Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 20;64(Pt 4):o724. doi: 10.1107/S1600536808004637

2-Methyl-1,2-benzisothia­zol-3(2H)-one 1,1-dioxide

Waseeq Ahmad Siddiqui a, Saeed Ahmad b, Hamid Latif Siddiqui c, Masood Parvez d,*
PMCID: PMC2960984  PMID: 21202114

Abstract

All atoms of the title mol­ecule, C8H7NO3S, except the two oxide O atoms and two H atoms of the methyl group, lie on a crystallographic mirror plane. The crystal structure is stabilized by weak inter- and intra­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Hu et al. (2004); Kap-Sun & Nicholas (1998); Liang et al. (2006); Masashi et al. (1999); Nagasawa et al. (1995); Siddiqui et al. (2006, 2007a ,b ,c ); Siddiqui, Ahmad, Khan & Siddiqui (2007); Siddiqui, Ahmad, Khan, Siddiqui & Ahmad (2007); Siddiqui, Ahmad, Khan, Siddiqui & Parvez (2007).graphic file with name e-64-0o724-scheme1.jpg

Experimental

Crystal data

  • C8H7NO3S

  • M r = 197.21

  • Monoclinic, Inline graphic

  • a = 7.463 (7) Å

  • b = 6.761 (6) Å

  • c = 8.748 (8) Å

  • β = 103.78 (3)°

  • V = 428.7 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 (2) K

  • 0.12 × 0.08 × 0.07 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.960, T max = 0.976

  • 1724 measured reflections

  • 1045 independent reflections

  • 889 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.106

  • S = 1.03

  • 1045 reflections

  • 76 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004637/lh2597sup1.cif

e-64-0o724-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004637/lh2597Isup2.hkl

e-64-0o724-Isup2.hkl (50.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1 0.96 2.49 2.869 (4) 104
C2—H2⋯O1i 0.95 2.29 3.227 (4) 169
C8—H8B⋯O2ii 0.96 2.49 3.358 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Benzisothiazolone-1,1-dioxide is part of a class of heterocycles which has been investigated in pharmaceutical research (Kap-Sun & Nicholas, 1998). 1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been widely incorporated into a variety of biologically active compounds. It has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). In particular, N-substituted derivatives, e.g with N-hydroxy and N-alkyl substituents, have shown important biological activites (Nagasawa et al., 1995). Among N-alkyl derivatives, various synthetic routes have been reported for the synthesis of the title compound involving ionic liquids and free radical mechanisms (Hu et al., 2004; Masashi et al., 1999). In continuation of our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives, we have in addtion, embarked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2007a,b,c; Siddiqui, Ahmad, Khan & Siddiqui, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Ahmad, 2007; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). Herein, we report the synthesis and crystal structure of the title compound, (I).

With the exception atoms O2 and H8B, all atoms of the molecule of (I) (Fig. 1) lie on a crystallographic mirror plane. The benzisothiazole moiety is exactly planar. The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c; Siddiqui, Ahmad, Khan, Siddiqui & Parvez, 2007). The structure is stabilized by one intramolecular and two intermolecular interactions of the type C—H···O (details are in Table).

Experimental

Saccharin (2.0 g, 11.0 mmol.) was added to a solution of sodium hydroxide (0.875 g, 22.0 mmol.) in distilled water (25 ml) under constant stirring to give a transparent solution. A solution of dimethylsulfate (2.08 ml, 22.0 mmol.) in methanol (10.0 ml) was then added dropwise over 2 minutes. Precipitates started appearing within 5 minutes and stirring was continued for 20 min. at room temperature. The precipitates were filtered, washed with cold water and dried (343 K) to get 1.75 g of (I) (8.9 mmol. 81%). Recrystallization Solvent: CHCl3. The solution was subjected to slow evaporation at 313 K to obtain colourless crystals.

Refinement

H-atoms bonded were included in the refinements at geometrically idealized positions with aromatic and methyl C—H distances 0.95 and 0.96 Å, respectively, and Uiso = 1.2 times Ueq of the atoms to which they were bonded. The final difference map was free of any chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids plotted at 50% probability level. Symmetry code: (iii) x, -y + 1/2, z.

Crystal data

C8H7NO3S F000 = 204
Mr = 197.21 Dx = 1.528 Mg m3
Monoclinic, P21/m Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yb Cell parameters from 1724 reflections
a = 7.463 (7) Å θ = 3.2–27.4º
b = 6.761 (6) Å µ = 0.35 mm1
c = 8.748 (8) Å T = 173 (2) K
β = 103.78 (3)º Prism, colorless
V = 428.7 (7) Å3 0.12 × 0.08 × 0.07 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer 1045 independent reflections
Radiation source: fine-focus sealed tube 889 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 173(2) K θmax = 27.4º
ω and φ scans θmin = 3.2º
Absorption correction: multi-scan(SORTAV; Blessing, 1997) h = −9→9
Tmin = 0.960, Tmax = 0.976 k = −8→8
1724 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2966P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
1045 reflections Δρmax = 0.41 e Å3
76 parameters Δρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.68037 (10) 0.2500 0.26611 (7) 0.0314 (2)
O1 0.2425 (3) 0.2500 0.4038 (3) 0.0416 (5)
O2 0.7324 (2) 0.0698 (2) 0.20266 (16) 0.0445 (4)
N1 0.4534 (3) 0.2500 0.2520 (3) 0.0314 (5)
C1 0.7314 (4) 0.2500 0.4722 (3) 0.0254 (5)
C2 0.9043 (4) 0.2500 0.5750 (3) 0.0337 (6)
H2 1.0141 0.2500 0.5381 0.040*
C3 0.9090 (4) 0.2500 0.7337 (3) 0.0403 (7)
H3 1.0249 0.2500 0.8079 0.048*
C4 0.7486 (4) 0.2500 0.7873 (3) 0.0379 (7)
H4 0.7566 0.2500 0.8974 0.045*
C5 0.5767 (4) 0.2500 0.6832 (3) 0.0308 (6)
H5 0.4670 0.2500 0.7203 0.037*
C6 0.5690 (3) 0.2500 0.5235 (3) 0.0251 (5)
C7 0.4012 (4) 0.2500 0.3931 (3) 0.0289 (6)
C8 0.3218 (5) 0.2500 0.0986 (3) 0.0455 (8)
H8A 0.1982 0.2500 0.1130 0.055*
H8B 0.3405 0.1341 0.0410 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0415 (4) 0.0319 (4) 0.0237 (3) 0.000 0.0133 (3) 0.000
O1 0.0284 (10) 0.0449 (13) 0.0521 (13) 0.000 0.0107 (9) 0.000
O2 0.0587 (10) 0.0435 (9) 0.0369 (8) 0.0058 (7) 0.0223 (7) −0.0101 (7)
N1 0.0355 (12) 0.0301 (12) 0.0266 (11) 0.000 0.0031 (9) 0.000
C1 0.0319 (13) 0.0222 (12) 0.0237 (12) 0.000 0.0099 (10) 0.000
C2 0.0276 (13) 0.0367 (16) 0.0371 (14) 0.000 0.0085 (11) 0.000
C3 0.0402 (16) 0.0417 (17) 0.0340 (15) 0.000 −0.0010 (12) 0.000
C4 0.0553 (18) 0.0343 (16) 0.0238 (13) 0.000 0.0087 (12) 0.000
C5 0.0392 (15) 0.0257 (13) 0.0324 (14) 0.000 0.0181 (12) 0.000
C6 0.0280 (12) 0.0189 (12) 0.0297 (13) 0.000 0.0093 (10) 0.000
C7 0.0330 (14) 0.0221 (13) 0.0320 (13) 0.000 0.0086 (11) 0.000
C8 0.0551 (19) 0.0452 (19) 0.0284 (15) 0.000 −0.0053 (13) 0.000

Geometric parameters (Å, °)

S1—O2i 1.430 (2) C2—H2 0.9500
S1—O2 1.430 (2) C3—C4 1.386 (4)
S1—N1 1.668 (3) C3—H3 0.9500
S1—C1 1.752 (3) C4—C5 1.385 (4)
O1—C7 1.211 (3) C4—H4 0.9500
N1—C7 1.380 (4) C5—C6 1.384 (4)
N1—C8 1.462 (4) C5—H5 0.9500
C1—C2 1.386 (4) C6—C7 1.479 (4)
C1—C6 1.389 (4) C8—H8A 0.9600
C2—C3 1.380 (4) C8—H8B 0.9600
O2i—S1—O2 116.79 (14) C4—C3—H3 119.2
O2i—S1—N1 109.63 (8) C5—C4—C3 121.1 (3)
O2—S1—N1 109.63 (8) C5—C4—H4 119.5
O2i—S1—C1 112.76 (8) C3—C4—H4 119.5
O2—S1—C1 112.76 (8) C6—C5—C4 118.2 (2)
N1—S1—C1 92.54 (12) C6—C5—H5 120.9
C7—N1—C8 123.3 (2) C4—C5—H5 120.9
C7—N1—S1 115.6 (2) C5—C6—C1 119.7 (2)
C8—N1—S1 121.1 (2) C5—C6—C7 127.0 (2)
C2—C1—C6 122.7 (2) C1—C6—C7 113.2 (2)
C2—C1—S1 127.5 (2) O1—C7—N1 124.0 (3)
C6—C1—S1 109.9 (2) O1—C7—C6 127.2 (3)
C3—C2—C1 116.7 (3) N1—C7—C6 108.8 (2)
C3—C2—H2 121.6 N1—C8—H8A 109.6
C1—C2—H2 121.6 N1—C8—H8B 109.4
C2—C3—C4 121.6 (3) H8A—C8—H8B 109.5
C2—C3—H3 119.2
O2i—S1—N1—C7 −115.28 (8) C3—C4—C5—C6 0.000 (1)
O2—S1—N1—C7 115.28 (8) C4—C5—C6—C1 0.0
C1—S1—N1—C7 0.0 C4—C5—C6—C7 180.0
O2i—S1—N1—C8 64.72 (8) C2—C1—C6—C5 0.0
O2—S1—N1—C8 −64.72 (8) S1—C1—C6—C5 180.0
C1—S1—N1—C8 180.0 C2—C1—C6—C7 180.0
O2i—S1—C1—C2 −67.46 (9) S1—C1—C6—C7 0.0
O2—S1—C1—C2 67.46 (9) C8—N1—C7—O1 0.0
N1—S1—C1—C2 180.0 S1—N1—C7—O1 180.0
O2i—S1—C1—C6 112.54 (9) C8—N1—C7—C6 180.0
O2—S1—C1—C6 −112.54 (9) S1—N1—C7—C6 0.0
N1—S1—C1—C6 0.0 C5—C6—C7—O1 0.0
C6—C1—C2—C3 0.0 C1—C6—C7—O1 180.0
S1—C1—C2—C3 180.0 C5—C6—C7—N1 180.0
C1—C2—C3—C4 0.000 (1) C1—C6—C7—N1 0.0
C2—C3—C4—C5 0.000 (1)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1 0.96 2.49 2.869 (4) 104
C2—H2···O1ii 0.95 2.29 3.227 (4) 169
C8—H8B···O2iii 0.96 2.49 3.358 (3) 151

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2597).

References

  1. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  2. Fan, H.-F. (1991). SAPI91 Rigaku Corporation, Tokyo, Japan.
  3. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  4. Hu, Y., Chen, Z. C., Le, Z. G. & Zheng, Q. G. (2004). J. Chem. Res.4, 276–278.
  5. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Kap-Sun, Y. & Nicholas, A. M. (1998). Tetrahedron Lett.39, 5309–5312.
  7. Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.
  8. Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.
  9. Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem.38, 1865–1871. [DOI] [PubMed]
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Siddiqui, W. A., Ahmad, S., Khan, I. U. & Siddiqui, H. L. (2007). Synth. Commun.37, 767–773.
  13. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Ahmad, V. U. (2007). J. Chem. Soc. Pak.29, 44–47.
  14. Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007). Acta Cryst. E63, o4116.
  15. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.
  16. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.
  17. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.
  18. Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004637/lh2597sup1.cif

e-64-0o724-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004637/lh2597Isup2.hkl

e-64-0o724-Isup2.hkl (50.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES