Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 12;64(Pt 4):m535–m536. doi: 10.1107/S160053680800620X

Chlorido{6,6′-dimethyl-2,2′-[1,2-phenyl­enebis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}manganese(III) mono­hydrate

Naser Eltaher Eltayeb a,, Siang Guan Teoh a, Suchada Chantrapromma b,§, Hoong-Kun Fun c,*, Rohana Adnan a
PMCID: PMC2960973  PMID: 21201996

Abstract

In the title complex, [Mn(C22H18N2O2)Cl]·H2O, the MnIII center is in a distorted square-pyramidal configuration, with the N2O2 dianionic tetra­dentate Schiff base ligand in the basal plane and the chloride ion in the apical position. The dihedral angle between the two outer phenolate rings of the tetra­dentate ligand is 8.25 (8)°. The central benzene ring makes dihedral angles of 4.31 (8) and 7.37 (8)° with the two outer phenolate rings. The water mol­ecule links to the complex via an O—H⋯Cl hydrogen bond. In addition, in the crystal structure, weak C—H⋯O inter­actions link the mol­ecules into infinite one-dimensional chains along [010]. The crystal is further stabilized by O—H⋯O and O—H⋯Cl hydrogen bonds, together with weak C—H⋯π inter­actions

Related literature

For bond-length data, see: Allen et al. (1987). For details of ring conformations, see: Cremer & Pople (1975). For related structures, see for example: Eltayeb et al. (2007); Habibi et al. (2007); Mitra et al. (2006); Naskar et al. (2004). For background to the application of manganese complexes, see for example: Dixit & Srinivasan (1988); Glatzel et al. (2004); Lu et al. (2006); Stallings et al. (1985).graphic file with name e-64-0m535-scheme1.jpg

Experimental

Crystal data

  • [Mn(C22H18N2O2)Cl]·H2O

  • M r = 450.79

  • Monoclinic, Inline graphic

  • a = 27.1836 (6) Å

  • b = 6.8033 (1) Å

  • c = 21.8896 (4) Å

  • β = 108.976 (1)°

  • V = 3828.22 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.86 mm−1

  • T = 100.0 (1) K

  • 0.42 × 0.26 × 0.11 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.714, T max = 0.915

  • 24765 measured reflections

  • 5586 independent reflections

  • 4459 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.10

  • 5586 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800620X/sj2469sup1.cif

e-64-0m535-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800620X/sj2469Isup2.hkl

e-64-0m535-Isup2.hkl (273.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl1 0.87 2.54 3.3544 (16) 157
O1W—H2W1⋯O1i 0.84 2.43 3.191 (2) 151
O1W—H2W1⋯O2i 0.84 2.53 3.2642 (19) 146
C16—H16A⋯O1Wii 0.93 2.48 3.364 (2) 160
C7—H7ACg1iii 0.93 3.39 3.9811 (17) 123

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C1–C6 benzene ring.

Acknowledgments

The authors thank the Malaysian Government, Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund research grant (PKIMIA/613308) and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/671064.

supplementary crystallographic information

Comment

Schiff base ligands containing strong donor sites such as oxygen and imine nitrogen atoms and their metal complexes have been the subject of extensive investigation. Manganese complexes with Schiff base ligands have attracted considerable interest in the past decades and recently, due to their variety of applications in chemistry, biology, physics and advanced materials. They have been used as models for the oxygen-evolving complex of photosystem II (Glatzel et al., 2004), in catalysis (Dixit and Srinivasan, 1988), as single-molecule magnets (Lu et al., 2006) and serve as models for the active sites of manganese-containing metal enzymes (Stallings et al., 1985). Recently, we reported the crystal structure of 4,4'-Dimethoxy-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenol, (Eltayeb et al., 2007). We report here the crystal structure of a Mn(III) complex of the closely related ligand 2,2'-{1,2-phenylenebis[nitrilomethylylidene]}bis(6-methylphenol).

In the title complex molecule (Fig. 1), the coordination sphere of the MnIII ion is a slightly distorted square-pyramid consisting of the N2O2 coordination plane of the dianionic tetradentate Schiff base ligand (coordinating through N1, N2, O1 and O2) and the axially bound chloride ion. The Mn—O distances [Mn1—O1 = 1.8672 (11) Å and Mn1—O2 = 1.8587 (13) Å] and Mn—N distances [Mn1—N1 = 1.9887 (4) Å and Mn1—N2 = 1.9922 (13) Å are quite similar to those observed in other related MnIII complexes of N2O2 Schiff base ligands (Habibi et al., 2007; Mitra et al., 2006). Other bond lengths and angles observed in the structure are also normal (Allen et al., 1987). Coordination of the the N2O2 chelate ligand to the MnIII ion results in the formation of a planar five-membered ring (Mn1/N1/N2/C8/C13) and two six-membered rings; the Mn1/O2/N2/C14/C15/C20 ring is almost planar whereas the Mn1/O1/N1/C1/C6/C7 ring adopts an envelope conformation with atom O1 displaced from the Mn1/N1/C1/C6/C7 plane by 0.159 (1) Å and with Cremer & Pople (1975) puckering parameters Q = 0.274 (1) °, θ = 61.3 (4) ° and φ = 12.8 (4) °. The dihedral angle between the two outer phenolate rings [C1–C6 and C15–C20] of the Schiff base ligand is 8.25 (8) °. The central benzene ring (C8–C13) makes dihedral angles of 4.31 (8) ° and 7.37 (8) ° with the two outer phenolate rings, respectively. The water molecule forms an O—H···Cl hydrogen bond with the complex.

In the crystal packing (Fig. 2), a weak C—H···O interaction [C16—H16···O1W; symmetry code -x, 1 - y, -z (Table 1)] links the molecules into infinite one-dimensional chains along the [0 1 0] direction. The crystal is further stabilized by O—H···O and O—H···Cl hydrogen bonds, together with weak C—H···π interactions (Table 1); Cg1 is the centroid of the C1–C6 benzene ring.

Experimental

The title compound was synthesized by adding 2-hydroxy-3-methylbenzaldehyde (0.5 ml, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol 95% (30 ml). The mixture was refluxed with stirring for half an hour. Manganese chloride tetrahydrate (0.394 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was refluxed at room temperature for three hours. A brown precipitate was obtained, washed with about 5 ml e thanol, dried, and then washed with copious quantities of diethylether. Brown single crystals of the title compound suitable for x-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature over several days.

Refinement

All H atoms were placed in calculated positions with d(O—H) = 0.84 and 0.87 Å, Uiso=1.2Ueq, d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso = 1.2Ueq(C) for CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.70 Å from C15 and the deepest hole is located at 0.66 Å from Mn1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. The O—H···Cl hydrogen bond is drawn as a dashed line

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the a axis showing the chains running along the [0 1 0] direction. Hydrogen bonds are drawn as dashed lines.

Crystal data

[Mn(C22H18N2O2)Cl]·H2O F000 = 1856
Mr = 450.79 Dx = 1.564 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 5586 reflections
a = 27.1836 (6) Å θ = 2.1–30.0º
b = 6.8033 (1) Å µ = 0.86 mm1
c = 21.8896 (4) Å T = 100.0 (1) K
β = 108.976 (1)º Block, brown
V = 3828.22 (12) Å3 0.42 × 0.26 × 0.11 mm
Z = 8

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 5586 independent reflections
Radiation source: fine-focus sealed tube 4459 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.038
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 2.1º
ω scans h = −38→38
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −9→9
Tmin = 0.714, Tmax = 0.915 l = −30→30
24765 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.100   w = 1/[σ2(Fo2) + (0.049P)2 + 1.3516P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
5586 reflections Δρmax = 0.49 e Å3
264 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.132825 (10) 0.85182 (4) 0.049972 (11) 0.01683 (8)
Cl1 0.174472 (18) 0.53896 (6) 0.07957 (2) 0.02546 (11)
O1 0.17748 (5) 1.01562 (18) 0.11197 (5) 0.0196 (3)
O2 0.08842 (5) 0.8545 (2) 0.09903 (6) 0.0257 (3)
N1 0.16961 (6) 0.9072 (2) −0.01268 (6) 0.0174 (3)
N2 0.07481 (6) 0.7877 (2) −0.03041 (6) 0.0169 (3)
C1 0.22593 (6) 1.0630 (2) 0.11779 (8) 0.0177 (3)
C2 0.25769 (7) 1.1380 (2) 0.17830 (8) 0.0185 (3)
C3 0.30824 (7) 1.1903 (3) 0.18499 (8) 0.0216 (4)
H3A 0.3294 1.2374 0.2247 0.026*
C4 0.32889 (7) 1.1756 (3) 0.13454 (9) 0.0226 (4)
H4A 0.3630 1.2136 0.1408 0.027*
C5 0.29856 (7) 1.1049 (3) 0.07576 (8) 0.0207 (3)
H5A 0.3121 1.0960 0.0419 0.025*
C6 0.24664 (7) 1.0451 (2) 0.06635 (8) 0.0181 (3)
C7 0.21695 (7) 0.9778 (2) 0.00333 (8) 0.0178 (3)
H7A 0.2324 0.9846 −0.0288 0.021*
C8 0.14187 (7) 0.8456 (2) −0.07694 (8) 0.0175 (3)
C9 0.16154 (7) 0.8447 (2) −0.12824 (8) 0.0207 (3)
H9A 0.1953 0.8873 −0.1223 0.025*
C10 0.13042 (8) 0.7801 (3) −0.18802 (8) 0.0237 (4)
H10A 0.1434 0.7798 −0.2225 0.028*
C11 0.08000 (8) 0.7153 (3) −0.19751 (8) 0.0240 (4)
H11A 0.0596 0.6715 −0.2381 0.029*
C12 0.05992 (7) 0.7154 (3) −0.14702 (8) 0.0219 (4)
H12A 0.0262 0.6722 −0.1535 0.026*
C13 0.09089 (7) 0.7810 (2) −0.08629 (7) 0.0178 (3)
C14 0.02675 (7) 0.7584 (2) −0.03375 (7) 0.0175 (3)
H14A 0.0030 0.7334 −0.0744 0.021*
C15 0.00722 (6) 0.7612 (2) 0.01947 (7) 0.0165 (3)
C16 −0.04602 (7) 0.7183 (2) 0.00705 (8) 0.0194 (3)
H16A −0.0668 0.6882 −0.0348 0.023*
C17 −0.06737 (7) 0.7204 (3) 0.05540 (8) 0.0209 (3)
H17A −0.1025 0.6931 0.0466 0.025*
C18 −0.03579 (7) 0.7639 (3) 0.11849 (8) 0.0228 (4)
H18A −0.0505 0.7646 0.1514 0.027*
C19 0.01650 (7) 0.8058 (3) 0.13328 (8) 0.0226 (4)
C20 0.03867 (7) 0.8075 (2) 0.08341 (8) 0.0181 (3)
C21 0.23506 (7) 1.1618 (3) 0.23208 (8) 0.0228 (4)
H21A 0.2627 1.1804 0.2722 0.034*
H21B 0.2156 1.0462 0.2348 0.034*
H21C 0.2124 1.2741 0.2236 0.034*
C22 0.05095 (8) 0.8465 (4) 0.20117 (9) 0.0432 (6)
H22A 0.0299 0.8682 0.2282 0.065*
H22B 0.0716 0.9612 0.2016 0.065*
H22C 0.0734 0.7359 0.2171 0.065*
O1W 0.10173 (6) 0.3038 (2) 0.15433 (6) 0.0365 (4)
H1W1 0.1210 0.3909 0.1437 0.055*
H2W1 0.1124 0.1985 0.1426 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.01223 (13) 0.02391 (14) 0.01463 (12) −0.00348 (10) 0.00478 (9) −0.00113 (9)
Cl1 0.0266 (2) 0.0250 (2) 0.0228 (2) 0.00082 (18) 0.00529 (17) 0.00321 (15)
O1 0.0134 (6) 0.0263 (6) 0.0202 (5) −0.0048 (5) 0.0070 (5) −0.0047 (5)
O2 0.0138 (6) 0.0470 (8) 0.0169 (5) −0.0103 (6) 0.0060 (5) −0.0055 (5)
N1 0.0156 (7) 0.0198 (6) 0.0170 (6) −0.0003 (6) 0.0056 (5) −0.0001 (5)
N2 0.0163 (7) 0.0194 (6) 0.0147 (6) −0.0012 (6) 0.0049 (5) 0.0005 (5)
C1 0.0132 (8) 0.0184 (8) 0.0218 (7) −0.0005 (6) 0.0061 (6) 0.0010 (6)
C2 0.0143 (8) 0.0195 (8) 0.0215 (7) −0.0001 (6) 0.0053 (6) −0.0002 (6)
C3 0.0133 (8) 0.0227 (8) 0.0264 (8) −0.0020 (7) 0.0030 (7) −0.0015 (6)
C4 0.0122 (8) 0.0242 (9) 0.0314 (9) −0.0012 (7) 0.0072 (7) 0.0019 (7)
C5 0.0164 (8) 0.0219 (8) 0.0267 (8) 0.0008 (7) 0.0108 (7) 0.0035 (6)
C6 0.0134 (8) 0.0191 (8) 0.0221 (7) 0.0003 (6) 0.0063 (6) 0.0022 (6)
C7 0.0154 (8) 0.0191 (8) 0.0207 (7) 0.0009 (6) 0.0082 (6) 0.0017 (6)
C8 0.0191 (8) 0.0174 (7) 0.0162 (7) 0.0012 (6) 0.0060 (6) 0.0011 (6)
C9 0.0222 (9) 0.0201 (8) 0.0218 (8) 0.0017 (7) 0.0100 (7) 0.0031 (6)
C10 0.0291 (10) 0.0254 (8) 0.0192 (7) 0.0043 (8) 0.0113 (7) 0.0020 (6)
C11 0.0276 (10) 0.0270 (9) 0.0158 (7) 0.0013 (8) 0.0047 (7) −0.0002 (6)
C12 0.0213 (9) 0.0254 (8) 0.0181 (7) −0.0004 (7) 0.0054 (7) 0.0002 (6)
C13 0.0192 (8) 0.0197 (8) 0.0152 (7) 0.0012 (7) 0.0065 (6) 0.0011 (6)
C14 0.0158 (8) 0.0187 (8) 0.0159 (7) −0.0013 (6) 0.0024 (6) −0.0010 (6)
C15 0.0138 (8) 0.0174 (7) 0.0178 (7) −0.0004 (6) 0.0044 (6) −0.0006 (6)
C16 0.0161 (8) 0.0209 (8) 0.0195 (7) −0.0023 (7) 0.0032 (6) −0.0016 (6)
C17 0.0123 (8) 0.0248 (8) 0.0256 (8) −0.0037 (7) 0.0060 (6) −0.0015 (7)
C18 0.0153 (9) 0.0325 (9) 0.0221 (8) −0.0043 (7) 0.0081 (7) −0.0007 (7)
C19 0.0151 (8) 0.0346 (9) 0.0184 (7) −0.0055 (7) 0.0061 (6) −0.0022 (7)
C20 0.0131 (8) 0.0236 (8) 0.0177 (7) −0.0040 (6) 0.0051 (6) −0.0011 (6)
C21 0.0173 (9) 0.0272 (9) 0.0232 (8) −0.0018 (7) 0.0056 (7) −0.0018 (7)
C22 0.0216 (10) 0.0924 (19) 0.0182 (8) −0.0194 (11) 0.0100 (8) −0.0081 (10)
O1W 0.0398 (9) 0.0460 (8) 0.0237 (6) 0.0046 (7) 0.0105 (6) 0.0020 (6)

Geometric parameters (Å, °)

Mn1—O2 1.8585 (13) C10—C11 1.389 (3)
Mn1—O1 1.8671 (11) C10—H10A 0.9300
Mn1—N1 1.9786 (14) C11—C12 1.383 (3)
Mn1—N2 1.9921 (13) C11—H11A 0.9300
Mn1—Cl1 2.3989 (5) C12—C13 1.396 (2)
O1—C1 1.321 (2) C12—H12A 0.9300
O2—C20 1.322 (2) C14—C15 1.429 (2)
N1—C7 1.310 (2) C14—H14A 0.9300
N1—C8 1.426 (2) C15—C16 1.413 (2)
N2—C14 1.300 (2) C15—C20 1.418 (2)
N2—C13 1.427 (2) C16—C17 1.363 (2)
C1—C6 1.418 (2) C16—H16A 0.9300
C1—C2 1.420 (2) C17—C18 1.400 (2)
C2—C3 1.380 (2) C17—H17A 0.9300
C2—C21 1.504 (2) C18—C19 1.381 (2)
C3—C4 1.396 (3) C18—H18A 0.9300
C3—H3A 0.9300 C19—C20 1.408 (2)
C4—C5 1.370 (2) C19—C22 1.502 (2)
C4—H4A 0.9300 C21—H21A 0.9600
C5—C6 1.418 (2) C21—H21B 0.9600
C5—H5A 0.9300 C21—H21C 0.9600
C6—C7 1.428 (2) C22—H22A 0.9600
C7—H7A 0.9300 C22—H22B 0.9600
C8—C9 1.392 (2) C22—H22C 0.9600
C8—C13 1.404 (2) O1W—H1W1 0.8718
C9—C10 1.379 (2) O1W—H2W1 0.8438
C9—H9A 0.9300
O2—Mn1—O1 88.00 (5) C9—C10—H10A 119.5
O2—Mn1—N1 165.54 (6) C11—C10—H10A 119.5
O1—Mn1—N1 91.97 (5) C12—C11—C10 120.46 (16)
O2—Mn1—N2 92.07 (6) C12—C11—H11A 119.8
O1—Mn1—N2 156.00 (6) C10—C11—H11A 119.8
N1—Mn1—N2 82.12 (6) C11—C12—C13 119.28 (17)
O2—Mn1—Cl1 101.00 (4) C11—C12—H12A 120.4
O1—Mn1—Cl1 101.25 (4) C13—C12—H12A 120.4
N1—Mn1—Cl1 93.19 (4) C12—C13—C8 120.00 (16)
N2—Mn1—Cl1 102.29 (4) C12—C13—N2 124.66 (16)
C1—O1—Mn1 127.44 (11) C8—C13—N2 115.34 (14)
C20—O2—Mn1 130.55 (11) N2—C14—C15 125.81 (14)
C7—N1—C8 122.01 (15) N2—C14—H14A 117.1
C7—N1—Mn1 123.94 (11) C15—C14—H14A 117.1
C8—N1—Mn1 113.79 (11) C16—C15—C20 119.12 (15)
C14—N2—C13 121.95 (13) C16—C15—C14 117.97 (14)
C14—N2—Mn1 125.15 (11) C20—C15—C14 122.91 (15)
C13—N2—Mn1 112.88 (11) C17—C16—C15 121.10 (15)
O1—C1—C6 122.88 (14) C17—C16—H16A 119.4
O1—C1—C2 117.53 (15) C15—C16—H16A 119.4
C6—C1—C2 119.58 (15) C16—C17—C18 119.26 (16)
C3—C2—C1 118.29 (16) C16—C17—H17A 120.4
C3—C2—C21 122.38 (15) C18—C17—H17A 120.4
C1—C2—C21 119.32 (15) C19—C18—C17 121.95 (17)
C2—C3—C4 122.69 (16) C19—C18—H18A 119.0
C2—C3—H3A 118.7 C17—C18—H18A 119.0
C4—C3—H3A 118.7 C18—C19—C20 119.16 (15)
C5—C4—C3 119.62 (17) C18—C19—C22 122.21 (17)
C5—C4—H4A 120.2 C20—C19—C22 118.63 (16)
C3—C4—H4A 120.2 O2—C20—C19 117.46 (14)
C4—C5—C6 120.24 (16) O2—C20—C15 123.15 (15)
C4—C5—H5A 119.9 C19—C20—C15 119.39 (15)
C6—C5—H5A 119.9 C2—C21—H21A 109.5
C5—C6—C1 119.56 (15) C2—C21—H21B 109.5
C5—C6—C7 117.09 (15) H21A—C21—H21B 109.5
C1—C6—C7 123.28 (15) C2—C21—H21C 109.5
N1—C7—C6 124.99 (15) H21A—C21—H21C 109.5
N1—C7—H7A 117.5 H21B—C21—H21C 109.5
C6—C7—H7A 117.5 C19—C22—H22A 109.5
C9—C8—C13 120.07 (15) C19—C22—H22B 109.5
C9—C8—N1 125.34 (16) H22A—C22—H22B 109.5
C13—C8—N1 114.59 (14) C19—C22—H22C 109.5
C10—C9—C8 119.27 (17) H22A—C22—H22C 109.5
C10—C9—H9A 120.4 H22B—C22—H22C 109.5
C8—C9—H9A 120.4 H1W1—O1W—H2W1 101.5
C9—C10—C11 120.92 (17)
O2—Mn1—O1—C1 168.47 (14) C5—C6—C7—N1 175.99 (16)
N1—Mn1—O1—C1 −26.00 (14) C1—C6—C7—N1 −7.1 (3)
N2—Mn1—O1—C1 −100.93 (18) C7—N1—C8—C9 2.8 (3)
Cl1—Mn1—O1—C1 67.65 (13) Mn1—N1—C8—C9 −171.59 (13)
O1—Mn1—O2—C20 162.44 (16) C7—N1—C8—C13 −177.59 (15)
N1—Mn1—O2—C20 72.3 (3) Mn1—N1—C8—C13 8.05 (18)
N2—Mn1—O2—C20 6.45 (16) C13—C8—C9—C10 0.0 (2)
Cl1—Mn1—O2—C20 −96.49 (15) N1—C8—C9—C10 179.64 (16)
O2—Mn1—N1—C7 109.0 (2) C8—C9—C10—C11 −0.3 (3)
O1—Mn1—N1—C7 19.33 (14) C9—C10—C11—C12 0.3 (3)
N2—Mn1—N1—C7 175.97 (14) C10—C11—C12—C13 −0.1 (3)
Cl1—Mn1—N1—C7 −82.06 (13) C11—C12—C13—C8 −0.1 (2)
O2—Mn1—N1—C8 −76.8 (2) C11—C12—C13—N2 −179.76 (15)
O1—Mn1—N1—C8 −166.43 (11) C9—C8—C13—C12 0.2 (2)
N2—Mn1—N1—C8 −9.80 (11) N1—C8—C13—C12 −179.47 (15)
Cl1—Mn1—N1—C8 92.18 (11) C9—C8—C13—N2 179.84 (14)
O2—Mn1—N2—C14 −2.08 (14) N1—C8—C13—N2 0.2 (2)
O1—Mn1—N2—C14 −91.82 (19) C14—N2—C13—C12 −10.0 (3)
N1—Mn1—N2—C14 −168.78 (14) Mn1—N2—C13—C12 171.41 (13)
Cl1—Mn1—N2—C14 99.64 (13) C14—N2—C13—C8 170.41 (15)
O2—Mn1—N2—C13 176.49 (11) Mn1—N2—C13—C8 −8.22 (18)
O1—Mn1—N2—C13 86.76 (17) C13—N2—C14—C15 179.65 (15)
N1—Mn1—N2—C13 9.79 (11) Mn1—N2—C14—C15 −1.9 (2)
Cl1—Mn1—N2—C13 −81.78 (11) N2—C14—C15—C16 −177.54 (16)
Mn1—O1—C1—C6 20.1 (2) N2—C14—C15—C20 3.3 (3)
Mn1—O1—C1—C2 −161.02 (11) C20—C15—C16—C17 −0.2 (2)
O1—C1—C2—C3 −179.27 (15) C14—C15—C16—C17 −179.31 (15)
C6—C1—C2—C3 −0.3 (2) C15—C16—C17—C18 −0.6 (3)
O1—C1—C2—C21 −0.6 (2) C16—C17—C18—C19 0.3 (3)
C6—C1—C2—C21 178.32 (15) C17—C18—C19—C20 0.8 (3)
C1—C2—C3—C4 1.1 (3) C17—C18—C19—C22 −178.0 (2)
C21—C2—C3—C4 −177.49 (16) Mn1—O2—C20—C19 173.81 (12)
C2—C3—C4—C5 −0.6 (3) Mn1—O2—C20—C15 −6.8 (3)
C3—C4—C5—C6 −0.6 (3) C18—C19—C20—O2 177.84 (17)
C4—C5—C6—C1 1.4 (2) C22—C19—C20—O2 −3.2 (3)
C4—C5—C6—C7 178.40 (15) C18—C19—C20—C15 −1.6 (3)
O1—C1—C6—C5 178.01 (15) C22—C19—C20—C15 177.32 (18)
C2—C1—C6—C5 −0.9 (2) C16—C15—C20—O2 −178.13 (16)
O1—C1—C6—C7 1.2 (3) C14—C15—C20—O2 1.0 (3)
C2—C1—C6—C7 −177.73 (15) C16—C15—C20—C19 1.3 (2)
C8—N1—C7—C6 178.93 (15) C14—C15—C20—C19 −179.62 (16)
Mn1—N1—C7—C6 −7.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W1···Cl1 0.87 2.54 3.3544 (16) 157
O1W—H2W1···O1i 0.84 2.43 3.191 (2) 151
O1W—H2W1···O2i 0.84 2.53 3.2642 (19) 146
C16—H16A···O1Wii 0.93 2.48 3.364 (2) 160
C7—H7A···Cg1iii 0.93 3.39 3.9811 (17) 123

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z; (iii) −x+1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2469).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  4. Dixit, P. S. & Srinivasan, K. (1988). Inorg. Chem 27, 4507–4509.
  5. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, o3234–o3235.
  6. Glatzel, P., Bergmann, U., Yano, J., Visser, H., Robblee, J. H., Gu, W., de Groot, F. M. F., Christou, G., Pecoraro, V. L., Cramer, S. P. & Yachandra, V. K. (2004). J. Am. Chem. Soc 126, 9946–9959. [DOI] [PMC free article] [PubMed]
  7. Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.
  8. Lu, Z., Yuan, M., Pan, F., Gao, S., Zhang, D. & Zhu, D. (2006). Inorg. Chem 45, 3538–3548. [DOI] [PubMed]
  9. Mitra, K., Biswas, S., Lucas, C. R. & Adhikary, B. (2006). Inorg. Chim. Acta, 359, 1997–2003.
  10. Naskar, S., Biswas, S., Mishra, D., Adhikary, B., Falvello, L. R., Soler, T., Schwalbe, C. H. & Chattopadhyay, S. K. (2004). Inorg. Chim. Acta, 357, 4257–4264.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Stallings, W. C., Pattridge, K. A., Strong, R. K. & Ludwig, M. L. (1985). J. Biol. Chem 260, 16424–16432. [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800620X/sj2469sup1.cif

e-64-0m535-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800620X/sj2469Isup2.hkl

e-64-0m535-Isup2.hkl (273.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES