Abstract
The molecule of the title compound, C8H18N2, possesses C 2 symmetry. Owing to its stereochemistry, it is used in the synthesis of chiral ligands and metal complexes for asymmetric synthesis. The cyclohexane ring shows a chair conformation with the amino groups in equatorial positions. Contrary to the literature, the title compound is not a liquid, but a crystalline solid at room temperature (293 K). The absolute configuration is assigned from the synthesis.
Related literature
The synthesis of the title compound is described by Kizirian et al. (2005 ▶). For related literature, see: Larrox and Jacobsen (1994 ▶); Cole et al. (2005 ▶); Seebach et al. (1977 ▶); Strohmann & Gessner (2007 ▶); Strohmann et al. (2003 ▶, 2004 ▶); Strohmann, Däschlein & Auer (2006 ▶); Strohmann, Dilsky & Strohfeldt (2006 ▶); Strohmmann & Gessner (2007a
▶,b
▶).
Experimental
Crystal data
C8H18N2
M r = 142.24
Orthorhombic,
a = 7.552 (4) Å
b = 8.521 (5) Å
c = 14.142 (8) Å
V = 910.0 (8) Å3
Z = 4
Mo Kα radiation
μ = 0.06 mm−1
T = 173 (2) K
0.40 × 0.10 × 0.10 mm
Data collection
Bruker APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999 ▶) T min = 0.912, T max = 0.982
4816 measured reflections
953 independent reflections
784 reflections with I > 2σ(I)
R int = 0.050
Refinement
R[F 2 > 2σ(F 2)] = 0.051
wR(F 2) = 0.111
S = 1.08
953 reflections
101 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.12 e Å−3
Δρmin = −0.12 e Å−3
Data collection: SMART (Bruker, 2001 ▶); cell refinement: SAINT-Plus (Bruker, 1999 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1999 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006119/im2055sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006119/im2055Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
N1—H1N⋯N2i | 0.91 (4) | 2.36 (4) | 3.250 (4) | 166 (3) |
Symmetry code: (i) .
Acknowledgments
We are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (FCI). VHG thanks the FCI, and CD the Studienstiftung des deutschen Volkes for a doctoral scholarship.
supplementary crystallographic information
Comment
Due to their strong coordination ability diamine bases have become powerful agents in various fields of chemistry e.g. for the deaggregation of organolithium compounds or the coordination of transition metals. Especially chiral amines have attracted special attention in asymmetric synthesis. Thereby, (1R,2R)-N,N'-dimethylcyclohexane-1,2-diamine is an important chiral amine, which serves as a starting material for the synthesis of numerous diamine bases with a cyclohexane framework. The amine crystallizes at room temperature as colourless needles in the orthorhombic crystal system, space group P212121. The asymmetric unit contains one molecule of the C2 symmetric amine (see figure 1).
In the unit cell molecules are interconnected via hydrogen bonding to give infinite layers (see figure 2). H atoms (H1N) are arranged in direction to the nitrogen atom (N2) of an adjacent molecule (N1—HN1—N2' angle: 166 (3)°). However, the long N1—N2' distance of 3.250 (4) Å and the short N1—HN1 distance of 0.91 (4) Å indicate weak N–H···N hydrogen bonds.
Experimental
Treatment of the enantiomerically pure (R,R)-1,2-diammoniumcyclohexane mono-(+)-tartrate with two equivalents of ethylchloroformate in the presence of a stochiometric amount of NaOH resulted in the formation of diethyl-(1R,2R)-cyclohexane-1,2-diyldicarbamat. Subsequent reduction with an excess of LiAlH4 gave colourless crystals of the title compound during bulb-to-bulb destillation. Contrary to a formerly published synthesis, (1R,2R)-N,N'-diemthylcyclohexane-1,2-diamine is not liquid but a highly hygroscopic crystalline solid.
1H-NMR (500.1 MHz, CDCl3): 0.86–0.94 (m, 2H; CH2CHN), 1.13–1.19 (m, 2H; CH2CH2CHN), 1.61–1.67 (m, 2H; CH2CH2CHN), 1.68–1.75 (br, 2H, NH), 1.93–2.00 (m, 2H; CH2CHN), 2.02–2.06 (m, 2H; CHNCHN), 2.33 (s, 6H; NCH3).
13C-NMR (100.6 MHz, CDCl3): 25.0 (CH2CH2CHN), 30.8 (CH2CHN), 33.7 (CH3), 63.2 (CHN).
Refinement
Refinement was accomplished by full-matrix least-squares methods (based on Fo2, SHELXL97); anisotropic thermal parameters for all non-H atoms in the final cycles; the H atoms were refined on a riding model in their ideal geometric positions, except for H(1 N) and H(2 N), which were refined independently.
Figures
Fig. 1.
ORTEP plot of the molecular structure of (1R,2R)-N,N'-diemthylcyclohexane-1,2-diamine. Thermal ellipsoids are drawn at the 50% probability level.
Fig. 2.
ORTEP plot of the unit cell.
Fig. 3.
Display of the hydrogen bonding.
Crystal data
C8H18N2 | F000 = 320 |
Mr = 142.24 | Dx = 1.038 Mg m−3 |
Orthorhombic, P212121 | Melting point: 313 K |
Hall symbol: P 2ac 2ab | Mo Kα radiation λ = 0.71073 Å |
a = 7.552 (4) Å | θ = 2.8–25.0º |
b = 8.521 (5) Å | µ = 0.06 mm−1 |
c = 14.142 (8) Å | T = 173 (2) K |
V = 910.0 (8) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.10 × 0.10 mm |
Data collection
Bruker APEXCCD diffractometer | 953 independent reflections |
Radiation source: fine-focus sealed tube | 784 reflections with I > 2σ(I) |
Monochromator: graphite | Rint = 0.050 |
T = 173(2) K | θmax = 25.0º |
ω scans | θmin = 2.8º |
Absorption correction: multi-scan(SADABS; Bruker, 1999) | h = −8→8 |
Tmin = 0.912, Tmax = 0.982 | k = −10→9 |
4816 measured reflections | l = −16→16 |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0405P)2 + 0.258P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
953 reflections | Δρmax = 0.12 e Å−3 |
101 parameters | Δρmin = −0.11 e Å−3 |
Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
C1 | 0.8581 (4) | 0.3857 (3) | 0.28989 (19) | 0.0346 (7) | |
H1 | 0.8702 | 0.5000 | 0.3046 | 0.042* | |
C2 | 0.6814 (4) | 0.3316 (4) | 0.3294 (2) | 0.0477 (9) | |
H2A | 0.6785 | 0.3525 | 0.3982 | 0.057* | |
H2B | 0.6703 | 0.2168 | 0.3202 | 0.057* | |
C3 | 0.5242 (4) | 0.4129 (5) | 0.2827 (3) | 0.0608 (11) | |
H3A | 0.4128 | 0.3663 | 0.3067 | 0.073* | |
H3B | 0.5247 | 0.5256 | 0.2999 | 0.073* | |
C4 | 0.5304 (4) | 0.3970 (4) | 0.1764 (3) | 0.0528 (10) | |
H4A | 0.5131 | 0.2857 | 0.1586 | 0.063* | |
H4B | 0.4333 | 0.4590 | 0.1479 | 0.063* | |
C5 | 0.7059 (4) | 0.4540 (4) | 0.1385 (2) | 0.0458 (9) | |
H5A | 0.7174 | 0.5679 | 0.1509 | 0.055* | |
H5B | 0.7091 | 0.4381 | 0.0691 | 0.055* | |
C6 | 0.8605 (4) | 0.3685 (3) | 0.18321 (18) | 0.0331 (7) | |
H6 | 0.8514 | 0.2545 | 0.1671 | 0.040* | |
C7 | 1.0546 (5) | 0.3573 (4) | 0.4252 (2) | 0.0581 (10) | |
H7A | 1.0807 | 0.4699 | 0.4250 | 0.087* | |
H7B | 1.1583 | 0.2994 | 0.4480 | 0.087* | |
H7C | 0.9537 | 0.3367 | 0.4670 | 0.087* | |
C8 | 1.0664 (5) | 0.3767 (5) | 0.0508 (2) | 0.0644 (11) | |
H8A | 1.0492 | 0.2629 | 0.0465 | 0.097* | |
H8B | 1.1894 | 0.4025 | 0.0350 | 0.097* | |
H8C | 0.9866 | 0.4296 | 0.0065 | 0.097* | |
N1 | 1.0117 (3) | 0.3064 (4) | 0.32977 (18) | 0.0389 (7) | |
H1N | 0.985 (4) | 0.203 (4) | 0.329 (2) | 0.056 (10)* | |
N2 | 1.0282 (4) | 0.4287 (3) | 0.14644 (19) | 0.0413 (7) | |
H2N | 1.109 (4) | 0.391 (4) | 0.193 (2) | 0.045 (9)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0385 (17) | 0.0216 (15) | 0.0438 (17) | 0.0043 (16) | 0.0006 (14) | 0.0013 (13) |
C2 | 0.044 (2) | 0.0420 (19) | 0.057 (2) | 0.0050 (17) | 0.0110 (17) | 0.0051 (17) |
C3 | 0.039 (2) | 0.053 (2) | 0.090 (3) | 0.0029 (19) | 0.010 (2) | 0.007 (2) |
C4 | 0.0335 (19) | 0.0403 (19) | 0.085 (3) | −0.0023 (17) | −0.0126 (19) | 0.0081 (19) |
C5 | 0.046 (2) | 0.0355 (19) | 0.056 (2) | −0.0032 (17) | −0.0131 (16) | 0.0054 (16) |
C6 | 0.0341 (16) | 0.0251 (16) | 0.0400 (17) | −0.0025 (15) | −0.0054 (14) | −0.0008 (13) |
C7 | 0.068 (2) | 0.055 (2) | 0.052 (2) | 0.010 (2) | −0.0109 (18) | −0.0046 (18) |
C8 | 0.057 (2) | 0.085 (3) | 0.052 (2) | −0.008 (2) | 0.0120 (18) | 0.005 (2) |
N1 | 0.0389 (15) | 0.0388 (16) | 0.0390 (15) | 0.0029 (14) | −0.0033 (13) | 0.0002 (13) |
N2 | 0.0370 (16) | 0.0514 (18) | 0.0355 (15) | −0.0048 (14) | 0.0004 (13) | 0.0048 (13) |
Geometric parameters (Å, °)
C1—N1 | 1.455 (4) | C5—H5A | 0.9900 |
C1—C6 | 1.516 (4) | C5—H5B | 0.9900 |
C1—C2 | 1.519 (4) | C6—N2 | 1.462 (4) |
C1—H1 | 1.0000 | C6—H6 | 1.0000 |
C2—C3 | 1.525 (4) | C7—N1 | 1.454 (4) |
C2—H2A | 0.9900 | C7—H7A | 0.9800 |
C2—H2B | 0.9900 | C7—H7B | 0.9800 |
C3—C4 | 1.511 (5) | C7—H7C | 0.9800 |
C3—H3A | 0.9900 | C8—N2 | 1.452 (4) |
C3—H3B | 0.9900 | C8—H8A | 0.9800 |
C4—C5 | 1.510 (4) | C8—H8B | 0.9800 |
C4—H4A | 0.9900 | C8—H8C | 0.9800 |
C4—H4B | 0.9900 | N1—H1N | 0.91 (4) |
C5—C6 | 1.515 (4) | N2—H2N | 0.96 (3) |
N1—C1—C6 | 109.4 (2) | C4—C5—H5B | 109.2 |
N1—C1—C2 | 114.6 (2) | C6—C5—H5B | 109.2 |
C6—C1—C2 | 110.3 (3) | H5A—C5—H5B | 107.9 |
N1—C1—H1 | 107.4 | N2—C6—C5 | 110.5 (2) |
C6—C1—H1 | 107.4 | N2—C6—C1 | 109.3 (2) |
C2—C1—H1 | 107.4 | C5—C6—C1 | 111.1 (3) |
C1—C2—C3 | 112.8 (3) | N2—C6—H6 | 108.6 |
C1—C2—H2A | 109.0 | C5—C6—H6 | 108.6 |
C3—C2—H2A | 109.0 | C1—C6—H6 | 108.6 |
C1—C2—H2B | 109.0 | N1—C7—H7A | 109.5 |
C3—C2—H2B | 109.0 | N1—C7—H7B | 109.5 |
H2A—C2—H2B | 107.8 | H7A—C7—H7B | 109.5 |
C4—C3—C2 | 111.4 (3) | N1—C7—H7C | 109.5 |
C4—C3—H3A | 109.3 | H7A—C7—H7C | 109.5 |
C2—C3—H3A | 109.3 | H7B—C7—H7C | 109.5 |
C4—C3—H3B | 109.3 | N2—C8—H8A | 109.5 |
C2—C3—H3B | 109.3 | N2—C8—H8B | 109.5 |
H3A—C3—H3B | 108.0 | H8A—C8—H8B | 109.5 |
C5—C4—C3 | 110.6 (3) | N2—C8—H8C | 109.5 |
C5—C4—H4A | 109.5 | H8A—C8—H8C | 109.5 |
C3—C4—H4A | 109.5 | H8B—C8—H8C | 109.5 |
C5—C4—H4B | 109.5 | C7—N1—C1 | 113.5 (2) |
C3—C4—H4B | 109.5 | C7—N1—H1N | 111 (2) |
H4A—C4—H4B | 108.1 | C1—N1—H1N | 106 (2) |
C4—C5—C6 | 111.9 (3) | C8—N2—C6 | 113.4 (3) |
C4—C5—H5A | 109.2 | C8—N2—H2N | 114.6 (19) |
C6—C5—H5A | 109.2 | C6—N2—H2N | 100.9 (19) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.91 (4) | 2.36 (4) | 3.250 (4) | 166 (3) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2055).
References
- Bruker (1999). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Cole, A. P., Mahadevan, V., Mirica, L. M., Ottenwaelder, X. & Stack, T. D. P. (2005). Inorg. Chem.44, 7345–7364. [DOI] [PubMed]
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Kizirian, J.-C., Cabello, N., Pinchard, L., Caille, J.-C. & Alexakis, A. (2005). Tetrahedron, 61, 8939–8946.
- Larrox, J. F. & Jacobsen, E. N. (1994). J. Org. Chem.59, 1939–1942.
- Seebach, D., Kalinowski, H.-O., Bastani, B., Crass, G., Daum, H., Dörr, H., DuPreez, N. P., Ehrig, V., Langer, W., Nüssler, C., Oei, H.-A. & Schmidt, M. (1977). Helv. Chim. Acta, 60, 301–325.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc.128, 704–705. [DOI] [PubMed]
- Strohmann, C., Dilsky, S. & Strohfeldt, K. (2006). Organometallics, 25, 41–44.
- Strohmann, C. & Gessner, V. H. (2007). Angew. Chem. Int. Ed.46, 4566–4569. [DOI] [PubMed]
- Strohmann, C., Strohfeldt, K. & Schildbach, D. (2003). J. Am. Chem. Soc.125, 13672–13673. [DOI] [PubMed]
- Strohmann, C., Strohfeldt, K., Schildbach, D., McGrath, M. J. & O’Brien, P. (2004). Organometallics, 23, 5389–5391.
- Strohmmann, C. & Gessner, V. H. (2007a). Angew. Chem. Int. Ed.46, 4566–4569. [DOI] [PubMed]
- Strohmmann, C. & Gessner, V. H. (2007b). J. Am. Chem. Soc.129, 8952–8953. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006119/im2055sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006119/im2055Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report