.0322 (14) 0.0226 (12) 0.0459 (19) −0.0054 (10) −0.0181 (12) 0.0014 (11)
C16 0.0229 (14) 0.0332 (14) 0.0518 (18) −0.0130 (11) −0.0144 (12) 0.0186 (13)
C17 0.0171 (12) 0.0432 (17) 0.0407 (16) −0.0053 (11) 0.0000 (11) 0.0120 (13)
C18 0.0177 (11) 0.0324 (13) 0.0267 (13) −0.0043 (10) −0.0006 (10) 0.0006 (10)
C19 0.0142 (10) 0.0236 (11) 0.0209 (12) 0.0029 (8) −0.0005 (8) 0.0045 (9)
C20 0.0173 (11) 0.0271 (13) 0.0456 (17) 0.0003 (10) −0.0036 (11) −0.0096 (12)
C21 0.0156 (11) 0.0315 (14) 0.061 (2) −0.0016 (10) −0.0024 (12) −0.0061 (13)
C22 0.0188 (11) 0.0398 (14) 0.0358 (19) 0.0023 (10) 0.0044 (10) −0.0006 (12)
C23 0.0265 (13) 0.0368 (15) 0.0247 (13) 0.0042 (11) 0.0009 (10) −0.0074 (11)
C24 0.0200 (10) 0.0278 (11) 0.0211 (13) −0.0018 (8) −0.0040 (10) −0.0030 (11)
C25 0.0142 (10) 0.0173 (10) 0.0215 (11) −0.0003 (8) −0.0056 (8) 0.0005 (9)
C26 0.0177 (11) 0.0200 (11) 0.0240 (12) −0.0007 (8) −0.0041 (9) −0.0008 (9)
C27 0.0230 (13) 0.0271 (14) 0.0297 (14) 0.0015 (10) −0.0045 (10) −0.0076 (11)
C28 0.0274 (13) 0.0167 (12) 0.0500 (18) 0.0026 (10) −0.0110 (12) −0.0033 (11)
C29 0.0251 (13) 0.0199 (12) 0.0442 (16) −0.0019 (10) −0.0048 (11) 0.0080 (11)
C30 0.0181 (11) 0.0213 (11) 0.0283 (13) −0.0004 (9) −0.0017 (9) 0.0027 (10)
C31 0.0204 (12) 0.0199 (12) 0.0173 (11) 0.0055 (9) −0.0024 (9) 0.0031 (9)
C32 0.0242 (13) 0.0236 (12) 0.0218 (12) 0.0003 (10) −0.0057 (10) 0.0040 (10)
C33 0.0407 (16) 0.0260 (13) 0.0291 (14) −0.0029 (12) −0.0073 (12) 0.0101 (11)
C34 0.0523 (19) 0.0359 (16) 0.0248 (14) 0.0049 (14) −0.0123 (13) 0.0097 (12)
C35 0.055 (2) 0.0293 (15) 0.0269 (14) 0.0028 (13) −0.0216 (14) −0.0001 (11)
C36 0.0380 (15) 0.0233 (13) 0.0292 (14) −0.0009 (11) −0.0147 (13) 0.0009 (11)
C37 0.0191 (12) 0.0250 (12) 0.0139 (11) −0.0024 (9) −0.0014 (9) 0.0040 (9)
C38 0.0346 (14) 0.0217 (12) 0.0221 (12) −0.0049 (10) −0.0064 (11) 0.0021 (10)
C39 0.0541 (19) 0.0272 (14) 0.0288 (15) −0.0167 (13) −0.0190 (13) 0.0082 (11)
C40 0.0323 (15) 0.0476 (18) 0.0408 (17) −0.0187 (13) −0.0207 (13) 0.0226 (15)
C41 0.0196 (13) 0.062 (2) 0.0425 (18) 0.0019 (13) −0.0091 (12) 0.0101 (16)
C42 0.0207 (12) 0.0451 (17) 0.0250 (13) 0.0064 (12) −0.0041 (10) −0.0021 (12)
C43 0.0148 (10) 0.0194 (11) 0.0206 (11) 0.0020 (8) 0.0017 (8) 0.0049 (9)
C44 0.0335 (14) 0.0195 (11) 0.0257 (13) −0.0020 (10) 0.0028 (11) 0.0022 (9)
C45 0.0489 (18) 0.0183 (12) 0.0467 (19) −0.0020 (12) 0.0093 (15) 0.0025 (12)
C46 0.0321 (15) 0.0252 (15) 0.053 (2) 0.0040 (12) 0.0123 (14) 0.0181 (14)
C47 0.0240 (13) 0.0397 (16) 0.0324 (15) 0.0034 (11) 0.0027 (11) 0.0208 (12)
C48 0.0224 (12) 0.0327 (14) 0.0209 (12) 0.0016 (10) −0.0015 (9) 0.0092 (10)
C49 0.0180 (11) 0.0224 (12) 0.0141 (11) 0.0052 (9) 0.0027 (9) 0.0012 (9)
C50 0.0251 (12) 0.0241 (13) 0.0193 (12) 0.0030 (10) 0.0008 (9) 0.0009 (10)
C51 0.0329 (14) 0.0241 (12) 0.0209 (12) 0.0097 (11) 0.0000 (10) 0.0006 (10)
C52 0.0266 (13) 0.0379 (15) 0.0252 (13) 0.0155 (11) 0.0063 (10) 0.0027 (11)
C53 0.0222 (12) 0.0368 (15) 0.0308 (14) 0.0056 (11) 0.0082 (10) 0.0077 (12)
C54 0.0184 (11) 0.0246 (12) 0.0224 (12) 0.0034 (9) 0.0043 (10) 0.0053 (10)
N1S 0.106 (3) 0.055 (2) 0.053 (2) 0.026 (2) −0.039 (2) −0.0197 (17)
C1S 0.0500 (19) 0.0309 (15) 0.0418 (18) 0.0090 (13) −0.0135 (15) −0.0073 (13)
C2S 0.054 (2) 0.052 (2) 0.0363 (18) −0.0011 (16) −0.0160 (15) 0.0016 (15)

Geometric parameters (Å, °)

Cu—I 2.6843 (3) C26—C27 1.398 (4)
Cu—P1 2.3421 (6) C26—H26 0.9500
Cu—P2 2.3463 (6) C27—C28 1.385 (4)
Cu—P3 2.3295 (7) C27—H27 0.9500
P1—C7 1.830 (2) C28—C29 1.384 (4)
P1—C1 1.833 (2) C28—H28 0.9500
P1—C13 1.838 (2) C29—C30 1.395 (4)
P2—C19 1.833 (2) C29—H29 0.9500
P2—C31 1.839 (3) C30—H30 0.9500
P2—C25 1.840 (2) C31—C32 1.389 (4)
P3—C43 1.827 (2) C31—C36 1.392 (4)
P3—C37 1.831 (3) C32—C33 1.389 (4)
P3—C49 1.834 (3) C32—H32 0.9500
C1—C6 1.394 (3) C33—C34 1.385 (4)
C1—C2 1.397 (3) C33—H33 0.9500
C2—C3 1.395 (4) C34—C35 1.383 (4)
C2—H2 0.9500 C34—H34 0.9500
C3—C4 1.388 (4) C35—C36 1.395 (4)
C3—H3 0.9500 C35—H35 0.9500
C4—C5 1.378 (4) C36—H36 0.9500
C4—H4 0.9500 C37—C42 1.389 (4)
C5—C6 1.389 (4) C37—C38 1.392 (4)
C5—H5 0.9500 C38—C39 1.406 (4)
C6—H6 0.9500 C38—H38 0.9500
C7—C8 1.390 (3) C39—C40 1.374 (5)
C7—C12 1.408 (3) C39—H39 0.9500
C8—C9 1.399 (3) C40—C41 1.385 (5)
C8—H8 0.9500 C40—H40 0.9500
C9—C10 1.380 (4) C41—C42 1.392 (4)
C9—H9 0.9500 C41—H41 0.9500
C10—C11 1.385 (4) C42—H42 0.9500
C10—H10 0.9500 C43—C44 1.376 (4)
C11—C12 1.391 (3) C43—C48 1.402 (3)
C11—H11 0.9500 C44—C45 1.401 (4)
C12—H12 0.9500 C44—H44 0.9500
C13—C14 1.384 (3) C45—C46 1.367 (5)
C13—C18 1.403 (4) C45—H45 0.9500
C14—C15 1.401 (3) C46—C47 1.374 (5)
C14—H14 0.9500 C46—H46 0.9500
C15—C16 1.377 (4) C47—C48 1.394 (4)
C15—H15 0.9500 C47—H47 0.9500
C16—C17 1.383 (5) C48—H48 0.9500
C16—H16 0.9500 C49—C54 1.393 (4)
C17—C18 1.386 (4) C49—C50 1.401 (4)
C17—H17 0.9500 C50—C51 1.395 (4)
C18—H18 0.9500 C50—H50 0.9500
C19—C24 1.388 (4) C51—C52 1.382 (4)
C19—C20 1.397 (3) C51—H51 0.9500
C20—C21 1.396 (4) C52—C53 1.380 (4)
C20—H20 0.9500 C52—H52 0.9500
C21—C22 1.378 (4) C53—C54 1.393 (4)
C21—H21 0.9500 C53—H53 0.9500
C22—C23 1.378 (4) C54—H54 0.9500
C22—H22 0.9500 N1S—C1S 1.130 (5)
C23—C24 1.400 (3) C1S—C2S 1.447 (5)
C23—H23 0.9500 C2S—H21S 0.9800
C24—H24 0.9500 C2S—H22S 0.9800
C25—C30 1.396 (3) C2S—H23S 0.9800
C25—C26 1.402 (3)
P1—Cu—P2 108.39 (2) C30—C25—P2 120.9 (2)
P3—Cu—P1 115.80 (2) C26—C25—P2 120.1 (2)
P3—Cu—P2 115.77 (2) C27—C26—C25 120.3 (2)
P1—Cu—I 104.75 (2) C27—C26—H26 119.9
P2—Cu—I 113.66 (2) C25—C26—H26 119.9
P3—Cu—I 97.69 (2) C28—C27—C26 120.1 (3)
C7—P1—C1 104.4 (1) C28—C27—H27 119.9
C7—P1—C13 102.2 (1) C26—C27—H27 119.9
C1—P1—C13 100.2 (1) C29—C28—C27 120.1 (3)
C7—P1—Cu 115.01 (7) C29—C28—H28 119.9
C1—P1—Cu 111.79 (8) C27—C28—H28 119.9
C13—P1—Cu 121.07 (8) C28—C29—C30 120.1 (3)
C19—P2—C31 100.1 (1) C28—C29—H29 120.0
C19—P2—C25 103.6 (1) C30—C29—H29 120.0
C31—P2—C25 102.3 (1) C29—C30—C25 120.7 (2)
C19—P2—Cu 116.27 (8) C29—C30—H30 119.7
C31—P2—Cu 118.89 (9) C25—C30—H30 119.7
C25—P2—Cu 113.51 (7) C32—C31—C36 119.2 (2)
C43—P3—C37 99.4 (1) C32—C31—P2 118.7 (2)
C43—P3—C49 103.4 (1) C36—C31—P2 122.1 (2)
C37—P3—C49 104.9 (1) C33—C32—C31 120.5 (3)
C43—P3—Cu 117.71 (8) C33—C32—H32 119.7
C37—P3—Cu 112.29 (8) C31—C32—H32 119.7
C49—P3—Cu 117.04 (8) C34—C33—C32 120.0 (3)
C6—C1—C2 118.6 (2) C34—C33—H33 120.0
C6—C1—P1 116.1 (2) C32—C33—H33 120.0
C2—C1—P1 125.2 (2) C35—C34—C33 120.0 (3)
C3—C2—C1 120.4 (2) C35—C34—H34 120.0
C3—C2—H2 119.8 C33—C34—H34 120.0
C1—C2—H2 119.8 C34—C35—C36 120.1 (3)
C4—C3—C2 120.0 (2) C34—C35—H35 120.0
C4—C3—H3 120.0 C36—C35—H35 120.0
C2—C3—H3 120.0 C31—C36—C35 120.1 (3)
C5—C4—C3 120.0 (2) C31—C36—H36 119.9
C5—C4—H4 120.0 C35—C36—H36 119.9
C3—C4—H4 120.0 C42—C37—C38 119.0 (2)
C4—C5—C6 120.2 (3) C42—C37—P3 115.2 (2)
C4—C5—H5 119.9 C38—C37—P3 125.8 (2)
C6—C5—H5 119.9 C37—C38—C39 119.5 (3)
C5—C6—C1 120.8 (2) C37—C38—H38 120.2
C5—C6—H6 119.6 C39—C38—H38 120.2
C1—C6—H6 119.6 C40—C39—C38 120.5 (3)
C8—C7—C12 118.7 (2) C40—C39—H39 119.7
C8—C7—P1 122.0 (2) C38—C39—H39 119.7
C12—C7—P1 119.2 (2) C39—C40—C41 120.3 (3)
C7—C8—C9 120.4 (2) C39—C40—H40 119.8
C7—C8—H8 119.8 C41—C40—H40 119.8
C9—C8—H8 119.8 C40—C41—C42 119.3 (3)
C10—C9—C8 120.3 (2) C40—C41—H41 120.4
C10—C9—H9 119.8 C42—C41—H41 120.4
C8—C9—H9 119.8 C37—C42—C41 121.3 (3)
C9—C10—C11 119.9 (2) C37—C42—H42 119.4
C9—C10—H10 120.0 C41—C42—H42 119.4
C11—C10—H10 120.0 C44—C43—C48 118.9 (2)
C10—C11—C12 120.3 (2) C44—C43—P3 118.6 (2)
C10—C11—H11 119.9 C48—C43—P3 122.5 (2)
C12—C11—H11 119.9 C43—C44—C45 121.0 (3)
C11—C12—C7 120.4 (2) C43—C44—H44 119.5
C11—C12—H12 119.8 C45—C44—H44 119.5
C7—C12—H12 119.8 C46—C45—C44 119.4 (3)
C14—C13—C18 118.8 (2) C46—C45—H45 120.3
C14—C13—P1 120.6 (2) C44—C45—H45 120.3
C18—C13—P1 120.6 (2) C45—C46—C47 120.7 (3)
C13—C14—C15 119.9 (3) C45—C46—H46 119.6
C13—C14—H14 120.1 C47—C46—H46 119.6
C15—C14—H14 120.1 C46—C47—C48 120.2 (3)
C16—C15—C14 120.7 (3) C46—C47—H47 119.9
C16—C15—H15 119.6 C48—C47—H47 119.9
C14—C15—H15 119.6 C47—C48—C43 119.7 (3)
C15—C16—C17 119.8 (2) C47—C48—H48 120.1
C15—C16—H16 120.1 C43—C48—H48 120.1
C17—C16—H16 120.1 C54—C49—C50 118.4 (2)
C16—C17—C18 119.9 (3) C54—C49—P3 121.5 (2)
C16—C17—H17 120.1 C50—C49—P3 120.0 (2)
C18—C17—H17 120.1 C51—C50—C49 120.6 (2)
C17—C18—C13 120.9 (3) C51—C50—H50 119.7
C17—C18—H18 119.6 C49—C50—H50 119.7
C13—C18—H18 119.6 C52—C51—C50 120.1 (2)
C24—C19—C20 119.1 (2) C52—C51—H51 119.9
C24—C19—P2 118.0 (2) C50—C51—H51 119.9
C20—C19—P2 122.7 (2) C53—C52—C51 119.8 (2)
C21—C20—C19 120.1 (3) C53—C52—H52 120.1
C21—C20—H20 120.0 C51—C52—H52 120.1
C19—C20—H20 120.0 C52—C53—C54 120.5 (2)
C22—C21—C20 120.4 (3) C52—C53—H53 119.8
C22—C21—H21 119.8 C54—C53—H53 119.8
C20—C21—H21 119.8 C49—C54—C53 120.6 (2)
C23—C22—C21 119.9 (2) C49—C54—H54 119.7
C23—C22—H22 120.0 C53—C54—H54 119.7
C21—C22—H22 120.0 N1S—C1S—C2S 179.3 (4)
C22—C23—C24 120.3 (2) C1S—C2S—H21S 109.5
C22—C23—H23 119.8 C1S—C2S—H22S 109.5
C24—C23—H23 119.8 H21S—C2S—H22S 109.5
C19—C24—C23 120.2 (2) C1S—C2S—H23S 109.5
C19—C24—H24 119.9 H21S—C2S—H23S 109.5
C23—C24—H24 119.9 H22S—C2S—H23S 109.5
C30—C25—C26 118.7 (2)
P3—Cu—P1—C7 −41.42 (8) C19—C20—C21—C22 −1.9 (5)
P2—Cu—P1—C7 90.62 (8) C20—C21—C22—C23 0.4 (5)
I—Cu—P1—C7 −147.73 (8) C21—C22—C23—C24 0.9 (4)
P3—Cu—P1—C1 −160.21 (9) C20—C19—C24—C23 −0.9 (4)
P2—Cu—P1—C1 −28.18 (9) P2—C19—C24—C23 −176.1 (2)
I—Cu—P1—C1 93.47 (9) C22—C23—C24—C19 −0.6 (4)
P3—Cu—P1—C13 82.11 (9) C19—P2—C25—C30 43.1 (2)
P2—Cu—P1—C13 −145.85 (9) C31—P2—C25—C30 146.78 (19)
I—Cu—P1—C13 −24.20 (9) Cu—P2—C25—C30 −83.89 (19)
P3—Cu—P2—C19 −32.45 (9) C19—P2—C25—C26 −142.59 (19)
P1—Cu—P2—C19 −164.50 (9) C31—P2—C25—C26 −38.9 (2)
I—Cu—P2—C19 79.49 (9) Cu—P2—C25—C26 90.42 (19)
P3—Cu—P2—C31 −152.11 (10) C30—C25—C26—C27 −0.8 (3)
P1—Cu—P2—C31 75.84 (10) P2—C25—C26—C27 −175.18 (18)
I—Cu—P2—C31 −40.17 (10) C25—C26—C27—C28 −0.1 (4)
P3—Cu—P2—C25 87.57 (9) C26—C27—C28—C29 1.1 (4)
P1—Cu—P2—C25 −44.48 (9) C27—C28—C29—C30 −1.3 (4)
I—Cu—P2—C25 −160.49 (8) C28—C29—C30—C25 0.5 (4)
P1—Cu—P3—C43 63.46 (9) C26—C25—C30—C29 0.6 (3)
P2—Cu—P3—C43 −65.03 (9) P2—C25—C30—C29 174.95 (19)
I—Cu—P3—C43 173.98 (8) C19—P2—C31—C32 −105.8 (2)
P1—Cu—P3—C37 −51.02 (10) C25—P2—C31—C32 147.8 (2)
P2—Cu—P3—C37 −179.52 (9) Cu—P2—C31—C32 21.9 (2)
I—Cu—P3—C37 59.50 (9) C19—P2—C31—C36 72.3 (3)
P1—Cu—P3—C49 −172.41 (10) C25—P2—C31—C36 −34.1 (3)
P2—Cu—P3—C49 59.10 (10) Cu—P2—C31—C36 −160.0 (2)
I—Cu—P3—C49 −61.89 (10) C36—C31—C32—C33 2.6 (4)
C7—P1—C1—C6 −177.91 (18) P2—C31—C32—C33 −179.3 (2)
C13—P1—C1—C6 76.6 (2) C31—C32—C33—C34 −0.5 (5)
Cu—P1—C1—C6 −53.0 (2) C32—C33—C34—C35 −1.6 (5)
C7—P1—C1—C2 3.1 (2) C33—C34—C35—C36 1.6 (5)
C13—P1—C1—C2 −102.4 (2) C32—C31—C36—C35 −2.7 (4)
Cu—P1—C1—C2 128.07 (19) P2—C31—C36—C35 179.3 (2)
C6—C1—C2—C3 0.0 (3) C34—C35—C36—C31 0.6 (5)
P1—C1—C2—C3 178.94 (19) C43—P3—C37—C42 −63.8 (2)
C1—C2—C3—C4 −0.1 (4) C49—P3—C37—C42 −170.4 (2)
C2—C3—C4—C5 0.3 (4) Cu—P3—C37—C42 61.5 (2)
C3—C4—C5—C6 −0.3 (4) C43—P3—C37—C38 115.7 (2)
C4—C5—C6—C1 0.2 (4) C49—P3—C37—C38 9.1 (3)
C2—C1—C6—C5 0.0 (4) Cu—P3—C37—C38 −119.0 (2)
P1—C1—C6—C5 −179.1 (2) C42—C37—C38—C39 −1.6 (4)
C1—P1—C7—C8 −122.92 (19) P3—C37—C38—C39 178.9 (2)
C13—P1—C7—C8 −18.9 (2) C37—C38—C39—C40 −0.2 (4)
Cu—P1—C7—C8 114.23 (18) C38—C39—C40—C41 1.6 (4)
C1—P1—C7—C12 61.5 (2) C39—C40—C41—C42 −1.1 (5)
C13—P1—C7—C12 165.52 (19) C38—C37—C42—C41 2.2 (4)
Cu—P1—C7—C12 −61.40 (19) P3—C37—C42—C41 −178.3 (2)
C12—C7—C8—C9 0.9 (3) C40—C41—C42—C37 −0.8 (5)
P1—C7—C8—C9 −174.72 (18) C37—P3—C43—C44 135.0 (2)
C7—C8—C9—C10 −1.3 (4) C49—P3—C43—C44 −117.1 (2)
C8—C9—C10—C11 0.2 (4) Cu—P3—C43—C44 13.6 (2)
C9—C10—C11—C12 1.2 (4) C37—P3—C43—C48 −42.6 (2)
C10—C11—C12—C7 −1.5 (4) C49—P3—C43—C48 65.2 (2)
C8—C7—C12—C11 0.4 (4) Cu—P3—C43—C48 −164.05 (17)
P1—C7—C12—C11 176.2 (2) C48—C43—C44—C45 −0.9 (4)
C7—P1—C13—C14 104.3 (2) P3—C43—C44—C45 −178.6 (2)
C1—P1—C13—C14 −148.4 (2) C43—C44—C45—C46 1.1 (4)
Cu—P1—C13—C14 −25.1 (2) C44—C45—C46—C47 −0.1 (5)
C7—P1—C13—C18 −73.6 (2) C45—C46—C47—C48 −1.2 (4)
C1—P1—C13—C18 33.7 (2) C46—C47—C48—C43 1.4 (4)
Cu—P1—C13—C18 157.04 (17) C44—C43—C48—C47 −0.3 (4)
C18—C13—C14—C15 0.9 (4) P3—C43—C48—C47 177.28 (19)
P1—C13—C14—C15 −177.04 (19) C43—P3—C49—C54 18.8 (2)
C13—C14—C15—C16 −1.4 (4) C37—P3—C49—C54 122.4 (2)
C14—C15—C16—C17 0.5 (4) Cu—P3—C49—C54 −112.4 (2)
C15—C16—C17—C18 0.8 (4) C43—P3—C49—C50 −166.1 (2)
C16—C17—C18—C13 −1.3 (4) C37—P3—C49—C50 −62.4 (2)
C14—C13—C18—C17 0.5 (4) Cu—P3—C49—C50 62.8 (2)
P1—C13—C18—C17 178.4 (2) C54—C49—C50—C51 −1.8 (4)
C31—P2—C19—C24 98.0 (2) P3—C49—C50—C51 −177.1 (2)
C25—P2—C19—C24 −156.6 (2) C49—C50—C51—C52 0.9 (4)
Cu—P2—C19—C24 −31.4 (2) C50—C51—C52—C53 0.7 (4)
C31—P2—C19—C20 −77.0 (2) C51—C52—C53—C54 −1.4 (4)
C25—P2—C19—C20 28.4 (2) C50—C49—C54—C53 1.2 (4)
Cu—P2—C19—C20 153.61 (19) P3—C49—C54—C53 176.4 (2)
C24—C19—C20—C21 2.1 (4) C52—C53—C54—C49 0.4 (4)
P2—C19—C20—C21 177.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9···Cg1i 0.95 2.94 3.732 141
C40—H40···Cg2i 0.95 2.94 3.696 137
C39—H39···N1Sii 0.95 2.58 3.468 (4) 157

Symmetry codes: (i) −x, −y+1, z−1/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2043).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Barron, P. F., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1099–1106.
  3. Bowmaker, G. A., Effendy, J. D. K., Hanna, J. V., Healy, P. C., Reid, J. C., Clifton, E. F. R. & White, A. H. (2000). J. Chem. Soc. Dalton Trans. pp. 753–761.
  4. Caulton, K. G., Davies, G. & Holt, E. M. (1990). Polyhedron, 9, 2319–2351.
  5. Eller, P. G., Kubas, G. J. & Ryan, R. R. (1977). Inorg. Chem.16, 2454–2462.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  8. Hamel, A., Schier, A. & Schmidbaur, H. Z. (2002). Naturforsch. Teil B, 57, 877–880.
  9. Hanna, J. V., Boyd, S. E., Healy, P. C., Bowmaker, G. A., Skelton, B. W. & White, A. H. (2005). J. Chem. Soc. Dalton Trans. pp. 2547–2556. [DOI] [PubMed]
  10. Kräuter, T. & Newmüller, B. (1996). Polyhedron, 15, 2851–2857.
  11. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  12. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Venkatraman, R., Sitole, L., Wilson, M. R. & Fronczek, F. R. (2006). Acta Cryst. E62, m2992–m2994.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007174/lx2043sup1.cif

e-64-0m577-sup1.cif (36.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007174/lx2043Isup2.hkl

e-64-0m577-Isup2.hkl (780.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES