Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):o740. doi: 10.1107/S1600536808007332

Bis(piperazinediium) benzene-1,2,4,5-tetra­carboxyl­ate hexa­hydrate

Hossein Aghabozorg a,*, Faranak Manteghi a, Mohammad Ghadermazi b
PMCID: PMC2960987  PMID: 21202130

Abstract

The title compound, 2C4H12N2 2+·C10H2O8 4−·6H2O or (pipzH2)2(btc)·6H2O, was formed from the reaction between benzene-1,2,4,5-tetra­carboxylic acid (btcH4) as a proton donor and piperazine (pipz) as a proton acceptor. A variety of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, as well as C—H⋯π inter­actions, are present in the crystal structure. Two water O atoms are each disordered over two positions; for both the site occupany factors are ca 0.66 and 0.34.

Related literature

For related literature, see: Aghabozorg et al. (2006, 2007); Arora & Pedireddi (2003); Biradha & Zaworotko (1998).graphic file with name e-64-0o740-scheme1.jpg

Experimental

Crystal data

  • 2C4H12N2 2+·C10H2O8 4−·6H2O

  • M r = 534.52

  • Triclinic, Inline graphic

  • a = 6.7420 (4) Å

  • b = 12.4636 (7) Å

  • c = 16.0100 (9) Å

  • α = 99.0920 (10)°

  • β = 90.3470 (10)°

  • γ = 105.5280 (10)°

  • V = 1278.27 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 (2) K

  • 0.23 × 0.21 × 0.17 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.970, T max = 0.982

  • 13995 measured reflections

  • 5839 independent reflections

  • 4805 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.159

  • S = 1.02

  • 5839 reflections

  • 323 parameters

  • H-atom parameters constrained

  • Δρmax = 2.20 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007332/bt2674sup1.cif

e-64-0o740-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007332/bt2674Isup2.hkl

e-64-0o740-Isup2.hkl (285.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O5i 0.92 1.74 2.642 (2) 166
N1—H1D⋯O7ii 0.92 1.84 2.763 (2) 178
N2—H2C⋯O1iii 0.92 1.82 2.723 (2) 165
N2—H2D⋯O4 0.92 1.72 2.635 (2) 179
N3—H3C⋯O2iii 0.92 1.90 2.787 (2) 163
N3—H3D⋯O6 0.92 1.92 2.690 (2) 141
N4—H4C⋯O8iv 0.92 1.85 2.753 (2) 168
N4—H4D⋯O3 0.92 2.00 2.748 (2) 138
O1S—H1SA⋯O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SA⋯O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SB⋯O2v 0.82 1.95 2.763 (2) 172
O2S—H2SA⋯O4Siii 0.82 2.04 2.839 (2) 165
O2S—H2SB⋯O8vi 0.82 2.05 2.835 (2) 160
O3S—H3SA⋯O2S 0.82 1.90 2.722 (2) 176
O3S—H3SB⋯O5ii 0.82 2.00 2.817 (2) 171
O4S—H4SA⋯O1 0.82 1.95 2.772 (2) 175
O4S—H4SB⋯O3S 0.82 1.95 2.764 (2) 170
C5—H5A⋯O6SA 0.99 2.50 3.288 (4) 136
C5—H5B⋯O7iv 0.99 2.35 3.272 (3) 154
C7—H7A⋯O1iii 0.99 2.48 3.414 (3) 156
C8—H8B⋯O4Siii 0.99 2.51 3.299 (3) 137
C4—H4BCg1ii 0.99 2.64 3.518 (2) 148
C4—H4BCg1vi 0.99 2.64 3.518 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1 is the centroid of the C14,C15,C16,C14′,C15′,C16′ benzene ring.

Acknowledgments

The authors acknowledge Tarbiat Moallem University for supporting this work.

supplementary crystallographic information

Comment

Continuing the path to synthesize proton transfer compounds, our team works have recently been focused on forming ion pairs between benzene-1,2,4,5-tetracarboxylic acid and various organic bases such as propane-1,3-diamine (Aghabozorg et al., 2007) and 1,10-phenanthroline (Aghabozorg et al., 2006). Due to its flat and symmetric structure and four proton donor sites, benzene-1,2,4,5-tetracarboxylic acid has a potential of constructing a supramolecular network. Supramolecular assemblies of 1,2,4,5-benzenetetracarboxylic acid, with aza donor molecules such as 1,10-phenanthroline, 1,7-phenanthroline, phenazine, 4-(N,N-dimethylamino)pyridine, 1,2-bis(4-pyridyl)ethene, and 1,2-bis(4- pyridyl)ethane have been synthesized and characterized by single-crystal X-ray diffraction methods (Arora et al., 2003). Among the known structures, cyclic network mediated supramolecular assemblies of benzene-1,2,4,5-tetracarboxylic acid with pyridine and some of its derivatives is quite significant (Biradha et al., 1998). The title compound has a structure constituted of one fully deprotonated benzene-1,2,4,5-tetracarboxylic acid unit, two doubly protonated piperazine units and six water molecules, two of which are disordered.

Various hydrogen bonds are formed between the named fragments, the water molecules are hydrogen bonded to each other and to carboxylate groups by O—H···O bonds, piperazinium ions are linked to carboxylate groups by N—H···O bonds, also the carbon atoms of piperaziniedium ion have C—H···O hydrogen bonds to oxygen atoms of water molecules and carboxyl groups. It is notable that the shortest hydrogen bond N2—H2D···O4 has the least deviation i.e. 1° from linearity. As shown in Fig. 2, in the cell packing there are six water molecules surrounded by cationic and anionic fragments. So if the structure expanded and the layers appeared, it can be seen a channel in which water molecules are trapped. This is previously observed for ion pairs of the tetraacid (Arora et al., 2003), in which the three-dimensional arrangement of the layers are stacked such that the cavities align to yield channels. It appears that the size and direction of water molecules plays an important role in constructing of channel structures in the supramolecular assemblies of acid.

As shown in Fig. 3, there are C—H···π interactions between C4—H4B bond of piperazinium ion and two benzene rings containing C14, C15 and C16 atoms with different symmetry codes [(x, y - 1, z), (-x, -y + 1, 1 - z)] for which the C—H···π distance and angle are 3.518 (2) Å and 148°, respectively.

Finally in Fig. 4, it can be seen how ribbons of constituents of the compound are arranged.

Experimental

For synthesizing the title compoud, a solution of 2540 mg (10 mmol) benzene-1,2,4,5-tetracarboxylic acid in 10 ml tetrahydrofuran and another solution of 860 mg (10 mmol) of piperazine in 10 ml of the same solvent were prepared and mixed. By heating, a white precipitate was obtained. The colorless prisms of the compound were obtained by recrystallization from water solution.

Refinement

The hydrogen atoms of NH2 groups and water molecules (with exception of disordered ones) were found in difference Fourier synthesis. The positions of the H atoms bonded to C were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(C), 1.2 Ueq(N) and 1.2 Ueq(O) where U(C), U(N), U(O) are respectively the equivalent thermal parameters of the carbon, nitrogen and oxygen atoms to which corresponding H atoms are bonded.

Two water molecules are disordered over two positions with site occupation factor ratios of 0.663 (9)/0.337 (9) and 0.666 (6)/0.334 (6). It was impossible to locate hydrogen atoms on disordered water molecules.

There are two residual electron density peaks of 2.20 and 1.84 e Å-3 at 1.05 and 0.78%A near O6SB and O6SA atoms, respectively. It was impossible to refine these peaks as disordered water molecules.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the ion pair (C4H12N2)24+(C10H2O8)4-.6H2O. Displacement ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing of the title compound, hydrogen bonds are shown as dashed lines and disordered atoms are omitted.

Fig. 3.

Fig. 3.

The C—H···π interaction between C4—H4B and benzene ring, distance from the H atom to the ring centroid is drawn as a dashed line.

Fig. 4.

Fig. 4.

Crystal packing of the title compound, Anions, cations and water molecules are shown in different colours.

Crystal data

2C4H12N22+·C10H2O84–·6H2O Z = 2
Mr = 534.52 F000 = 572
Triclinic, P1 Dx = 1.389 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.7420 (4) Å Cell parameters from 614 reflections
b = 12.4636 (7) Å θ = 3–29º
c = 16.0100 (9) Å µ = 0.12 mm1
α = 99.0920 (10)º T = 100 (2) K
β = 90.3470 (10)º Prism, colorless
γ = 105.5280 (10)º 0.23 × 0.21 × 0.17 mm
V = 1278.27 (13) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5839 independent reflections
Radiation source: fine-focus sealed tube 4805 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
T = 100(2) K θmax = 27.5º
ω scans θmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −8→8
Tmin = 0.970, Tmax = 0.982 k = −16→16
13995 measured reflections l = −20→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.159   w = 1/[σ2(Fo2) + (0.07P)2 + 2P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5839 reflections Δρmax = 2.20 e Å3
323 parameters Δρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 −0.1642 (3) 0.13752 (14) 0.70314 (11) 0.0148 (4)
H1C −0.2812 0.1173 0.6680 0.018*
H1D −0.1227 0.0735 0.7058 0.018*
N2 0.1462 (3) 0.30353 (14) 0.81088 (11) 0.0141 (3)
H2C 0.1056 0.3677 0.8077 0.017*
H2D 0.2632 0.3239 0.8460 0.017*
C1 −0.2126 (3) 0.18509 (18) 0.78933 (14) 0.0179 (4)
H1A −0.3195 0.1274 0.8122 0.022*
H1B −0.2674 0.2506 0.7862 0.022*
C2 −0.0202 (3) 0.22196 (18) 0.84771 (13) 0.0163 (4)
H2A −0.0515 0.2580 0.9039 0.020*
H2B 0.0267 0.1552 0.8555 0.020*
C3 0.1944 (3) 0.25478 (18) 0.72488 (13) 0.0158 (4)
H3A 0.2459 0.1882 0.7282 0.019*
H3B 0.3032 0.3114 0.7018 0.019*
C4 0.0012 (3) 0.22030 (17) 0.66729 (13) 0.0150 (4)
H4A −0.0454 0.2877 0.6615 0.018*
H4B 0.0312 0.1860 0.6103 0.018*
N3 0.3335 (3) 0.76396 (16) 0.71554 (12) 0.0178 (4)
H3C 0.2266 0.7216 0.7419 0.021*
H3D 0.2885 0.8194 0.6960 0.021*
N4 0.6573 (3) 0.65653 (16) 0.73462 (11) 0.0171 (4)
H4C 0.7631 0.6995 0.7082 0.021*
H4D 0.7039 0.6016 0.7541 0.021*
C5 0.5109 (3) 0.81764 (19) 0.77813 (14) 0.0194 (4)
H5A 0.4648 0.8619 0.8274 0.023*
H5B 0.6199 0.8701 0.7517 0.023*
C6 0.5976 (3) 0.7297 (2) 0.80781 (14) 0.0201 (4)
H6A 0.7200 0.7675 0.8465 0.024*
H6B 0.4933 0.6823 0.8396 0.024*
C7 0.4797 (3) 0.60208 (18) 0.67239 (14) 0.0185 (4)
H7A 0.3712 0.5496 0.6991 0.022*
H7B 0.5257 0.5577 0.6232 0.022*
C8 0.3916 (3) 0.69016 (19) 0.64249 (14) 0.0185 (4)
H8A 0.4950 0.7371 0.6101 0.022*
H8B 0.2684 0.6521 0.6043 0.022*
O1 1.0470 (2) 0.48871 (13) 0.77274 (9) 0.0169 (3)
O2 1.0471 (2) 0.66537 (12) 0.82508 (9) 0.0148 (3)
O3 0.6122 (2) 0.48861 (14) 0.83124 (10) 0.0204 (3)
O4 0.4782 (2) 0.36214 (14) 0.91348 (10) 0.0233 (4)
C9 1.1854 (3) 0.55782 (16) 0.97230 (12) 0.0115 (4)
H9A 1.3129 0.5973 0.9530 0.014*
C10 1.0075 (3) 0.53211 (15) 0.91992 (12) 0.0100 (4)
C11 0.8194 (3) 0.47309 (16) 0.94750 (12) 0.0109 (4)
C12 1.0312 (3) 0.56437 (16) 0.83241 (12) 0.0113 (4)
C13 0.6225 (3) 0.44016 (17) 0.89245 (12) 0.0131 (4)
O5 0.5182 (2) 1.11219 (12) 0.59735 (10) 0.0182 (3)
O6 0.3881 (2) 0.94917 (13) 0.64244 (10) 0.0197 (3)
O7 −0.0392 (2) 0.94673 (12) 0.71610 (9) 0.0152 (3)
O8 −0.0657 (2) 0.77912 (12) 0.63610 (9) 0.0145 (3)
C14 0.1873 (3) 1.06607 (16) 0.47969 (12) 0.0108 (4)
H14A 0.3161 1.1113 0.4657 0.013*
C15 0.1797 (3) 1.00875 (16) 0.54829 (12) 0.0105 (4)
C16 −0.0101 (3) 0.94157 (16) 0.56864 (12) 0.0104 (4)
C17 0.3760 (3) 1.02308 (17) 0.60026 (12) 0.0121 (4)
C18 −0.0362 (3) 0.88465 (17) 0.64644 (12) 0.0116 (4)
O1S 0.8540 (4) 0.15919 (16) 0.03938 (14) 0.0422 (5)
H1SA 0.7441 0.1645 0.0207 0.051*
H1SB 0.8898 0.2148 0.0766 0.051*
O2S 0.2052 (3) 0.36605 (15) 0.52006 (11) 0.0276 (4)
H2SA 0.1274 0.4049 0.5358 0.033*
H2SB 0.1364 0.3266 0.4783 0.033*
O3S 0.5686 (3) 0.33661 (14) 0.57282 (12) 0.0276 (4)
H3SA 0.4566 0.3418 0.5565 0.033*
H3SB 0.5433 0.2694 0.5763 0.033*
O4S 0.9503 (3) 0.49208 (14) 0.60483 (10) 0.0234 (4)
H4SA 0.9722 0.4923 0.6553 0.028*
H4SB 0.8329 0.4518 0.5922 0.028*
O5SA 0.4646 (6) 0.1816 (3) −0.0094 (3) 0.0453 (12)* 0.663 (9)
O6SA 0.2705 (5) 1.0084 (3) 0.8494 (2) 0.0431 (10)* 0.666 (6)
O5SB 0.5326 (8) 0.1596 (4) −0.0451 (4) 0.0246 (18)* 0.337 (9)
O6SB 0.8058 (10) 0.9423 (5) 0.9689 (4) 0.0419 (19)* 0.334 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0127 (8) 0.0119 (8) 0.0179 (9) 0.0019 (6) −0.0054 (6) 0.0000 (6)
N2 0.0115 (8) 0.0146 (8) 0.0145 (8) 0.0011 (6) −0.0032 (6) 0.0012 (6)
C1 0.0127 (9) 0.0178 (10) 0.0215 (10) 0.0020 (8) 0.0012 (8) 0.0017 (8)
C2 0.0164 (10) 0.0172 (10) 0.0144 (9) 0.0025 (8) −0.0003 (8) 0.0038 (8)
C3 0.0131 (9) 0.0173 (10) 0.0163 (10) 0.0030 (8) 0.0007 (7) 0.0023 (8)
C4 0.0180 (10) 0.0130 (9) 0.0135 (9) 0.0035 (8) −0.0020 (7) 0.0019 (7)
N3 0.0121 (8) 0.0212 (9) 0.0236 (9) 0.0048 (7) 0.0015 (7) 0.0137 (7)
N4 0.0123 (8) 0.0236 (9) 0.0200 (9) 0.0068 (7) 0.0031 (7) 0.0133 (7)
C5 0.0163 (10) 0.0213 (11) 0.0205 (10) 0.0024 (8) 0.0016 (8) 0.0082 (8)
C6 0.0148 (10) 0.0303 (12) 0.0172 (10) 0.0063 (9) −0.0003 (8) 0.0094 (9)
C7 0.0141 (10) 0.0201 (10) 0.0224 (11) 0.0034 (8) 0.0007 (8) 0.0088 (8)
C8 0.0143 (10) 0.0240 (11) 0.0184 (10) 0.0032 (8) −0.0008 (8) 0.0103 (8)
O1 0.0226 (8) 0.0186 (7) 0.0100 (7) 0.0064 (6) −0.0002 (6) 0.0027 (5)
O2 0.0152 (7) 0.0153 (7) 0.0152 (7) 0.0032 (5) 0.0020 (5) 0.0080 (5)
O3 0.0152 (7) 0.0261 (8) 0.0202 (8) 0.0006 (6) −0.0046 (6) 0.0138 (6)
O4 0.0137 (7) 0.0287 (9) 0.0237 (8) −0.0066 (6) −0.0078 (6) 0.0154 (7)
C9 0.0104 (9) 0.0118 (9) 0.0125 (9) 0.0025 (7) 0.0007 (7) 0.0037 (7)
C10 0.0117 (9) 0.0095 (8) 0.0095 (8) 0.0032 (7) 0.0007 (7) 0.0031 (7)
C11 0.0110 (9) 0.0102 (8) 0.0117 (9) 0.0025 (7) −0.0009 (7) 0.0027 (7)
C12 0.0064 (8) 0.0153 (9) 0.0117 (9) 0.0010 (7) −0.0013 (7) 0.0042 (7)
C13 0.0109 (9) 0.0155 (9) 0.0127 (9) 0.0026 (7) −0.0007 (7) 0.0038 (7)
O5 0.0132 (7) 0.0163 (7) 0.0238 (8) −0.0008 (6) −0.0068 (6) 0.0082 (6)
O6 0.0133 (7) 0.0232 (8) 0.0260 (8) 0.0039 (6) −0.0004 (6) 0.0162 (6)
O7 0.0181 (7) 0.0159 (7) 0.0118 (7) 0.0040 (6) 0.0007 (5) 0.0042 (5)
O8 0.0153 (7) 0.0127 (7) 0.0169 (7) 0.0040 (5) 0.0023 (5) 0.0066 (5)
C14 0.0093 (8) 0.0107 (8) 0.0126 (9) 0.0022 (7) 0.0010 (7) 0.0034 (7)
C15 0.0092 (9) 0.0105 (8) 0.0121 (9) 0.0028 (7) −0.0002 (7) 0.0023 (7)
C16 0.0129 (9) 0.0095 (8) 0.0098 (8) 0.0041 (7) 0.0009 (7) 0.0023 (7)
C17 0.0109 (9) 0.0157 (9) 0.0107 (9) 0.0049 (7) 0.0010 (7) 0.0033 (7)
C18 0.0066 (8) 0.0154 (9) 0.0142 (9) 0.0027 (7) 0.0003 (7) 0.0073 (7)
O1S 0.0552 (13) 0.0269 (10) 0.0427 (12) 0.0156 (9) 0.0075 (10) −0.0071 (8)
O2S 0.0277 (9) 0.0299 (9) 0.0262 (9) 0.0132 (7) −0.0097 (7) −0.0012 (7)
O3S 0.0208 (8) 0.0188 (8) 0.0422 (10) 0.0022 (6) −0.0072 (7) 0.0076 (7)
O4S 0.0250 (8) 0.0263 (8) 0.0159 (7) −0.0003 (7) −0.0050 (6) 0.0069 (6)

Geometric parameters (Å, °)

N1—C1 1.488 (3) C7—H7B 0.9900
N1—C4 1.489 (3) C8—H8A 0.9900
N1—H1C 0.9200 C8—H8B 0.9900
N1—H1D 0.9200 O1—C12 1.258 (2)
N2—C3 1.489 (3) O2—C12 1.259 (2)
N2—C2 1.492 (3) O3—C13 1.241 (2)
N2—H2C 0.9200 O4—C13 1.268 (2)
N2—H2D 0.9200 C9—C10 1.393 (3)
C1—C2 1.516 (3) C9—C11i 1.396 (3)
C1—H1A 0.9900 C9—H9A 0.9500
C1—H1B 0.9900 C10—C11 1.398 (3)
C2—H2A 0.9900 C10—C12 1.515 (3)
C2—H2B 0.9900 C11—C9i 1.396 (3)
C3—C4 1.514 (3) C11—C13 1.512 (3)
C3—H3A 0.9900 O5—C17 1.266 (2)
C3—H3B 0.9900 O6—C17 1.244 (2)
C4—H4A 0.9900 O7—C18 1.256 (2)
C4—H4B 0.9900 O8—C18 1.260 (2)
N3—C8 1.492 (3) C14—C16ii 1.392 (3)
N3—C5 1.493 (3) C14—C15 1.396 (3)
N3—H3C 0.9200 C14—H14A 0.9500
N3—H3D 0.9200 C15—C16 1.401 (3)
N4—C7 1.491 (3) C15—C17 1.513 (3)
N4—C6 1.494 (3) C16—C14ii 1.392 (3)
N4—H4C 0.9200 C16—C18 1.517 (3)
N4—H4D 0.9200 O1S—H1SA 0.8201
C5—C6 1.508 (3) O1S—H1SB 0.8200
C5—H5A 0.9900 O2S—H2SA 0.8197
C5—H5B 0.9900 O2S—H2SB 0.8206
C6—H6A 0.9900 O3S—H3SA 0.8199
C6—H6B 0.9900 O3S—H3SB 0.8201
C7—C8 1.516 (3) O4S—H4SA 0.8201
C7—H7A 0.9900 O4S—H4SB 0.8201
C1—N1—C4 111.54 (15) H5A—C5—H5B 108.0
C1—N1—H1C 109.3 N4—C6—C5 111.00 (17)
C4—N1—H1C 109.3 N4—C6—H6A 109.4
C1—N1—H1D 109.3 C5—C6—H6A 109.4
C4—N1—H1D 109.3 N4—C6—H6B 109.4
H1C—N1—H1D 108.0 C5—C6—H6B 109.4
C3—N2—C2 111.88 (16) H6A—C6—H6B 108.0
C3—N2—H2C 109.2 N4—C7—C8 110.76 (18)
C2—N2—H2C 109.2 N4—C7—H7A 109.5
C3—N2—H2D 109.2 C8—C7—H7A 109.5
C2—N2—H2D 109.2 N4—C7—H7B 109.5
H2C—N2—H2D 107.9 C8—C7—H7B 109.5
N1—C1—C2 110.14 (17) H7A—C7—H7B 108.1
N1—C1—H1A 109.6 N3—C8—C7 111.08 (17)
C2—C1—H1A 109.6 N3—C8—H8A 109.4
N1—C1—H1B 109.6 C7—C8—H8A 109.4
C2—C1—H1B 109.6 N3—C8—H8B 109.4
H1A—C1—H1B 108.1 C7—C8—H8B 109.4
N2—C2—C1 109.93 (16) H8A—C8—H8B 108.0
N2—C2—H2A 109.7 C10—C9—C11i 121.56 (18)
C1—C2—H2A 109.7 C10—C9—H9A 119.2
N2—C2—H2B 109.7 C11i—C9—H9A 119.2
C1—C2—H2B 109.7 C9—C10—C11 119.63 (17)
H2A—C2—H2B 108.2 C9—C10—C12 117.35 (17)
N2—C3—C4 109.19 (16) C11—C10—C12 122.92 (17)
N2—C3—H3A 109.8 C9i—C11—C10 118.81 (17)
C4—C3—H3A 109.8 C9i—C11—C13 119.25 (17)
N2—C3—H3B 109.8 C10—C11—C13 121.93 (17)
C4—C3—H3B 109.8 O1—C12—O2 124.58 (18)
H3A—C3—H3B 108.3 O1—C12—C10 116.78 (17)
N1—C4—C3 109.85 (16) O2—C12—C10 118.47 (17)
N1—C4—H4A 109.7 O3—C13—O4 124.84 (18)
C3—C4—H4A 109.7 O3—C13—C11 119.64 (17)
N1—C4—H4B 109.7 O4—C13—C11 115.51 (17)
C3—C4—H4B 109.7 C16ii—C14—C15 121.44 (17)
H4A—C4—H4B 108.2 C16ii—C14—H14A 119.3
C8—N3—C5 111.59 (16) C15—C14—H14A 119.3
C8—N3—H3C 109.3 C14—C15—C16 119.25 (17)
C5—N3—H3C 109.3 C14—C15—C17 119.16 (17)
C8—N3—H3D 109.3 C16—C15—C17 121.57 (17)
C5—N3—H3D 109.3 C14ii—C16—C15 119.31 (17)
H3C—N3—H3D 108.0 C14ii—C16—C18 117.57 (17)
C7—N4—C6 111.34 (16) C15—C16—C18 122.87 (17)
C7—N4—H4C 109.4 O6—C17—O5 124.55 (18)
C6—N4—H4C 109.4 O6—C17—C15 119.42 (17)
C7—N4—H4D 109.4 O5—C17—C15 116.03 (16)
C6—N4—H4D 109.4 O7—C18—O8 125.13 (18)
H4C—N4—H4D 108.0 O7—C18—C16 116.50 (17)
N3—C5—C6 110.95 (18) O8—C18—C16 118.21 (17)
N3—C5—H5A 109.4 H1SA—O1S—H1SB 102.8
C6—C5—H5A 109.4 H2SA—O2S—H2SB 98.8
N3—C5—H5B 109.4 H3SA—O3S—H3SB 102.2
C6—C5—H5B 109.4 H4SA—O4S—H4SB 106.6
C4—N1—C1—C2 −57.4 (2) C9—C10—C12—O2 −79.7 (2)
C3—N2—C2—C1 −57.4 (2) C11—C10—C12—O2 103.9 (2)
N1—C1—C2—N2 55.7 (2) C9i—C11—C13—O3 162.78 (19)
C2—N2—C3—C4 58.4 (2) C10—C11—C13—O3 −18.3 (3)
C1—N1—C4—C3 58.7 (2) C9i—C11—C13—O4 −17.7 (3)
N2—C3—C4—N1 −57.9 (2) C10—C11—C13—O4 161.22 (19)
C8—N3—C5—C6 −55.5 (2) C16ii—C14—C15—C16 0.4 (3)
C7—N4—C6—C5 −56.4 (2) C16ii—C14—C15—C17 −178.07 (17)
N3—C5—C6—N4 55.7 (2) C14—C15—C16—C14ii −0.4 (3)
C6—N4—C7—C8 56.0 (2) C17—C15—C16—C14ii 178.04 (17)
C5—N3—C8—C7 55.3 (2) C14—C15—C16—C18 −174.45 (18)
N4—C7—C8—N3 −55.3 (2) C17—C15—C16—C18 3.9 (3)
C11i—C9—C10—C11 −0.6 (3) C14—C15—C17—O6 −157.34 (19)
C11i—C9—C10—C12 −177.06 (17) C16—C15—C17—O6 24.3 (3)
C9—C10—C11—C9i 0.6 (3) C14—C15—C17—O5 22.9 (3)
C12—C10—C11—C9i 176.84 (17) C16—C15—C17—O5 −155.48 (18)
C9—C10—C11—C13 −178.33 (17) C14ii—C16—C18—O7 −97.7 (2)
C12—C10—C11—C13 −2.1 (3) C15—C16—C18—O7 76.5 (2)
C9—C10—C12—O1 95.7 (2) C14ii—C16—C18—O8 78.0 (2)
C11—C10—C12—O1 −80.6 (2) C15—C16—C18—O8 −107.8 (2)

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O5iii 0.92 1.74 2.642 (2) 166
N1—H1D···O7iv 0.92 1.84 2.763 (2) 178
N2—H2C···O1v 0.92 1.82 2.723 (2) 165
N2—H2D···O4 0.92 1.72 2.635 (2) 179
N3—H3C···O2v 0.92 1.90 2.787 (2) 163
N3—H3D···O6 0.92 1.92 2.690 (2) 141
N4—H4C···O8vi 0.92 1.85 2.753 (2) 168
N4—H4D···O3 0.92 2.00 2.748 (2) 138
O1S—H1SA···O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SA···O5SA 0.82 2.02 2.837 (2) 172
O1S—H1SB···O2vii 0.82 1.95 2.763 (2) 172
O2S—H2SA···O4Sv 0.82 2.04 2.839 (2) 165
O2S—H2SB···O8viii 0.82 2.05 2.835 (2) 160
O3S—H3SA···O2S 0.82 1.90 2.722 (2) 176
O3S—H3SB···O5iv 0.82 2.00 2.817 (2) 171
O4S—H4SA···O1 0.82 1.95 2.772 (2) 175
O4S—H4SB···O3S 0.82 1.95 2.764 (2) 170
C5—H5A···O6SA 0.99 2.50 3.288 (4) 136
C5—H5B···O7vi 0.99 2.35 3.272 (3) 154
C7—H7A···O1v 0.99 2.48 3.414 (3) 156
C8—H8B···O4Sv 0.99 2.51 3.299 (3) 137
C4—H4B···Cg1iv 0.99 2.64 3.518 (2) 148
C4—H4B···Cg1viii 0.99 2.64 3.518 (2) 148

Symmetry codes: (iii) x−1, y−1, z; (iv) x, y−1, z; (v) x−1, y, z; (vi) x+1, y, z; (vii) −x+2, −y+1, −z+1; (viii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2674).

References

  1. Aghabozorg, H., Ghadermazi, M. & Attar Gharamaleki, J. (2006). Acta Cryst. E62, o3174–o3176.
  2. Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, o2985–o2986.
  3. Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem.68, 9177–9185. [DOI] [PubMed]
  4. Biradha, K. & Zaworotko, M. J. (1998). Cryst. Eng.1, 67–78.
  5. Bruker (2005). APEX2, SAINT, SADABS and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007332/bt2674sup1.cif

e-64-0o740-sup1.cif (23.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007332/bt2674Isup2.hkl

e-64-0o740-Isup2.hkl (285.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES