Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):o710. doi: 10.1107/S1600536808006612

Diethyl 2,5-bis­[(E)-2-furylmethyl­ene­amino]thio­phene-3,4-dicarboxyl­ate

Stéphane Dufresne a, W G Skene a,*
PMCID: PMC2960980  PMID: 21202101

Abstract

The title compound, C20H18N2O6S, crystallizes as two independent mol­ecules that are disposed about a pseudo-inversion center (1/2, 1/4, 1/8). The mean planes of the two terminal furyl rings are twisted with respect to the central thio­phene ring by 7.33 (4) and 21.74 (5)° in one mol­ecule, and by 6.91 (4) and 39.80 (6)° in the other.

Related literature

For general background, see: Dufresne et al. (2007). For related literature, see: Dufresne et al. (2006). For compounds crystallizing with two independent mol­ecules in the space groups Pca21 and Pna21, disposed about a pseudo-inversion center, see: Marsh et al. (1998).graphic file with name e-64-0o710-scheme1.jpg

Experimental

Crystal data

  • C20H18N2O6S

  • M r = 414.42

  • Orthorhombic, Inline graphic

  • a = 8.2540 (3) Å

  • b = 10.1578 (3) Å

  • c = 46.087 (2) Å

  • V = 3864.0 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.85 mm−1

  • T = 220 (2) K

  • 0.28 × 0.23 × 0.14 mm

Data collection

  • Bruker SMART 2000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.640, T max = 0.781

  • 45562 measured reflections

  • 7392 independent reflections

  • 7164 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.087

  • S = 1.03

  • 7392 reflections

  • 527 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 3551 Friedel pairs

  • Flack parameter: 0.021 (10)

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006612/ng2429sup1.cif

e-64-0o710-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006612/ng2429Isup2.hkl

e-64-0o710-Isup2.hkl (361.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Sciences and Engineering Research Council Canada, the Centre for Self-Assembled Chemical Structures, and Canada Foundation for Innovation. SD thanks the Université de Montréal for a graduate scholarship.

supplementary crystallographic information

Comment

The molecule (I) was prepared as a result of our ongoing research of conjugated azomethines for electronic devices. The crystal structure of (I) confirmed that the compound consisted of a central thiophene capped by two terminal furans that are connected by two azomethine bonds. Even though two isomers are possible, only the more stable E isomer was confirmed by the resolved structure. The chemical structure occurs eight times in the Pca21 lattice as seen in Figure 2 with two different molecules of (I) per cell disposed near a false inversion center at 1/2, 1/4, 1/8. (Marsh et al., 1998) Neither solvent nor counter-ions were found in the closed-packed stacking.

A major point of interest is the azomethine bond. The measured imine bond lengths for C14—C15, N11—C15 and N11—C16 are 1.429 (2), 1.287 (2) and 1.375 (2) Å, respectively. The bond distances are comparable to an all thiophene bisazomethine analogue (Dufresne et al., 2006) whose analogous lengths are 1.441 (4), 1.272 (3) and 1.388 (3) Å.

The mean plane angles described by all three heterocycles of (I) are not entirely coplanar. The mean plane angles of the terminal furans are twisted 7.33 (4)° and 21.74 (5)° for one molecule of (I) with respect to the central thiohene. Similarly, the mean planes are twisted by 6.91 (4)° and 39.80 (6)° for the second molecule found in the lattice. Meanwhile, the average mean plane angles for the analogous all thiophene azomethine are 9.04 (4)° and 25.07 (6)°.

Interestingly, the three-dimensional network of (I) is very different than for its all thiophene analogue in which all the molecules are linear and aligned in one direction. Since no traditional hydrogen bonding occurs, the furans and thiophene adopt a mix of parallel and perpendicular π-stacking, according to Figure 3. One such π-stacking occurs between the O21 and the O21ii rings with a distance of 3.674 (3) Å between the planes. Other interactions involve the oxygen or sulfur acting as electron donors while the heterocycles act as electron acceptors. For example, O11î^ interacts with O11—C11—C12—C13—C14, S1 with S1i—C16i—C17i—C18i—C19i, S2 with S2ii—C26ii—C27ii—C28ii—C29ii and O26ii with O26—C211—C212—C213—C214. The centre-to-centre distances for these interactions are 3.517 (3), 3.659 (3), 3.680 (3) and 3.541 (3) Å, respectively.

Experimental

In 25 ml of anhydrous toluene was added 2-furaldehyde to which was subsequently added DABCO, TiCl4 in toluene at 0 °C and then diethyl 2,5-diaminothiophene-3,4-dicarboxylate. The mixture was then refluxed for two hours after which the solvent was removed. Purification by flash chromatography yielded the title product as a red solid. Single crystals of (I) were obtained by slow evaporation of a acetone.

Refinement

H atoms were placed in calculated positions (C—H = 0.94–0.97 Å) and included in the refinement in the riding-model approximation, with Uĩso~(H) = 1.2 U~eq~(C).

Figures

Fig. 1.

Fig. 1.

ORTEP representation of the two different molecules of (I) with the numbering scheme adopted (Farrugia 1997). Ellipsoids drawn at 30% probability level.

Fig. 2.

Fig. 2.

The three-dimensional network demonstrating the closed packing in the lattice.

Fig. 3.

Fig. 3.

Supramolecular structure showing the intermolecular π-stacking giving the structural arrangement. Dashed lines indicate the π-stacking. [Symmetry codes: (i) 1/2 + x, -y, z; (ii) 1/2 + x, 1 - y, z.]

Crystal data

C20H18N2O6S F000 = 1728
Mr = 414.42 Dx = 1.425 Mg m3
Orthorhombic, Pca21 Cu Kα radiation λ = 1.54178 Å
Hall symbol: P 2c -2ac Cell parameters from 26576 reflections
a = 8.2540 (3) Å θ = 3.8–71.8º
b = 10.1578 (3) Å µ = 1.85 mm1
c = 46.087 (2) Å T = 220 (2) K
V = 3864.0 (2) Å3 Block, red
Z = 8 0.28 × 0.23 × 0.14 mm

Data collection

Bruker SMART 2000 diffractometer 7392 independent reflections
Radiation source: X-ray Sealed Tube 7164 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
Detector resolution: 5.5 pixels mm-1 θmax = 71.9º
T = 220(2) K θmin = 1.9º
ω scans h = −9→8
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.640, Tmax = 0.781 l = −56→55
45562 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032   w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3926P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087 (Δ/σ)max = 0.001
S = 1.03 Δρmax = 0.25 e Å3
7392 reflections Δρmin = −0.21 e Å3
527 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 3551 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.021 (10)
Secondary atom site location: difference Fourier map

Special details

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 2 K Charged-Coupled Device (CCD) Area Detector using the program SMART and normal focus sealed tube source graphite monochromated Cu—Kα radiation. The crystal-to-detector distance was 4.908 cm, and the data collection was carried out in 512 x 512 pixel mode, utilizing 4 x 4 pixel binning. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 9.0 degree scan in 30 frames over four different parts of the reciprocal space (120 frames total). One complete sphere of data was collected, to better than 0.8Å resolution. Upon completion of the data collection, the first 101 frames were recollected in order to improve the decay correction analysis.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.88387 (5) 0.03066 (4) 0.280712 (9) 0.02929 (11)
O11 0.7551 (2) 0.00706 (16) 0.39480 (3) 0.0514 (4)
O12 0.62152 (17) 0.36759 (14) 0.33348 (3) 0.0384 (3)
O13 0.42379 (16) 0.28718 (14) 0.30508 (3) 0.0378 (3)
O14 0.61655 (17) 0.44246 (12) 0.26116 (3) 0.0382 (3)
O15 0.5786 (2) 0.31388 (17) 0.22228 (3) 0.0510 (4)
O16 0.99383 (17) 0.13629 (12) 0.16959 (3) 0.0347 (3)
N11 0.76907 (19) 0.08247 (14) 0.33642 (3) 0.0295 (3)
N12 0.86068 (18) 0.13026 (14) 0.22505 (3) 0.0271 (3)
C11 0.7720 (4) −0.0574 (2) 0.42031 (5) 0.0579 (7)
H11 0.7177 −0.0343 0.4375 0.069*
C12 0.8754 (3) −0.1583 (2) 0.41805 (5) 0.0496 (6)
H12 0.9055 −0.2177 0.4327 0.060*
C13 0.9302 (3) −0.1569 (2) 0.38902 (5) 0.0444 (5)
H13 1.0052 −0.2151 0.3806 0.053*
C14 0.8537 (2) −0.0556 (2) 0.37561 (4) 0.0330 (4)
C15 0.8600 (2) −0.01021 (18) 0.34629 (5) 0.0307 (4)
H15 0.9342 −0.0501 0.3336 0.037*
C16 0.7747 (2) 0.11598 (16) 0.30753 (4) 0.0255 (3)
C17 0.6861 (2) 0.21581 (15) 0.29546 (3) 0.0236 (3)
C18 0.7036 (2) 0.22618 (15) 0.26477 (3) 0.0241 (3)
C19 0.8078 (2) 0.13381 (15) 0.25344 (3) 0.0252 (3)
C110 0.9376 (2) 0.02961 (17) 0.21527 (4) 0.0290 (4)
H110 0.9487 −0.0449 0.2272 0.035*
C111 1.0068 (2) 0.02703 (17) 0.18691 (4) 0.0280 (4)
C112 1.0949 (2) −0.06749 (19) 0.17307 (4) 0.0360 (4)
H112 1.1213 −0.1514 0.1803 0.043*
C113 1.1388 (3) −0.0152 (2) 0.14591 (5) 0.0391 (4)
H113 1.2003 −0.0572 0.1315 0.047*
C114 1.0754 (3) 0.1067 (2) 0.14468 (4) 0.0378 (4)
H114 1.0859 0.1640 0.1288 0.045*
C115 0.5773 (2) 0.30049 (16) 0.31350 (4) 0.0249 (3)
C116 0.3026 (3) 0.3701 (2) 0.31926 (6) 0.0494 (6)
H11A 0.2905 0.4532 0.3087 0.059*
H11B 0.3363 0.3901 0.3392 0.059*
C117 0.1467 (3) 0.2974 (2) 0.31946 (6) 0.0492 (5)
H11C 0.1238 0.2647 0.3001 0.074*
H11D 0.0604 0.3560 0.3256 0.074*
H11E 0.1539 0.2239 0.3328 0.074*
C118 0.6262 (2) 0.32909 (17) 0.24645 (4) 0.0278 (4)
C119 0.5416 (3) 0.55525 (19) 0.24660 (6) 0.0458 (5)
H11F 0.4718 0.6025 0.2603 0.055*
H11G 0.4742 0.5243 0.2305 0.055*
C120 0.6692 (3) 0.6460 (3) 0.23539 (7) 0.0606 (7)
H12A 0.7376 0.6745 0.2513 0.091*
H12B 0.6184 0.7220 0.2265 0.091*
H12C 0.7346 0.6003 0.2211 0.091*
S2 1.11876 (5) 0.47091 (4) 0.029580 (9) 0.02897 (11)
O21 1.2717 (2) 0.38213 (14) 0.13750 (3) 0.0462 (3)
O22 0.8366 (2) 0.17631 (14) 0.08863 (3) 0.0453 (4)
O23 0.85661 (17) 0.05444 (12) 0.04810 (3) 0.0319 (3)
O24 0.66327 (15) 0.21385 (13) 0.00495 (3) 0.0335 (3)
O25 0.86107 (17) 0.12997 (13) −0.02296 (3) 0.0367 (3)
O26 0.9906 (2) 0.49263 (17) −0.08447 (3) 0.0505 (4)
N21 1.10411 (18) 0.37203 (15) 0.08486 (3) 0.0288 (3)
N22 1.00539 (18) 0.41810 (15) −0.02615 (3) 0.0292 (3)
C21 1.3475 (3) 0.4236 (3) 0.16214 (5) 0.0555 (6)
H21 1.3902 0.3669 0.1763 0.067*
C22 1.3536 (3) 0.5541 (3) 0.16356 (5) 0.0564 (6)
H22 1.3983 0.6050 0.1786 0.068*
C23 1.2795 (3) 0.6011 (2) 0.13803 (5) 0.0498 (6)
H23 1.2654 0.6895 0.1325 0.060*
C24 1.2323 (3) 0.49250 (19) 0.12296 (4) 0.0343 (4)
C25 1.1536 (2) 0.48230 (18) 0.09525 (4) 0.0329 (4)
H25 1.1377 0.5593 0.0843 0.039*
C26 1.0469 (2) 0.36631 (16) 0.05677 (4) 0.0260 (3)
C27 0.9456 (2) 0.27116 (15) 0.04542 (4) 0.0233 (3)
C28 0.92640 (19) 0.28218 (16) 0.01478 (3) 0.0236 (3)
C29 1.0115 (2) 0.38413 (16) 0.00280 (4) 0.0256 (3)
C210 1.0948 (2) 0.51116 (18) −0.03598 (4) 0.0302 (4)
H210 1.1678 0.5520 −0.0232 0.036*
C211 1.0894 (2) 0.55595 (19) −0.06526 (4) 0.0323 (4)
C212 1.1659 (3) 0.6574 (2) −0.07884 (4) 0.0424 (5)
H212 1.2407 0.7160 −0.0704 0.051*
C213 1.1120 (3) 0.6582 (2) −0.10780 (5) 0.0482 (6)
H213 1.1429 0.7172 −0.1225 0.058*
C214 1.0072 (4) 0.5572 (2) −0.11012 (5) 0.0576 (7)
H214 0.9525 0.5343 −0.1273 0.069*
C215 0.8737 (2) 0.16534 (16) 0.06346 (4) 0.0257 (3)
C216 0.7854 (2) −0.05829 (18) 0.06304 (5) 0.0363 (4)
H21A 0.7214 −0.1101 0.0492 0.044*
H21B 0.7124 −0.0270 0.0783 0.044*
C217 0.9139 (3) −0.1440 (2) 0.07620 (6) 0.0536 (6)
H21C 0.9851 −0.1763 0.0610 0.080*
H21D 0.8635 −0.2178 0.0860 0.080*
H21E 0.9764 −0.0931 0.0901 0.080*
C218 0.8169 (2) 0.19833 (15) −0.00340 (3) 0.0249 (3)
C219 0.5416 (2) 0.1321 (2) −0.00932 (5) 0.0455 (5)
H21F 0.5309 0.0478 0.0009 0.055*
H21G 0.5738 0.1143 −0.0294 0.055*
C220 0.3842 (2) 0.2042 (2) −0.00878 (6) 0.0467 (6)
H22A 0.3669 0.2411 0.0104 0.070*
H22B 0.2968 0.1438 −0.0133 0.070*
H22C 0.3865 0.2745 −0.0230 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0359 (2) 0.0292 (2) 0.0227 (2) 0.00906 (15) 0.00331 (16) 0.00053 (17)
O11 0.0749 (11) 0.0499 (8) 0.0293 (8) 0.0218 (8) 0.0123 (7) 0.0054 (7)
O12 0.0412 (8) 0.0407 (7) 0.0332 (7) 0.0033 (6) −0.0031 (5) −0.0142 (6)
O13 0.0291 (6) 0.0407 (7) 0.0436 (7) 0.0044 (5) 0.0006 (6) −0.0180 (6)
O14 0.0474 (8) 0.0238 (6) 0.0435 (8) 0.0055 (5) −0.0125 (6) −0.0008 (6)
O15 0.0705 (10) 0.0548 (9) 0.0277 (7) 0.0281 (8) −0.0133 (7) −0.0079 (6)
O16 0.0452 (8) 0.0314 (6) 0.0277 (7) 0.0046 (5) 0.0076 (5) 0.0025 (5)
N11 0.0363 (8) 0.0294 (7) 0.0229 (7) 0.0022 (6) 0.0018 (6) 0.0018 (6)
N12 0.0308 (7) 0.0287 (7) 0.0218 (7) 0.0014 (5) 0.0027 (5) −0.0020 (6)
C11 0.0882 (19) 0.0577 (13) 0.0278 (11) 0.0163 (13) 0.0123 (11) 0.0064 (10)
C12 0.0674 (16) 0.0512 (13) 0.0302 (11) 0.0067 (10) −0.0023 (9) 0.0112 (10)
C13 0.0561 (13) 0.0453 (11) 0.0317 (10) 0.0118 (10) −0.0023 (9) 0.0055 (9)
C14 0.0394 (10) 0.0345 (9) 0.0251 (9) 0.0046 (7) 0.0006 (7) −0.0008 (8)
C15 0.0359 (10) 0.0308 (9) 0.0255 (11) 0.0034 (7) 0.0014 (7) −0.0008 (7)
C16 0.0283 (8) 0.0256 (7) 0.0228 (7) −0.0006 (6) 0.0029 (6) −0.0028 (6)
C17 0.0267 (8) 0.0214 (7) 0.0228 (7) −0.0031 (6) 0.0009 (6) −0.0014 (6)
C18 0.0274 (8) 0.0228 (7) 0.0222 (7) −0.0016 (6) 0.0013 (6) −0.0013 (6)
C19 0.0305 (9) 0.0229 (7) 0.0222 (8) −0.0004 (6) 0.0009 (6) 0.0010 (6)
C110 0.0358 (10) 0.0293 (9) 0.0221 (8) 0.0045 (7) 0.0013 (7) 0.0002 (6)
C111 0.0325 (9) 0.0284 (9) 0.0230 (8) 0.0036 (7) 0.0001 (6) −0.0006 (7)
C112 0.0427 (10) 0.0368 (9) 0.0285 (9) 0.0107 (8) 0.0003 (7) −0.0026 (8)
C113 0.0453 (11) 0.0483 (11) 0.0237 (10) 0.0086 (9) 0.0058 (7) −0.0044 (8)
C114 0.0488 (11) 0.0420 (10) 0.0225 (8) 0.0008 (9) 0.0058 (7) 0.0031 (7)
C115 0.0322 (9) 0.0214 (7) 0.0212 (8) −0.0020 (6) 0.0034 (7) 0.0004 (6)
C116 0.0347 (12) 0.0512 (12) 0.0623 (14) 0.0084 (9) 0.0072 (9) −0.0253 (11)
C117 0.0364 (11) 0.0559 (13) 0.0555 (14) 0.0069 (9) 0.0085 (9) −0.0017 (11)
C118 0.0263 (9) 0.0296 (8) 0.0275 (9) 0.0041 (7) 0.0036 (6) −0.0011 (7)
C119 0.0457 (12) 0.0297 (9) 0.0621 (14) 0.0098 (8) −0.0105 (10) 0.0054 (9)
C120 0.0605 (15) 0.0490 (13) 0.0724 (17) 0.0167 (11) 0.0151 (13) 0.0281 (12)
S2 0.0361 (2) 0.0274 (2) 0.0234 (2) −0.00820 (15) −0.00294 (16) 0.00184 (16)
O21 0.0663 (10) 0.0405 (7) 0.0319 (7) 0.0001 (7) −0.0103 (7) −0.0015 (6)
O22 0.0677 (10) 0.0425 (8) 0.0257 (7) −0.0186 (7) 0.0124 (6) −0.0059 (6)
O23 0.0440 (7) 0.0229 (5) 0.0289 (6) −0.0054 (5) 0.0046 (5) −0.0007 (5)
O24 0.0275 (6) 0.0335 (6) 0.0397 (7) −0.0028 (5) −0.0026 (5) −0.0114 (5)
O25 0.0410 (8) 0.0378 (7) 0.0312 (7) −0.0018 (6) 0.0029 (5) −0.0119 (6)
O26 0.0727 (11) 0.0496 (8) 0.0292 (8) −0.0227 (8) −0.0116 (7) 0.0065 (6)
N21 0.0352 (8) 0.0284 (7) 0.0226 (7) −0.0022 (6) −0.0017 (5) −0.0007 (6)
N22 0.0351 (8) 0.0300 (7) 0.0227 (7) −0.0028 (6) −0.0010 (6) 0.0026 (6)
C21 0.0706 (16) 0.0680 (15) 0.0279 (11) 0.0011 (12) −0.0118 (9) 0.0040 (10)
C22 0.0795 (17) 0.0611 (14) 0.0287 (11) −0.0281 (13) −0.0110 (10) −0.0050 (10)
C23 0.0813 (17) 0.0374 (10) 0.0307 (10) −0.0234 (11) −0.0055 (10) −0.0010 (8)
C24 0.0452 (11) 0.0330 (9) 0.0246 (9) −0.0095 (8) 0.0010 (7) −0.0002 (7)
C25 0.0433 (10) 0.0300 (9) 0.0253 (9) −0.0031 (7) −0.0013 (8) −0.0007 (7)
C26 0.0297 (9) 0.0240 (7) 0.0243 (8) 0.0018 (6) −0.0007 (6) 0.0007 (6)
C27 0.0262 (8) 0.0206 (7) 0.0230 (8) 0.0027 (6) −0.0004 (6) −0.0013 (6)
C28 0.0256 (8) 0.0222 (7) 0.0229 (8) 0.0028 (6) 0.0005 (6) −0.0012 (6)
C29 0.0292 (8) 0.0241 (8) 0.0236 (8) 0.0007 (6) −0.0017 (6) 0.0001 (6)
C210 0.0370 (10) 0.0302 (8) 0.0233 (10) −0.0031 (7) −0.0005 (8) −0.0008 (7)
C211 0.0396 (10) 0.0320 (9) 0.0252 (9) −0.0047 (7) 0.0008 (7) −0.0002 (8)
C212 0.0553 (12) 0.0416 (11) 0.0303 (10) −0.0136 (9) 0.0025 (9) 0.0051 (8)
C213 0.0665 (15) 0.0490 (13) 0.0292 (10) −0.0076 (10) 0.0045 (9) 0.0123 (9)
C214 0.0891 (18) 0.0600 (14) 0.0237 (10) −0.0137 (13) −0.0135 (10) 0.0078 (10)
C215 0.0282 (9) 0.0270 (8) 0.0219 (8) −0.0007 (6) 0.0000 (6) −0.0005 (6)
C216 0.0374 (10) 0.0292 (9) 0.0423 (10) −0.0100 (7) 0.0035 (8) 0.0040 (8)
C217 0.0505 (13) 0.0393 (12) 0.0711 (17) −0.0130 (10) −0.0103 (12) 0.0223 (11)
C218 0.0308 (9) 0.0211 (7) 0.0227 (8) 0.0003 (6) −0.0029 (7) 0.0038 (6)
C219 0.0321 (10) 0.0445 (11) 0.0597 (14) −0.0065 (8) −0.0065 (9) −0.0176 (10)
C220 0.0333 (11) 0.0522 (13) 0.0547 (14) −0.0043 (8) −0.0070 (9) 0.0035 (11)

Geometric parameters (Å, °)

S1—C19 1.7528 (16) S2—C26 1.7468 (17)
S1—C16 1.7579 (16) S2—C29 1.7563 (17)
O11—C11 1.353 (3) O21—C24 1.346 (2)
O11—C14 1.360 (2) O21—C21 1.363 (3)
O12—C115 1.202 (2) O22—C215 1.205 (2)
O13—C115 1.332 (2) O23—C215 1.338 (2)
O13—C116 1.462 (2) O23—C216 1.460 (2)
O14—C118 1.339 (2) O24—C218 1.334 (2)
O14—C119 1.465 (2) O24—C219 1.460 (2)
O15—C118 1.191 (2) O25—C218 1.195 (2)
O16—C114 1.364 (2) O26—C214 1.359 (3)
O16—C111 1.371 (2) O26—C211 1.365 (2)
N11—C15 1.287 (2) N21—C25 1.285 (2)
N11—C16 1.375 (2) N21—C26 1.379 (2)
N12—C110 1.285 (2) N22—C210 1.282 (2)
N12—C19 1.380 (2) N22—C29 1.379 (2)
C11—C12 1.338 (3) C21—C22 1.329 (4)
C11—H11 0.94 C21—H21 0.94
C12—C13 1.412 (3) C22—C23 1.410 (3)
C12—H12 0.94 C22—H22 0.94
C13—C14 1.356 (3) C23—C24 1.361 (3)
C13—H13 0.94 C23—H23 0.94
C14—C15 1.429 (3) C24—C25 1.437 (3)
C15—H15 0.94 C25—H25 0.94
C16—C17 1.368 (2) C26—C27 1.380 (2)
C17—C18 1.426 (2) C27—C28 1.425 (2)
C17—C115 1.496 (2) C27—C215 1.483 (2)
C18—C19 1.376 (2) C28—C29 1.368 (2)
C18—C118 1.488 (2) C28—C218 1.498 (2)
C110—C111 1.426 (2) C210—C211 1.425 (3)
C110—H110 0.94 C210—H210 0.94
C111—C112 1.363 (2) C211—C212 1.361 (3)
C112—C113 1.407 (3) C212—C213 1.407 (3)
C112—H112 0.94 C212—H212 0.94
C113—C114 1.346 (3) C213—C214 1.347 (3)
C113—H113 0.94 C213—H213 0.94
C114—H114 0.94 C214—H214 0.94
C116—C117 1.484 (3) C216—C217 1.500 (3)
C116—H11a 0.98 C216—H21a 0.98
C116—H11b 0.98 C216—H21b 0.98
C117—H11c 0.97 C217—H21c 0.97
C117—H11d 0.97 C217—H21d 0.97
C117—H11e 0.97 C217—H21e 0.97
C119—C120 1.492 (3) C219—C220 1.491 (3)
C119—H11f 0.98 C219—H21f 0.98
C119—H11g 0.98 C219—H21g 0.98
C120—H12a 0.97 C220—H22a 0.97
C120—H12b 0.97 C220—H22b 0.97
C120—H12c 0.97 C220—H22c 0.97
C19—S1—C16 91.48 (8) C26—S2—C29 91.57 (8)
C11—O11—C14 106.08 (17) C24—O21—C21 105.59 (17)
C115—O13—C116 117.53 (15) C215—O23—C216 116.98 (14)
C118—O14—C119 117.79 (16) C218—O24—C219 117.17 (14)
C114—O16—C111 105.86 (14) C214—O26—C211 106.05 (17)
C15—N11—C16 120.24 (16) C25—N21—C26 119.69 (16)
C110—N12—C19 120.65 (15) C210—N22—C29 120.37 (16)
C12—C11—O11 111.6 (2) C22—C21—O21 111.5 (2)
C12—C11—H11 124.2 C22—C21—H21 124.3
O11—C11—H11 124.2 O21—C21—H21 124.3
C11—C12—C13 105.7 (2) C21—C22—C23 106.3 (2)
C11—C12—H12 127.2 C21—C22—H22 126.8
C13—C12—H12 127.2 C23—C22—H22 126.8
C14—C13—C12 106.9 (2) C24—C23—C22 106.0 (2)
C14—C13—H13 126.6 C24—C23—H23 127
C12—C13—H13 126.6 C22—C23—H23 127
C13—C14—O11 109.71 (18) O21—C24—C23 110.61 (17)
C13—C14—C15 131.22 (19) O21—C24—C25 119.47 (17)
O11—C14—C15 119.06 (17) C23—C24—C25 129.91 (19)
N11—C15—C14 123.32 (18) N21—C25—C24 122.54 (17)
N11—C15—H15 118.3 N21—C25—H25 118.7
C14—C15—H15 118.3 C24—C25—H25 118.7
C17—C16—N11 123.99 (15) N21—C26—C27 126.33 (15)
C17—C16—S1 110.70 (13) N21—C26—S2 122.09 (13)
N11—C16—S1 125.17 (13) C27—C26—S2 111.08 (12)
C16—C17—C18 113.83 (15) C26—C27—C28 112.81 (15)
C16—C17—C115 121.40 (15) C26—C27—C215 122.50 (15)
C18—C17—C115 124.73 (15) C28—C27—C215 124.60 (15)
C19—C18—C17 112.93 (15) C29—C28—C27 113.72 (15)
C19—C18—C118 122.16 (15) C29—C28—C218 120.97 (15)
C17—C18—C118 124.84 (15) C27—C28—C218 125.21 (15)
C18—C19—N12 125.14 (15) C28—C29—N22 124.16 (15)
C18—C19—S1 111.07 (12) C28—C29—S2 110.81 (13)
N12—C19—S1 123.44 (13) N22—C29—S2 124.93 (13)
N12—C110—C111 122.27 (16) N22—C210—C211 123.53 (18)
N12—C110—H110 118.9 N22—C210—H210 118.2
C111—C110—H110 118.9 C211—C210—H210 118.2
C112—C111—O16 109.84 (16) C212—C211—O26 109.61 (17)
C112—C111—C110 130.94 (17) C212—C211—C210 131.53 (19)
O16—C111—C110 119.16 (15) O26—C211—C210 118.85 (17)
C111—C112—C113 106.72 (17) C211—C212—C213 107.10 (19)
C111—C112—H112 126.6 C211—C212—H212 126.5
C113—C112—H112 126.6 C213—C212—H212 126.5
C114—C113—C112 106.54 (17) C214—C213—C212 105.89 (19)
C114—C113—H113 126.7 C214—C213—H213 127.1
C112—C113—H113 126.7 C212—C213—H213 127.1
C113—C114—O16 111.04 (17) C213—C214—O26 111.34 (19)
C113—C114—H114 124.5 C213—C214—H214 124.3
O16—C114—H114 124.5 O26—C214—H214 124.3
O12—C115—O13 124.72 (16) O22—C215—O23 124.07 (16)
O12—C115—C17 124.69 (17) O22—C215—C27 125.07 (16)
O13—C115—C17 110.55 (14) O23—C215—C27 110.86 (14)
O13—C116—C117 108.03 (17) O23—C216—C217 111.14 (16)
O13—C116—H11A 110.1 O23—C216—H21A 109.4
C117—C116—H11A 110.1 C217—C216—H21A 109.4
O13—C116—H11B 110.1 O23—C216—H21B 109.4
C117—C116—H11B 110.1 C217—C216—H21B 109.4
H11A—C116—H11B 108.4 H21A—C216—H21B 108
C116—C117—H11C 109.5 C216—C217—H21C 109.5
C116—C117—H11D 109.5 C216—C217—H21D 109.5
H11C—C117—H11D 109.5 H21C—C217—H21D 109.5
C116—C117—H11E 109.5 C216—C217—H21E 109.5
H11C—C117—H11E 109.5 H21C—C217—H21E 109.5
H11D—C117—H11E 109.5 H21D—C217—H21E 109.5
O15—C118—O14 124.43 (17) O25—C218—O24 125.20 (16)
O15—C118—C18 125.53 (16) O25—C218—C28 124.60 (16)
O14—C118—C18 110.04 (14) O24—C218—C28 110.19 (14)
O14—C119—C120 110.11 (18) O24—C219—C220 108.20 (17)
O14—C119—H11F 109.6 O24—C219—H21F 110.1
C120—C119—H11F 109.6 C220—C219—H21F 110.1
O14—C119—H11G 109.6 O24—C219—H21G 110.1
C120—C119—H11G 109.6 C220—C219—H21G 110.1
H11F—C119—H11G 108.2 H21F—C219—H21G 108.4
C119—C120—H12A 109.5 C219—C220—H22A 109.5
C119—C120—H12B 109.5 C219—C220—H22B 109.5
H12A—C120—H12B 109.5 H22A—C220—H22B 109.5
C119—C120—H12C 109.5 C219—C220—H22C 109.5
H12A—C120—H12C 109.5 H22A—C220—H22C 109.5
H12B—C120—H12C 109.5 H22B—C220—H22C 109.5
C14—O11—C11—C12 −0.5 (3) C24—O21—C21—C22 1.1 (3)
O11—C11—C12—C13 0.8 (3) O21—C21—C22—C23 −1.0 (3)
C11—C12—C13—C14 −0.8 (3) C21—C22—C23—C24 0.5 (3)
C12—C13—C14—O11 0.5 (3) C21—O21—C24—C23 −0.8 (3)
C12—C13—C14—C15 −178.5 (2) C21—O21—C24—C25 178.3 (2)
C11—O11—C14—C13 0.0 (3) C22—C23—C24—O21 0.2 (3)
C11—O11—C14—C15 179.1 (2) C22—C23—C24—C25 −178.8 (2)
C16—N11—C15—C14 −176.15 (18) C26—N21—C25—C24 −172.38 (17)
C13—C14—C15—N11 174.4 (2) O21—C24—C25—N21 7.1 (3)
O11—C14—C15—N11 −4.5 (3) C23—C24—C25—N21 −173.9 (2)
C15—N11—C16—C17 −177.87 (18) C25—N21—C26—C27 −158.36 (18)
C15—N11—C16—S1 6.9 (2) C25—N21—C26—S2 30.5 (2)
C19—S1—C16—C17 0.44 (13) C29—S2—C26—N21 172.08 (15)
C19—S1—C16—N11 176.23 (15) C29—S2—C26—C27 −0.28 (13)
N11—C16—C17—C18 −175.90 (15) N21—C26—C27—C28 −171.76 (16)
S1—C16—C17—C18 −0.05 (19) S2—C26—C27—C28 0.21 (18)
N11—C16—C17—C115 1.8 (3) N21—C26—C27—C215 5.0 (3)
S1—C16—C17—C115 177.66 (12) S2—C26—C27—C215 176.96 (12)
C16—C17—C18—C19 −0.5 (2) C26—C27—C28—C29 0.0 (2)
C115—C17—C18—C19 −178.13 (15) C215—C27—C28—C29 −176.66 (15)
C16—C17—C18—C118 −177.43 (15) C26—C27—C28—C218 −176.23 (15)
C115—C17—C18—C118 4.9 (3) C215—C27—C28—C218 7.1 (3)
C17—C18—C19—N12 −172.48 (16) C27—C28—C29—N22 −176.66 (15)
C118—C18—C19—N12 4.5 (3) C218—C28—C29—N22 −0.3 (2)
C17—C18—C19—S1 0.83 (18) C27—C28—C29—S2 −0.21 (18)
C118—C18—C19—S1 177.85 (13) C218—C28—C29—S2 176.19 (12)
C110—N12—C19—C18 −169.26 (17) C210—N22—C29—C28 −176.66 (17)
C110—N12—C19—S1 18.2 (2) C210—N22—C29—S2 7.4 (2)
C16—S1—C19—C18 −0.72 (13) C26—S2—C29—C28 0.28 (13)
C16—S1—C19—N12 172.72 (15) C26—S2—C29—N22 176.70 (15)
C19—N12—C110—C111 −174.25 (16) C29—N22—C210—C211 −176.86 (17)
C114—O16—C111—C112 0.3 (2) C214—O26—C211—C212 −0.2 (3)
C114—O16—C111—C110 177.77 (17) C214—O26—C211—C210 178.7 (2)
N12—C110—C111—C112 178.2 (2) N22—C210—C211—C212 175.0 (2)
N12—C110—C111—O16 1.3 (3) N22—C210—C211—O26 −3.6 (3)
O16—C111—C112—C113 −0.1 (2) O26—C211—C212—C213 0.3 (3)
C110—C111—C112—C113 −177.2 (2) C210—C211—C212—C213 −178.4 (2)
C111—C112—C113—C114 −0.1 (2) C211—C212—C213—C214 −0.3 (3)
C112—C113—C114—O16 0.3 (3) C212—C213—C214—O26 0.2 (3)
C111—O16—C114—C113 −0.4 (2) C211—O26—C214—C213 0.0 (3)
C116—O13—C115—O12 6.4 (3) C216—O23—C215—O22 1.2 (3)
C116—O13—C115—C17 −176.02 (17) C216—O23—C215—C27 −179.36 (15)
C16—C17—C115—O12 60.1 (2) C26—C27—C215—O22 32.2 (3)
C18—C17—C115—O12 −122.5 (2) C28—C27—C215—O22 −151.47 (19)
C16—C17—C115—O13 −117.47 (18) C26—C27—C215—O23 −147.22 (15)
C18—C17—C115—O13 60.0 (2) C28—C27—C215—O23 29.1 (2)
C115—O13—C116—C117 −150.0 (2) C215—O23—C216—C217 −92.5 (2)
C119—O14—C118—O15 0.3 (3) C219—O24—C218—O25 5.6 (3)
C119—O14—C118—C18 −179.32 (16) C219—O24—C218—C28 −175.98 (16)
C19—C18—C118—O15 37.5 (3) C29—C28—C218—O25 63.6 (2)
C17—C18—C118—O15 −145.8 (2) C27—C28—C218—O25 −120.41 (19)
C19—C18—C118—O14 −142.83 (16) C29—C28—C218—O24 −114.78 (17)
C17—C18—C118—O14 33.8 (2) C27—C28—C218—O24 61.2 (2)
C118—O14—C119—C120 −100.7 (2) C218—O24—C219—C220 −152.24 (18)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2429).

References

  1. Bruker (1999). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dufresne, S., Bourgeaux, M. & Skene, W. G. (2006). Acta Cryst. E62, o5602–o5604.
  3. Dufresne, S., Bourgeaux, M. & Skene, W. G. (2007). J. Mater. Chem.17, 1166–1177.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Marris, T. (2004). UdMX Université de Montréal, Montréal, Québec, Canada.
  7. Marsh, R. E., Schomaker, V. & Herbstein, F. H. (1998). Acta Cryst. B54, 921–924.
  8. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006612/ng2429sup1.cif

e-64-0o710-sup1.cif (33KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006612/ng2429Isup2.hkl

e-64-0o710-Isup2.hkl (361.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES