Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m541–m542. doi: 10.1107/S1600536808006703

trans-Diaqua­bis{1,3-bis­[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]propane}zinc(II) bis­(perchlorate)

Hugo Gallardo a,*, Fernando Molin a, Adailton J Bortoluzzi a, Ademir Neves a
PMCID: PMC2960969  PMID: 21202000

Abstract

The ZnII ion in the title compound, [Zn(C15H14N10)(H2O)2](ClO4)2, lies on a centre of symmetry. The distorted N4O2 octa­hedral coordination environment around the Zn atom is composed of two 1,3-bis­[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]propane ligands (L1) and two water mol­ecules, coordinated in trans positions. The ligand acts as a typical bidentate chelating ligand through one of its 2-pyridyl-2H-tetra­zole units, forming a five-membered Zn—N—C—C—N metallacycle with a small N—Zn—N bite angle [77.40 (8)°]. The other 2-pyridyl-2H-tetra­zole unit remains uncoordinated. The average Zn—N distance (2.156 Å) is somewhat longer than the distance between the ZnII center and the aqua ligand [2.108 (2) Å]. The coordinated pyrid­yl-tetra­zoyl rings are quasi-coplanar, making a dihedral angle of 1.9 (2)°, while the uncoordinated rings show a larger inter­planar angle of 21.3 (2)°. The flexible propane spacer displays a zigzag chain. Inter­molecular O—H⋯N and O—H⋯O inter­actions result in two-dimensional polymeric structures parallel to (100). Two C atoms of the spacer are disordered over two positions, with site occupancy factors of ca 0.85 and 0.15.

Related literature

For related literature, see: Fan et al. (2005); Gallardo et al. (2001, 2004); Gong et al. (2004); Mizukami et al. (2005); Rodríguez-Diéguez et al. (2007); Wang et al. (2005).graphic file with name e-64-0m541-scheme1.jpg

Experimental

Crystal data

  • [Zn(C15H14N10)(H2O)2](ClO4)2

  • M r = 969.03

  • Monoclinic, Inline graphic

  • a = 7.378 (3) Å

  • b = 13.354 (3) Å

  • c = 20.764 (4) Å

  • β = 99.25 (2)°

  • V = 2019.2 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 (2) K

  • 0.50 × 0.46 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.682, T max = 0.853

  • 3873 measured reflections

  • 3576 independent reflections

  • 2826 reflections with I > 2σ(I)

  • R int = 0.016

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.097

  • S = 1.06

  • 3576 reflections

  • 305 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006703/bg2168sup1.cif

e-64-0m541-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006703/bg2168Isup2.hkl

e-64-0m541-Isup2.hkl (171.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—O1W 2.1079 (18)
Zn1—N17 2.149 (2)
Zn1—N11 2.170 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O11 0.86 2.01 2.869 (3) 172
O1W—H1WB⋯N21i 0.86 1.97 2.833 (3) 178

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Financiadora de Estudos e Projetos (FINEP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

supplementary crystallographic information

Comment

New compounds for the research of supramolecular chemistry and crystal engineering have been extensively described in the literature in the last few years (Wang et al., 2005; Fan et al., 2005; Rodríguez-Diéguez et al., 2007). Self-assembly processes involving organic ligands and metal ions have attracted much attention from the point of view of the development of novel functional materials with unique electronic, magnetic, catalytic and optical properties. However, while an accurate prediction of the overall crystal structure of such materials is not often an easy task, the introduction of rational organic ligands acting as building blocks has been recognized as a crucial synthetic strategy to overcome such difficulties. The syntheses of aromatic molecules containing nitrogen donor groups and which are interconnected by different type of spacers, such as conformationally rigid or flexible molecular skeletons, have been widely utilized as building blocks (Mizukami et al., 2005; Gallardo et al., 2001; Gong et al., 2004).

The synthesis and X-ray crystal structure of the ligand 1,3-Bis-[(2-pyridyl)-2H-tetrazol-5-yl]propane (L1) has been described previously (Gallardo et al., 2004). We report herein the title cation complex [Zn(L1)2(H2O)2]2+. The ZnII atom lies on a center of symmetry and its distorted octahedral coordination is achieved through the interaction with four nitrogen atoms of two trans L1 ligands, defining the equatorial plane and two water molecules in apical positions (Fig. 1). The basal Zn1—N17 (2.149 (2) Å) and Zn1—N11 (2.170 (2) Å) distances are somewhat larger than the apical ones (Zn1—O1W: (2.108 (2) Å). Some conformational differences in the structure of the two 2-pyridyl-2H-tetrazoyl units in the L1 ligand can be observed: the coordination of the pyridyl and tetrazoyl rings of one of the units to the metal center imposes structural rigidity in this moiety, and the rings become rings quasi coplanar with an interplanar angle of 1.9 (2)°. The N11—C10—C16 angle (113.5 (2)°) is smaller than the expected value due to the restriction of the five-membered chelate ring. On the other hand, in the uncoordinated unit the bond the corresponding rings are free to rotate around C20—C26 and the interplanar angle between angle climbs up to 21.3 (2)°. Besides, the N21—C20—C26 angle (116.6 (2)°) is significantly larger than the one in the coordinated unit. A two-dimensional polymeric structure parallel to (100) is formed by intermolecular O—H···N interactions (Fig. 2). Finally, the perchlorate counterion is also connected to the polymeric structure by a O—H···O interaction.

Experimental

Ligand L1 (obtained as described in Gallardo et al., 2004) was added to a suspension of Zn(ClO)4.6H2O in Ethanol and stirred at 50°C for 30 min. The white product was filtered off and recrystallized from isopropyl alcohol/water (1:1) affording white crystals. Yield: 61%. Elemental analysis. Calc. C30H32Cl2N20O10Zn: C 37.18, H 3.33, N 28.91%. Found: C 37.27, H 3.29, N 28.98%.

Refinement

H atoms attached to carbon atoms were added at their calculated positions and allowed to ride, with C—HAr = 0.93 Å and 0.97 Å for methylene groups and Uiso(H) = 1.2Ueq(C). H atoms of the water ligand were located from Fourier the difference map and treated in the riding model aproximation with Uiso(H) fixed at 1.2 times of Uiso(O). C2 and C3 atoms are disordered over two alternative positions which determine two different conformations for the propylene group. The occupancies for disordered atoms were refined and the respective values are 0.848 (8) and 0.152 (8).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the cation complex showing the labeling scheme. Displacement ellipsoids are shown at the 40% probability level. Symmetry code: (i) -x, -y, -z

Fig. 2.

Fig. 2.

A detail of the two-dimensional polymeric strucuture formed by hydrogen bonding.

Crystal data

[Zn(C15H14N10)(H2O)2](ClO4)2 F000 = 992
Mr = 969.03 Dx = 1.594 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 7.378 (3) Å θ = 9.6–15.4º
b = 13.354 (3) Å µ = 0.82 mm1
c = 20.764 (4) Å T = 293 (2) K
β = 99.25 (2)º Prismatic, colorless
V = 2019.2 (10) Å3 0.50 × 0.46 × 0.20 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.016
Radiation source: fine-focus sealed tube θmax = 25.1º
Monochromator: graphite θmin = 2.5º
T = 293(2) K h = 0→8
ω–2θ scans k = 0→15
Absorption correction: ψ scan(North et al., 1968) l = −24→24
Tmin = 0.682, Tmax = 0.853 3 standard reflections
3873 measured reflections every 200 reflections
3576 independent reflections intensity decay: 1%
2826 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.097   w = 1/[σ2(Fo2) + (0.0463P)2 + 1.2496P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
3576 reflections Δρmax = 0.30 e Å3
305 parameters Δρmin = −0.41 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.0000 0.5000 0.5000 0.03313 (13)
O1W 0.1357 (3) 0.37083 (13) 0.54150 (8) 0.0414 (4)
H1WA 0.2079 0.3821 0.5779 0.050*
H1WB 0.0630 0.3224 0.5479 0.050*
C1 0.2499 (4) 0.4082 (2) 0.26479 (13) 0.0525 (8)
H1C 0.3610 0.4474 0.2763 0.063* 0.848 (8)
H1B 0.2857 0.3387 0.2618 0.063* 0.848 (8)
H1A' 0.3789 0.4082 0.2838 0.063* 0.152 (8)
H1B' 0.2230 0.3455 0.2416 0.063* 0.152 (8)
C2 0.1502 (6) 0.4409 (3) 0.19841 (17) 0.0478 (12) 0.848 (8)
H2A 0.0335 0.4063 0.1884 0.057* 0.848 (8)
H2B 0.2233 0.4235 0.1652 0.057* 0.848 (8)
C2' 0.212 (2) 0.5004 (19) 0.2178 (9) 0.062 (9) 0.152 (8)
H2A' 0.3042 0.4990 0.1893 0.075* 0.152 (8)
H2B' 0.2302 0.5620 0.2428 0.075* 0.152 (8)
C3 0.1192 (7) 0.5522 (3) 0.19766 (16) 0.0473 (11) 0.848 (8)
H3A 0.0221 0.5680 0.2224 0.057* 0.848 (8)
H3B 0.2299 0.5865 0.2177 0.057* 0.848 (8)
C3' 0.031 (2) 0.5010 (16) 0.1744 (9) 0.048 (6) 0.152 (8)
H3A' −0.0017 0.4382 0.1521 0.058* 0.152 (8)
H3B' −0.0640 0.5198 0.1994 0.058* 0.152 (8)
C10 −0.2250 (3) 0.36570 (18) 0.40158 (11) 0.0336 (5)
N11 −0.2337 (3) 0.40794 (15) 0.46025 (9) 0.0330 (5)
C12 −0.3779 (4) 0.3837 (2) 0.48910 (13) 0.0407 (6)
H12 −0.3880 0.4129 0.5290 0.049*
C13 −0.5122 (4) 0.3170 (2) 0.46167 (15) 0.0488 (7)
H13 −0.6099 0.3013 0.4831 0.059*
C14 −0.4989 (4) 0.2741 (2) 0.40210 (15) 0.0505 (7)
H14 −0.5869 0.2285 0.3831 0.061*
C15 −0.3538 (4) 0.2996 (2) 0.37130 (13) 0.0433 (6)
H15 −0.3432 0.2727 0.3308 0.052*
C16 −0.0630 (3) 0.39652 (18) 0.37349 (11) 0.0333 (5)
N17 0.0622 (3) 0.45884 (16) 0.40591 (10) 0.0351 (5)
N18 0.1900 (3) 0.47270 (17) 0.36914 (10) 0.0404 (5)
N19 0.1370 (3) 0.41780 (17) 0.31670 (10) 0.0395 (5)
N20 −0.0198 (3) 0.36842 (17) 0.31667 (10) 0.0414 (5)
C20 0.1645 (4) 0.6352 (2) −0.02723 (13) 0.0393 (6)
N21 0.1096 (3) 0.71610 (16) −0.06368 (11) 0.0429 (5)
C22 0.1892 (4) 0.7317 (2) −0.11638 (14) 0.0534 (8)
H22 0.1536 0.7876 −0.1420 0.064*
C23 0.3205 (5) 0.6698 (3) −0.13475 (16) 0.0654 (9)
H23 0.3741 0.6845 −0.1712 0.078*
C24 0.3713 (5) 0.5852 (3) −0.09787 (17) 0.0697 (10)
H24 0.4573 0.5409 −0.1098 0.084*
C25 0.2923 (4) 0.5676 (2) −0.04327 (15) 0.0552 (8)
H25 0.3242 0.5113 −0.0176 0.066*
C26 0.0884 (4) 0.62351 (19) 0.03362 (13) 0.0394 (6)
N27 −0.0628 (3) 0.66990 (18) 0.04770 (12) 0.0485 (6)
N28 −0.0761 (4) 0.64443 (19) 0.10824 (12) 0.0540 (6)
N29 0.0649 (4) 0.58592 (19) 0.12805 (12) 0.0539 (6)
N30 0.1722 (3) 0.56958 (19) 0.08358 (11) 0.0513 (6)
Cl1 0.34362 (10) 0.38846 (6) 0.71439 (3) 0.0497 (2)
O11 0.3975 (4) 0.4197 (2) 0.65481 (12) 0.0874 (8)
O12 0.4636 (4) 0.3152 (2) 0.74296 (16) 0.1075 (11)
O13 0.1623 (4) 0.3525 (3) 0.70176 (15) 0.1099 (11)
O14 0.3557 (5) 0.4722 (3) 0.75703 (19) 0.1274 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0396 (2) 0.0337 (2) 0.0263 (2) −0.00564 (18) 0.00595 (16) −0.00305 (17)
O1W 0.0500 (11) 0.0362 (10) 0.0370 (10) −0.0037 (8) 0.0033 (8) 0.0006 (8)
C1 0.0586 (18) 0.066 (2) 0.0379 (15) 0.0157 (16) 0.0229 (14) 0.0050 (14)
C2 0.067 (3) 0.048 (2) 0.0299 (19) −0.006 (2) 0.0123 (19) −0.0028 (16)
C2' 0.028 (10) 0.13 (3) 0.028 (10) 0.024 (15) 0.012 (8) 0.024 (15)
C3 0.061 (3) 0.050 (2) 0.0314 (19) 0.004 (2) 0.0107 (19) −0.0017 (16)
C3' 0.038 (11) 0.067 (15) 0.042 (11) 0.008 (11) 0.009 (9) 0.025 (11)
C10 0.0382 (14) 0.0300 (13) 0.0308 (12) 0.0017 (11) 0.0003 (10) 0.0012 (10)
N11 0.0355 (11) 0.0312 (11) 0.0319 (11) −0.0005 (9) 0.0043 (9) 0.0027 (9)
C12 0.0395 (14) 0.0410 (15) 0.0422 (14) 0.0031 (12) 0.0087 (12) 0.0041 (12)
C13 0.0338 (14) 0.0504 (17) 0.0623 (19) −0.0011 (13) 0.0082 (13) 0.0105 (15)
C14 0.0404 (15) 0.0460 (17) 0.0608 (19) −0.0081 (13) −0.0045 (14) −0.0024 (14)
C15 0.0445 (15) 0.0411 (15) 0.0420 (15) −0.0022 (12) 0.0000 (12) −0.0062 (12)
C16 0.0401 (14) 0.0293 (12) 0.0294 (12) 0.0008 (11) 0.0026 (11) 0.0015 (10)
N17 0.0405 (12) 0.0364 (11) 0.0295 (11) −0.0032 (10) 0.0088 (9) 0.0005 (9)
N18 0.0467 (13) 0.0425 (13) 0.0332 (12) 0.0003 (10) 0.0102 (10) 0.0000 (9)
N19 0.0478 (13) 0.0429 (12) 0.0291 (11) 0.0050 (11) 0.0099 (10) 0.0025 (9)
N20 0.0505 (14) 0.0447 (13) 0.0287 (11) 0.0032 (11) 0.0060 (10) −0.0049 (10)
C20 0.0429 (15) 0.0370 (14) 0.0373 (14) −0.0021 (12) 0.0045 (12) 0.0000 (11)
N21 0.0537 (14) 0.0359 (12) 0.0386 (12) −0.0020 (11) 0.0054 (11) 0.0000 (10)
C22 0.067 (2) 0.0500 (18) 0.0426 (16) −0.0033 (15) 0.0075 (15) 0.0075 (14)
C23 0.069 (2) 0.086 (3) 0.0469 (17) −0.0004 (19) 0.0247 (16) 0.0100 (18)
C24 0.068 (2) 0.081 (2) 0.066 (2) 0.0221 (19) 0.0282 (18) 0.0054 (19)
C25 0.0602 (19) 0.0541 (19) 0.0534 (18) 0.0129 (16) 0.0153 (15) 0.0094 (15)
C26 0.0448 (15) 0.0314 (14) 0.0418 (15) 0.0009 (12) 0.0066 (12) −0.0003 (11)
N27 0.0533 (15) 0.0432 (13) 0.0511 (14) 0.0121 (11) 0.0145 (12) 0.0072 (11)
N28 0.0587 (16) 0.0535 (15) 0.0535 (15) 0.0171 (13) 0.0207 (13) 0.0091 (12)
N29 0.0618 (16) 0.0559 (15) 0.0484 (14) 0.0193 (13) 0.0228 (12) 0.0112 (12)
N30 0.0565 (15) 0.0568 (15) 0.0440 (13) 0.0168 (12) 0.0189 (12) 0.0100 (12)
Cl1 0.0474 (4) 0.0528 (4) 0.0465 (4) 0.0002 (3) 0.0006 (3) 0.0051 (3)
O11 0.0928 (19) 0.109 (2) 0.0586 (15) −0.0223 (17) 0.0069 (14) 0.0235 (15)
O12 0.104 (2) 0.095 (2) 0.113 (2) 0.0239 (18) −0.0123 (19) 0.0464 (19)
O13 0.0612 (17) 0.168 (3) 0.098 (2) −0.0375 (19) 0.0047 (15) −0.009 (2)
O14 0.141 (3) 0.111 (2) 0.137 (3) −0.016 (2) 0.042 (3) −0.068 (2)

Geometric parameters (Å, °)

Zn1—O1Wi 2.1079 (18) C12—H12 0.9300
Zn1—O1W 2.1079 (18) C13—C14 1.381 (4)
Zn1—N17i 2.149 (2) C13—H13 0.9300
Zn1—N17 2.149 (2) C14—C15 1.375 (4)
Zn1—N11i 2.170 (2) C14—H14 0.9300
Zn1—N11 2.170 (2) C15—H15 0.9300
O1W—H1WA 0.8646 C16—N20 1.325 (3)
O1W—H1WB 0.8638 C16—N17 1.341 (3)
C1—N19 1.470 (3) N17—N18 1.319 (3)
C1—C2 1.519 (4) N18—N19 1.319 (3)
C1—C2' 1.569 (17) N19—N20 1.331 (3)
C1—H1C 0.9700 C20—N21 1.343 (3)
C1—H1B 0.9700 C20—C25 1.385 (4)
C1—H1A' 0.9700 C20—C26 1.471 (4)
C1—H1B' 0.9700 N21—C22 1.339 (4)
C2—C3 1.503 (5) C22—C23 1.373 (5)
C2—H2A 0.9700 C22—H22 0.9300
C2—H2B 0.9699 C23—C24 1.383 (5)
C2'—C3' 1.485 (17) C23—H23 0.9300
C2'—H2A' 0.9700 C24—C25 1.375 (4)
C2'—H2B' 0.9700 C24—H24 0.9300
C3—N29 1.505 (4) C25—H25 0.9300
C3—H3A 0.9701 C26—N30 1.331 (3)
C3—H3B 0.9700 C26—N27 1.348 (3)
C3'—N29 1.534 (14) N27—N28 1.321 (3)
C3'—H3A' 0.9699 N28—N29 1.313 (3)
C3'—H3B' 0.9700 N29—N30 1.327 (3)
C10—N11 1.353 (3) Cl1—O12 1.387 (3)
C10—C15 1.373 (4) Cl1—O13 1.406 (3)
C10—C16 1.470 (3) Cl1—O14 1.420 (3)
N11—C12 1.342 (3) Cl1—O11 1.421 (3)
C12—C13 1.385 (4)
O1Wi—Zn1—O1W 180.00 (9) C10—N11—Zn1 115.41 (16)
O1Wi—Zn1—N17i 90.32 (8) N11—C12—C13 122.5 (3)
O1W—Zn1—N17i 89.68 (8) N11—C12—H12 118.7
O1Wi—Zn1—N17 89.68 (8) C13—C12—H12 118.7
O1W—Zn1—N17 90.32 (8) C14—C13—C12 119.1 (3)
N17i—Zn1—N17 180.00 (4) C14—C13—H13 120.5
O1Wi—Zn1—N11i 89.32 (8) C12—C13—H13 120.5
O1W—Zn1—N11i 90.68 (8) C15—C14—C13 119.1 (3)
N17i—Zn1—N11i 77.40 (8) C15—C14—H14 120.5
N17—Zn1—N11i 102.60 (8) C13—C14—H14 120.5
O1Wi—Zn1—N11 90.68 (8) C10—C15—C14 118.7 (3)
O1W—Zn1—N11 89.32 (8) C10—C15—H15 120.7
N17i—Zn1—N11 102.60 (8) C14—C15—H15 120.7
N17—Zn1—N11 77.40 (8) N20—C16—N17 112.2 (2)
N11i—Zn1—N11 180.00 (9) N20—C16—C10 127.0 (2)
Zn1—O1W—H1WA 113.6 N17—C16—C10 120.9 (2)
Zn1—O1W—H1WB 114.1 N18—N17—C16 107.2 (2)
H1WA—O1W—H1WB 107.9 N18—N17—Zn1 140.15 (17)
N19—C1—C2 113.0 (3) C16—N17—Zn1 112.61 (16)
N19—C1—C2' 108.8 (8) N17—N18—N19 104.8 (2)
N19—C1—H1C 109.1 N18—N19—N20 114.7 (2)
C2—C1—H1C 109.6 N18—N19—C1 121.8 (2)
N19—C1—H1B 108.9 N20—N19—C1 123.4 (2)
C2—C1—H1B 108.3 C16—N20—N19 101.1 (2)
H1C—C1—H1B 107.8 N21—C20—C25 123.0 (3)
N19—C1—H1A' 109.6 N21—C20—C26 116.6 (2)
C2'—C1—H1A' 108.6 C25—C20—C26 120.4 (2)
C2'—C1—H1B' 111.6 C22—N21—C20 116.9 (2)
H1A'—C1—H1B' 108.1 N21—C22—C23 123.8 (3)
C3—C2—C1 110.2 (3) N21—C22—H22 118.1
C3—C2—H2A 109.9 C23—C22—H22 118.1
C1—C2—H2A 110.0 C22—C23—C24 118.6 (3)
C3—C2—H2B 109.3 C22—C23—H23 120.7
C1—C2—H2B 109.4 C24—C23—H23 120.7
H2A—C2—H2B 108.0 C25—C24—C23 118.9 (3)
C3'—C2'—C1 115.7 (15) C25—C24—H24 120.6
C3'—C2'—H2A' 106.3 C23—C24—H24 120.6
C1—C2'—H2A' 106.9 C24—C25—C20 118.8 (3)
C3'—C2'—H2B' 110.7 C24—C25—H25 120.6
C1—C2'—H2B' 109.7 C20—C25—H25 120.6
H2A'—C2'—H2B' 107.1 N30—C26—N27 112.1 (2)
C2—C3—N29 108.8 (3) N30—C26—C20 122.2 (2)
C2—C3—H3A 109.5 N27—C26—C20 125.5 (2)
N29—C3—H3A 109.8 N28—N27—C26 106.2 (2)
C2—C3—H3B 110.3 N29—N28—N27 106.0 (2)
N29—C3—H3B 110.2 N28—N29—N30 114.3 (2)
H3A—C3—H3B 108.2 N28—N29—C3 123.6 (3)
C2'—C3'—N29 99.4 (12) N30—N29—C3 121.5 (3)
C2'—C3'—H3A' 114.6 N28—N29—C3' 115.9 (7)
N29—C3'—H3A' 113.1 N30—N29—C3' 119.4 (9)
C2'—C3'—H3B' 109.5 N29—N30—C26 101.5 (2)
N29—C3'—H3B' 110.4 O12—Cl1—O13 111.2 (2)
H3A'—C3'—H3B' 109.4 O12—Cl1—O14 108.5 (2)
N11—C10—C15 123.4 (2) O13—Cl1—O14 110.3 (2)
N11—C10—C16 113.5 (2) O12—Cl1—O11 109.3 (2)
C15—C10—C16 123.0 (2) O13—Cl1—O11 109.19 (18)
C12—N11—C10 117.2 (2) O14—Cl1—O11 108.3 (2)
C12—N11—Zn1 127.24 (17)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O11 0.86 2.01 2.869 (3) 172
O1W—H1WB···N21ii 0.86 1.97 2.833 (3) 178

Symmetry codes: (ii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2168).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Fan, R., Zhu, D., Ding, H., Mu, Y., Su, Q. & Xia, H. (2005). Synth. Met.149, 135–141.
  4. Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst.28, 1343–1352.
  5. Gallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). Inorg. Chim. Acta, 357, 505–512.
  6. Gong, Y.-Q., Wang, R.-H., Zhou, Y.-F., Yuan, D.-Q. & Hong, M.-C. (2004). J. Mol. Struct.705, 29–34.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Mizukami, S., Houjou, H., Sugaya, K., Koyama, E., Tokuhisa, H., Sasaki, T. & Kanesato, M. (2005). Chem. Mater.17, 50–56.
  9. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  10. Rodríguez-Diéguez, A., Salinas Castillo, A., Galli, S., Masciocchi, N., Gutiérrez-Zorrilla, J. M., Vitoria, P. & Colacio, E. (2007). Dalton Trans. pp. 1821–1828. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Wang, X., Tang, Y., Huang, X., Qu, Z., Che, C., Chan, P. W. H. & Xiong, R. (2005). Inorg. Chem.44, 5278–5285. [DOI] [PubMed]
  15. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006703/bg2168sup1.cif

e-64-0m541-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006703/bg2168Isup2.hkl

e-64-0m541-Isup2.hkl (171.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES