Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 29;64(Pt 4):m601–m602. doi: 10.1107/S1600536808007915

[(E)-2-(3,5-Dibromo-2-oxidobenzyl­ideneamino)-3-(4-hydroxy­phen­yl)propionato-κ3 O,N,O′](dimethyl­formamide-κO)copper(II)

Ming-Xiong Tan a,b,*, Zhen-Feng Chen c, Zhou Neng b, Hong Liang a
PMCID: PMC2961003  PMID: 21202044

Abstract

In the title complex, [Cu(C16H11Br2NO4)(C3H7NO)]2, there are two unique mol­ecules in the asymmetric unit. Each CuII atom is coordinated by two O atoms and one N atom from the tridentate ligand L 2− [LH2 = (E)-2-(3,5-dibromo-2-hydroxy­benzyl­idene­amino)-2-(4-hydroxy­phenyl)acetic acid] and the O atom of a dimethyl­formamide mol­ecule to give a slightly distorted square-planar geometry. The two unique mol­ecules form a dimer through weak C—H⋯O hydrogen bonds. In the dimer, the Cu⋯Cu distance is 3.712 (1) Å. In the crystal structure, mol­ecules form a one-dimensional chain through C—H⋯O hydrogen bonds. These are further aggregated into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Li et al. 2008; Zhang et al. (2007a ,b ). For preparative procedures, see: Xia et al. (2007); Liu et al. (2007).graphic file with name e-64-0m601-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H11Br2NO4)(C3H7NO)]

  • M r = 577.71

  • Triclinic, Inline graphic

  • a = 11.4316 (19) Å

  • b = 11.840 (2) Å

  • c = 15.984 (2) Å

  • α = 88.998 (3)°

  • β = 83.562 (2)°

  • γ = 73.210 (2)°

  • V = 2057.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.98 mm−1

  • T = 298 (2) K

  • 0.33 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996) T min = 0.267, T max = 0.498

  • 10763 measured reflections

  • 7143 independent reflections

  • 3697 reflections with > 2s(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.093

  • S = 1.00

  • 7143 reflections

  • 523 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007915/sj2468sup1.cif

e-64-0m601-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007915/sj2468Isup2.hkl

e-64-0m601-Isup2.hkl (349.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O4 1.874 (4)
Cu1—N1 1.893 (5)
Cu1—O5 1.917 (5)
Cu1—O1 1.932 (4)
Cu2—O9 1.874 (4)
Cu2—N3 1.907 (5)
Cu2—O6 1.922 (4)
Cu2—O10 1.932 (5)
O4—Cu1—N1 94.3 (2)
O4—Cu1—O5 92.5 (2)
N1—Cu1—O5 173.1 (2)
O4—Cu1—O1 177.0 (2)
N1—Cu1—O1 84.6 (2)
O5—Cu1—O1 88.5 (2)
O9—Cu2—N3 95.0 (2)
O9—Cu2—O6 178.9 (2)
N3—Cu2—O6 85.1 (2)
O9—Cu2—O10 90.9 (2)
N3—Cu2—O10 173.7 (2)
O6—Cu2—O10 89.0 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O7 0.96 2.59 3.364 (9) 137
C37—H37C⋯O2 0.96 2.48 3.307 (8) 144
O3—H3⋯O1i 0.82 1.98 2.772 (6) 163
O8—H8⋯O6ii 0.82 2.07 2.888 (6) 176
C16—H16⋯O7iii 0.93 2.52 3.422 (9) 163
C29—H29⋯O2iv 0.93 2.45 3.291 (8) 150
C35—H35⋯O2iv 0.93 2.59 3.408 (8) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge financial support by the NSFC (No. 20561001) and the EDF of Guangxi (No. 200607LX067).

supplementary crystallographic information

Comment

Herein, we report the structure of a new mononuclear copper coordination complex [Cu(L)(C3H7NO)]2 (1), Fig. 1, of the chiral ligand (E)-2-(3,5-dibromo-2-oxidobenzylideneamino)-2-(4-hydroxyphenyl)acetate LH2. The Cu(II) atom coordinates a dimethylformamide molecule and the tridentate anionic ligand L2- which binds through the N atom and carboxylate and phenolate O atoms. Although the LH2 ligand is chiral, the compound crystallizes as a racemate with two molecules in the asymmetric unit. The coordination geometry about each copper atom is slightly distorted square planar, Table 1. A s expected all other bond distances and angles are within normal ranges (Zhang et al., 2007a,b).

The two unique molecules form a dimer through weak C18—H18C···O7 and C37—H37C···O2 hydrogen bonds, Table 2. In the dimer, the Cu1···Cu2 distance is 3.712 (1) Å. In the crystal structure, molecules of (I) form a one-dimensional chain along c (Fig. 2) through C3–H3B···O8 and C22–H22B···O3 hydrogen bonds. These chains then form a three-dimensional network through O3—H3···O1 and O8—H8···O6 hydrogen bonds and C29–H29···O2 and C35—H35···O2 interactions (Table 2, Figure 3).

Experimental

Complex (I) was prepared following the procedure described by Liu et al. (2007) and Xia et al. (2007) as follows. 3,5-Dibromo-2-hydroxy-benzaldehyde(0.560 g, 2.0 mmol) and 4-hydroxyl-phenylalanine (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to give a yellow solution. 2 ml DMF and 10 ml of a methanolic solution of CuSO4.5H2O (0.5 g, 2 mmol) were added, the mixture was refluxed for another 1 h at 363 K, and the resulting blue solution was filtered. Blue single crystals suitable for X–ray analysis were obtained by slow evaporation of the filtrate at room temperature. Yield: 80.1% (based on copper). Elemental analysis for [Cu(C16H11Br2NO4)(C3H7NO)]2 calculated: C 46.69, H 3.71, N 5.73%; found: C 46.65, H 3.81, N 5.71%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms and 0.82 Å, Uiso = 1.5Ueq (O) for the OH groups.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), with 30% probability displacement ellipsoids for non-H atoms. Hydrogen atoms have been omitted and C—H···O hydrogen bonds are drawn as dashed lines.

Fig. 2.

Fig. 2.

The formation of one-dimensional chains along c. Hydrogen bonds are drawn as dashed lines.

Fig. 3.

Fig. 3.

Crystal packing of (I) showing the three-dimensional network, with hydrogen bonds drawn as dashed lines.

Crystal data

[Cu(C16H11Br2NO4)(C3H7NO)] Z = 4
Mr = 577.71 F000 = 1140
Triclinic, P1 Dx = 1.865 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 11.4316 (19) Å Cell parameters from 1919 reflections
b = 11.840 (2) Å θ = 2.2–21.6º
c = 15.984 (2) Å µ = 4.98 mm1
α = 88.998 (3)º T = 298 (2) K
β = 83.562 (2)º Prism, blue
γ = 73.210 (2)º 0.33 × 0.18 × 0.14 mm
V = 2057.9 (6) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 7143 independent reflections
Radiation source: fine-focus sealed tube 3697 reflections with > 2s(I)
Monochromator: graphite Rint = 0.041
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.3º
Absorption correction: multi-scan(SADABS; Sheldrick,1996) h = −13→13
Tmin = 0.267, Tmax = 0.498 k = −14→10
10763 measured reflections l = −19→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.093   w = 1/[σ2(Fo2) + (0.024P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
7143 reflections Δρmax = 0.60 e Å3
523 parameters Δρmin = −0.55 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.45708 (7) 0.70847 (7) 0.17285 (5) 0.0437 (2)
Cu2 0.33188 (7) 0.52131 (7) 0.32557 (5) 0.0433 (2)
Br1 0.47185 (6) 0.32932 (7) 0.06179 (5) 0.0569 (2)
Br2 0.95715 (7) 0.15518 (7) 0.14381 (6) 0.0859 (3)
Br3 0.70303 (6) 0.51591 (6) 0.44153 (5) 0.0583 (2)
Br4 0.88589 (7) 0.02902 (7) 0.36347 (6) 0.0810 (3)
N1 0.6098 (5) 0.6878 (5) 0.2154 (3) 0.0386 (14)
N2 0.1415 (5) 0.6973 (6) 0.0891 (4) 0.0586 (17)
N3 0.3513 (4) 0.3622 (4) 0.2930 (3) 0.0312 (13)
N4 0.3335 (5) 0.8409 (5) 0.4121 (3) 0.0494 (15)
O1 0.4266 (4) 0.8725 (4) 0.2033 (3) 0.0507 (12)
O2 0.4951 (4) 0.9914 (4) 0.2783 (3) 0.0625 (14)
O3 0.7098 (4) 0.9130 (4) −0.1456 (3) 0.0760 (16)
H3 0.6752 0.9822 −0.1549 0.114*
O4 0.4861 (4) 0.5476 (4) 0.1493 (3) 0.0492 (12)
O5 0.2972 (4) 0.7485 (4) 0.1347 (3) 0.0592 (14)
O6 0.1695 (4) 0.5527 (4) 0.2919 (3) 0.0509 (13)
O7 0.0475 (4) 0.4692 (4) 0.2348 (3) 0.0709 (16)
O8 0.0751 (4) 0.2943 (4) 0.6592 (3) 0.0816 (17)
H8 0.0063 0.3400 0.6711 0.122*
O9 0.4890 (4) 0.4905 (4) 0.3606 (3) 0.0431 (12)
O10 0.2976 (4) 0.6874 (4) 0.3510 (3) 0.0645 (15)
C1 0.5074 (7) 0.8940 (6) 0.2447 (4) 0.0443 (18)
C2 0.6249 (6) 0.7964 (6) 0.2492 (4) 0.0452 (18)
H2 0.6391 0.7842 0.3084 0.054*
C3 0.7327 (6) 0.8309 (6) 0.2023 (4) 0.0483 (18)
H3A 0.7399 0.9013 0.2289 0.058*
H3B 0.8077 0.7682 0.2079 0.058*
C4 0.7220 (5) 0.8543 (6) 0.1097 (4) 0.0390 (17)
C5 0.6648 (6) 0.9636 (6) 0.0814 (4) 0.0467 (18)
H5 0.6290 1.0245 0.1204 0.056*
C6 0.6584 (6) 0.9870 (6) −0.0033 (4) 0.0492 (19)
H6 0.6202 1.0627 −0.0208 0.059*
C7 0.7089 (6) 0.8970 (6) −0.0613 (5) 0.0450 (18)
C8 0.7654 (5) 0.7877 (6) −0.0346 (4) 0.0458 (18)
H8A 0.8003 0.7271 −0.0740 0.055*
C9 0.7724 (5) 0.7642 (6) 0.0503 (4) 0.0394 (17)
H9 0.8107 0.6883 0.0674 0.047*
C10 0.6954 (6) 0.5907 (7) 0.2170 (4) 0.0427 (19)
H10 0.7636 0.5921 0.2432 0.051*
C11 0.6958 (6) 0.4798 (6) 0.1821 (4) 0.0339 (16)
C12 0.5917 (6) 0.4666 (6) 0.1476 (4) 0.0384 (17)
C13 0.6066 (6) 0.3563 (7) 0.1109 (4) 0.0434 (18)
C14 0.7127 (6) 0.2650 (6) 0.1096 (4) 0.0464 (18)
H14 0.7184 0.1930 0.0845 0.056*
C15 0.8119 (6) 0.2807 (6) 0.1461 (4) 0.0473 (19)
C16 0.8028 (6) 0.3859 (6) 0.1807 (4) 0.0451 (19)
H16 0.8697 0.3964 0.2043 0.054*
C17 0.2547 (7) 0.6760 (7) 0.1048 (5) 0.058 (2)
H17 0.3072 0.6007 0.0926 0.070*
C18 0.0959 (7) 0.6084 (7) 0.0547 (5) 0.083 (3)
H18A 0.1634 0.5397 0.0388 0.125*
H18B 0.0554 0.6387 0.0061 0.125*
H18C 0.0387 0.5877 0.0964 0.125*
C19 0.0575 (7) 0.8125 (8) 0.1092 (6) 0.117 (4)
H19A 0.0213 0.8142 0.1666 0.175*
H19B −0.0061 0.8291 0.0724 0.175*
H19C 0.1011 0.8707 0.1021 0.175*
C20 0.1454 (6) 0.4640 (7) 0.2619 (4) 0.0453 (19)
C21 0.2437 (5) 0.3457 (5) 0.2600 (4) 0.0390 (17)
H21 0.2675 0.3202 0.2010 0.047*
C22 0.1966 (5) 0.2501 (5) 0.3067 (4) 0.0427 (17)
H22A 0.1238 0.2452 0.2829 0.051*
H22B 0.2588 0.1748 0.2964 0.051*
C23 0.1652 (6) 0.2694 (5) 0.4012 (4) 0.0349 (16)
C24 0.2473 (6) 0.2088 (5) 0.4556 (5) 0.0445 (18)
H24 0.3246 0.1613 0.4342 0.053*
C25 0.2147 (6) 0.2189 (6) 0.5402 (5) 0.0504 (19)
H25 0.2707 0.1775 0.5759 0.060*
C26 0.1029 (7) 0.2877 (6) 0.5744 (5) 0.0484 (19)
C27 0.0216 (6) 0.3516 (6) 0.5208 (4) 0.0488 (19)
H27 −0.0538 0.4022 0.5425 0.059*
C28 0.0536 (6) 0.3397 (6) 0.4346 (4) 0.0422 (18)
H28 −0.0023 0.3805 0.3987 0.051*
C29 0.4494 (6) 0.2781 (6) 0.2933 (4) 0.0387 (17)
H29 0.4508 0.2063 0.2698 0.046*
C30 0.5595 (6) 0.2846 (6) 0.3275 (4) 0.0354 (16)
C31 0.5709 (6) 0.3894 (6) 0.3605 (4) 0.0353 (16)
C32 0.6824 (6) 0.3771 (6) 0.3959 (4) 0.0431 (18)
C33 0.7748 (6) 0.2735 (7) 0.3965 (4) 0.050 (2)
H33 0.8461 0.2706 0.4205 0.060*
C34 0.7605 (6) 0.1727 (6) 0.3609 (4) 0.0479 (19)
C35 0.6547 (6) 0.1792 (6) 0.3273 (4) 0.0418 (18)
H35 0.6453 0.1116 0.3036 0.050*
C36 0.3602 (6) 0.7288 (6) 0.3940 (4) 0.0496 (19)
H36 0.4290 0.6775 0.4141 0.059*
C37 0.4104 (6) 0.8861 (6) 0.4608 (4) 0.063 (2)
H37A 0.4721 0.8213 0.4812 0.095*
H37B 0.3607 0.9322 0.5077 0.095*
H37C 0.4494 0.9346 0.4259 0.095*
C38 0.2263 (6) 0.9238 (6) 0.3835 (5) 0.075 (2)
H38A 0.1738 0.8816 0.3644 0.112*
H38B 0.2514 0.9687 0.3380 0.112*
H38C 0.1823 0.9761 0.4291 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0467 (5) 0.0381 (5) 0.0484 (6) −0.0140 (4) −0.0101 (4) 0.0016 (4)
Cu2 0.0440 (5) 0.0341 (5) 0.0536 (6) −0.0120 (4) −0.0116 (4) 0.0022 (4)
Br1 0.0556 (5) 0.0620 (6) 0.0605 (6) −0.0290 (4) −0.0039 (4) −0.0116 (4)
Br2 0.0567 (5) 0.0566 (6) 0.1299 (9) 0.0036 (5) −0.0036 (5) 0.0072 (5)
Br3 0.0577 (5) 0.0530 (5) 0.0742 (6) −0.0261 (4) −0.0222 (4) 0.0004 (4)
Br4 0.0546 (5) 0.0557 (6) 0.1204 (8) 0.0037 (5) −0.0123 (5) 0.0119 (5)
N1 0.048 (4) 0.032 (4) 0.039 (4) −0.015 (3) −0.009 (3) 0.008 (3)
N2 0.037 (4) 0.065 (5) 0.074 (5) −0.012 (4) −0.016 (3) 0.002 (4)
N3 0.032 (3) 0.026 (3) 0.039 (4) −0.012 (3) −0.006 (3) 0.002 (2)
N4 0.056 (4) 0.044 (4) 0.048 (4) −0.016 (4) 0.002 (3) −0.003 (3)
O1 0.055 (3) 0.042 (3) 0.058 (3) −0.017 (3) −0.009 (3) 0.003 (2)
O2 0.084 (4) 0.044 (3) 0.065 (4) −0.027 (3) −0.008 (3) −0.013 (3)
O3 0.108 (4) 0.059 (4) 0.041 (4) 0.007 (3) −0.005 (3) −0.003 (3)
O4 0.046 (3) 0.035 (3) 0.066 (3) −0.007 (3) −0.017 (2) 0.004 (2)
O5 0.050 (3) 0.055 (4) 0.073 (4) −0.013 (3) −0.014 (3) −0.005 (3)
O6 0.046 (3) 0.042 (3) 0.066 (4) −0.011 (3) −0.015 (2) 0.004 (2)
O7 0.049 (3) 0.086 (4) 0.087 (4) −0.027 (3) −0.026 (3) 0.019 (3)
O8 0.098 (4) 0.078 (4) 0.041 (4) 0.017 (3) −0.007 (3) 0.001 (3)
O9 0.048 (3) 0.031 (3) 0.051 (3) −0.010 (2) −0.008 (2) 0.001 (2)
O10 0.064 (3) 0.035 (3) 0.095 (4) −0.005 (3) −0.033 (3) −0.002 (3)
C1 0.061 (5) 0.038 (5) 0.037 (5) −0.021 (5) −0.003 (4) 0.010 (4)
C2 0.064 (5) 0.049 (5) 0.035 (5) −0.034 (4) −0.014 (4) 0.004 (3)
C3 0.059 (5) 0.051 (5) 0.045 (5) −0.028 (4) −0.018 (4) 0.000 (3)
C4 0.039 (4) 0.041 (5) 0.046 (5) −0.024 (4) −0.007 (4) −0.003 (4)
C5 0.072 (5) 0.032 (5) 0.037 (5) −0.018 (4) 0.005 (4) −0.006 (3)
C6 0.070 (5) 0.025 (4) 0.048 (5) −0.008 (4) −0.003 (4) 0.001 (4)
C7 0.046 (4) 0.044 (5) 0.041 (5) −0.007 (4) −0.002 (4) −0.006 (4)
C8 0.045 (4) 0.044 (5) 0.044 (5) −0.005 (4) −0.006 (4) −0.013 (4)
C9 0.038 (4) 0.033 (4) 0.053 (5) −0.015 (4) −0.014 (4) 0.002 (4)
C10 0.051 (5) 0.065 (6) 0.027 (4) −0.036 (5) −0.014 (4) 0.015 (4)
C11 0.037 (4) 0.032 (4) 0.038 (4) −0.015 (4) −0.013 (3) 0.009 (3)
C12 0.054 (5) 0.024 (4) 0.042 (5) −0.018 (4) −0.005 (4) 0.007 (3)
C13 0.037 (4) 0.058 (5) 0.043 (5) −0.025 (4) −0.006 (3) 0.008 (4)
C14 0.054 (5) 0.030 (5) 0.055 (5) −0.016 (4) 0.006 (4) −0.003 (3)
C15 0.045 (5) 0.036 (5) 0.061 (5) −0.015 (4) −0.003 (4) 0.012 (4)
C16 0.049 (5) 0.038 (5) 0.054 (5) −0.022 (4) −0.006 (4) 0.013 (4)
C17 0.044 (5) 0.067 (6) 0.058 (6) −0.005 (5) −0.011 (4) 0.014 (4)
C18 0.076 (6) 0.092 (7) 0.097 (8) −0.038 (6) −0.037 (5) 0.019 (5)
C19 0.059 (6) 0.116 (9) 0.169 (11) −0.004 (6) −0.033 (6) −0.046 (7)
C20 0.035 (4) 0.055 (6) 0.046 (5) −0.016 (5) 0.000 (4) 0.021 (4)
C21 0.042 (4) 0.049 (5) 0.034 (4) −0.023 (4) −0.011 (3) −0.002 (3)
C22 0.045 (4) 0.040 (4) 0.051 (5) −0.023 (4) −0.011 (3) −0.004 (3)
C23 0.039 (4) 0.029 (4) 0.044 (5) −0.021 (4) −0.005 (4) −0.001 (3)
C24 0.037 (4) 0.034 (4) 0.058 (6) −0.003 (4) −0.007 (4) −0.002 (4)
C25 0.050 (5) 0.043 (5) 0.054 (6) −0.002 (4) −0.017 (4) 0.005 (4)
C26 0.061 (5) 0.042 (5) 0.042 (5) −0.014 (4) −0.010 (4) 0.001 (4)
C27 0.041 (4) 0.050 (5) 0.048 (5) −0.001 (4) −0.009 (4) 0.008 (4)
C28 0.035 (4) 0.054 (5) 0.041 (5) −0.014 (4) −0.017 (4) 0.011 (4)
C29 0.049 (5) 0.033 (5) 0.035 (4) −0.015 (4) 0.002 (4) −0.007 (3)
C30 0.033 (4) 0.035 (4) 0.040 (4) −0.013 (4) −0.005 (3) 0.005 (3)
C31 0.039 (4) 0.036 (5) 0.038 (4) −0.023 (4) −0.001 (3) 0.002 (3)
C32 0.043 (4) 0.057 (5) 0.041 (5) −0.033 (4) −0.005 (4) 0.002 (4)
C33 0.039 (4) 0.051 (5) 0.062 (5) −0.014 (4) −0.013 (4) 0.014 (4)
C34 0.045 (5) 0.050 (5) 0.051 (5) −0.021 (4) 0.001 (4) 0.008 (4)
C35 0.050 (5) 0.037 (5) 0.040 (5) −0.017 (4) 0.004 (4) −0.001 (3)
C36 0.057 (5) 0.030 (5) 0.057 (5) −0.003 (4) −0.011 (4) 0.006 (4)
C37 0.079 (6) 0.062 (5) 0.052 (5) −0.027 (5) −0.001 (4) −0.013 (4)
C38 0.061 (5) 0.051 (6) 0.103 (7) 0.004 (5) −0.024 (5) −0.013 (5)

Geometric parameters (Å, °)

Cu1—O4 1.874 (4) C10—C11 1.435 (8)
Cu1—N1 1.893 (5) C10—H10 0.9300
Cu1—O5 1.917 (5) C11—C16 1.393 (8)
Cu1—O1 1.932 (4) C11—C12 1.415 (8)
Cu2—O9 1.874 (4) C12—C13 1.398 (9)
Cu2—N3 1.907 (5) C13—C14 1.371 (8)
Cu2—O6 1.922 (4) C14—C15 1.391 (8)
Cu2—O10 1.932 (5) C14—H14 0.9300
Br1—C13 1.912 (6) C15—C16 1.344 (9)
Br2—C15 1.878 (7) C16—H16 0.9300
Br3—C32 1.896 (6) C17—H17 0.9300
Br4—C34 1.884 (7) C18—H18A 0.9600
N1—C10 1.279 (7) C18—H18B 0.9600
N1—C2 1.465 (7) C18—H18C 0.9600
N2—C17 1.297 (8) C19—H19A 0.9600
N2—C19 1.440 (9) C19—H19B 0.9600
N2—C18 1.443 (8) C19—H19C 0.9600
N3—C29 1.267 (6) C20—C21 1.520 (8)
N3—C21 1.454 (6) C21—C22 1.536 (7)
N4—C36 1.303 (8) C21—H21 0.9800
N4—C38 1.446 (7) C22—C23 1.518 (8)
N4—C37 1.451 (7) C22—H22A 0.9700
O1—C1 1.278 (7) C22—H22B 0.9700
O2—C1 1.245 (7) C23—C28 1.362 (8)
O3—C7 1.358 (7) C23—C24 1.387 (7)
O3—H3 0.8200 C24—C25 1.360 (8)
O4—C12 1.305 (7) C24—H24 0.9300
O5—C17 1.228 (8) C25—C26 1.361 (8)
O6—C20 1.274 (8) C25—H25 0.9300
O7—C20 1.229 (7) C26—C27 1.386 (8)
O8—C26 1.355 (7) C27—C28 1.384 (8)
O8—H8 0.8200 C27—H27 0.9300
O9—C31 1.289 (6) C28—H28 0.9300
O10—C36 1.245 (7) C29—C30 1.449 (7)
C1—C2 1.506 (9) C29—H29 0.9300
C2—C3 1.524 (8) C30—C35 1.399 (8)
C2—H2 0.9800 C30—C31 1.403 (8)
C3—C4 1.513 (8) C31—C32 1.421 (8)
C3—H3A 0.9700 C32—C33 1.368 (8)
C3—H3B 0.9700 C33—C34 1.391 (8)
C4—C5 1.366 (8) C33—H33 0.9300
C4—C9 1.389 (8) C34—C35 1.359 (8)
C5—C6 1.383 (8) C35—H35 0.9300
C5—H5 0.9300 C36—H36 0.9300
C6—C7 1.373 (9) C37—H37A 0.9600
C6—H6 0.9300 C37—H37B 0.9600
C7—C8 1.354 (8) C37—H37C 0.9600
C8—C9 1.386 (8) C38—H38A 0.9600
C8—H8A 0.9300 C38—H38B 0.9600
C9—H9 0.9300 C38—H38C 0.9600
O4—Cu1—N1 94.3 (2) C11—C16—H16 119.1
O4—Cu1—O5 92.5 (2) O5—C17—N2 124.5 (8)
N1—Cu1—O5 173.1 (2) O5—C17—H17 117.8
O4—Cu1—O1 177.0 (2) N2—C17—H17 117.8
N1—Cu1—O1 84.6 (2) N2—C18—H18A 109.5
O5—Cu1—O1 88.5 (2) N2—C18—H18B 109.5
O9—Cu2—N3 95.0 (2) H18A—C18—H18B 109.5
O9—Cu2—O6 178.9 (2) N2—C18—H18C 109.5
N3—Cu2—O6 85.1 (2) H18A—C18—H18C 109.5
O9—Cu2—O10 90.9 (2) H18B—C18—H18C 109.5
N3—Cu2—O10 173.7 (2) N2—C19—H19A 109.5
O6—Cu2—O10 89.0 (2) N2—C19—H19B 109.5
C10—N1—C2 120.1 (5) H19A—C19—H19B 109.5
C10—N1—Cu1 126.0 (4) N2—C19—H19C 109.5
C2—N1—Cu1 113.9 (4) H19A—C19—H19C 109.5
C17—N2—C19 118.9 (7) H19B—C19—H19C 109.5
C17—N2—C18 122.2 (7) O7—C20—O6 123.6 (7)
C19—N2—C18 118.9 (6) O7—C20—C21 118.7 (7)
C29—N3—C21 121.2 (5) O6—C20—C21 117.7 (6)
C29—N3—Cu2 125.2 (4) N3—C21—C20 108.7 (5)
C21—N3—Cu2 113.5 (4) N3—C21—C22 112.6 (4)
C36—N4—C38 120.5 (6) C20—C21—C22 112.3 (5)
C36—N4—C37 121.2 (6) N3—C21—H21 107.7
C38—N4—C37 118.3 (6) C20—C21—H21 107.7
C1—O1—Cu1 114.8 (4) C22—C21—H21 107.7
C7—O3—H3 109.5 C23—C22—C21 115.3 (5)
C12—O4—Cu1 126.0 (4) C23—C22—H22A 108.4
C17—O5—Cu1 123.4 (5) C21—C22—H22A 108.4
C20—O6—Cu2 115.0 (4) C23—C22—H22B 108.4
C26—O8—H8 109.5 C21—C22—H22B 108.4
C31—O9—Cu2 126.7 (4) H22A—C22—H22B 107.5
C36—O10—Cu2 124.0 (4) C28—C23—C24 118.5 (6)
O2—C1—O1 123.5 (7) C28—C23—C22 121.2 (5)
O2—C1—C2 119.3 (7) C24—C23—C22 120.1 (6)
O1—C1—C2 117.1 (6) C25—C24—C23 119.9 (6)
N1—C2—C1 108.5 (6) C25—C24—H24 120.0
N1—C2—C3 112.6 (6) C23—C24—H24 120.0
C1—C2—C3 110.1 (5) C24—C25—C26 122.1 (6)
N1—C2—H2 108.5 C24—C25—H25 118.9
C1—C2—H2 108.5 C26—C25—H25 118.9
C3—C2—H2 108.5 O8—C26—C25 119.7 (6)
C4—C3—C2 114.2 (5) O8—C26—C27 121.8 (7)
C4—C3—H3A 108.7 C25—C26—C27 118.4 (7)
C2—C3—H3A 108.7 C28—C27—C26 119.5 (7)
C4—C3—H3B 108.7 C28—C27—H27 120.3
C2—C3—H3B 108.7 C26—C27—H27 120.3
H3A—C3—H3B 107.6 C23—C28—C27 121.4 (6)
C5—C4—C9 117.7 (6) C23—C28—H28 119.3
C5—C4—C3 121.8 (6) C27—C28—H28 119.3
C9—C4—C3 120.4 (6) N3—C29—C30 125.3 (6)
C4—C5—C6 122.3 (6) N3—C29—H29 117.4
C4—C5—H5 118.8 C30—C29—H29 117.4
C6—C5—H5 118.8 C35—C30—C31 121.0 (6)
C7—C6—C5 119.2 (6) C35—C30—C29 116.3 (6)
C7—C6—H6 120.4 C31—C30—C29 122.7 (6)
C5—C6—H6 120.4 O9—C31—C30 124.6 (6)
C8—C7—O3 117.4 (6) O9—C31—C32 120.7 (6)
C8—C7—C6 119.5 (7) C30—C31—C32 114.7 (6)
O3—C7—C6 123.0 (6) C33—C32—C31 124.1 (6)
C7—C8—C9 121.4 (6) C33—C32—Br3 119.3 (5)
C7—C8—H8A 119.3 C31—C32—Br3 116.5 (5)
C9—C8—H8A 119.3 C32—C33—C34 119.0 (6)
C8—C9—C4 119.9 (6) C32—C33—H33 120.5
C8—C9—H9 120.1 C34—C33—H33 120.5
C4—C9—H9 120.1 C35—C34—C33 119.2 (7)
N1—C10—C11 126.0 (6) C35—C34—Br4 121.5 (6)
N1—C10—H10 117.0 C33—C34—Br4 119.3 (5)
C11—C10—H10 117.0 C34—C35—C30 121.9 (6)
C16—C11—C12 120.7 (6) C34—C35—H35 119.0
C16—C11—C10 118.3 (6) C30—C35—H35 119.0
C12—C11—C10 121.0 (6) O10—C36—N4 122.9 (6)
O4—C12—C13 119.7 (6) O10—C36—H36 118.5
O4—C12—C11 125.0 (6) N4—C36—H36 118.5
C13—C12—C11 115.3 (6) N4—C37—H37A 109.5
C14—C13—C12 123.3 (6) N4—C37—H37B 109.5
C14—C13—Br1 117.9 (5) H37A—C37—H37B 109.5
C12—C13—Br1 118.8 (5) N4—C37—H37C 109.5
C13—C14—C15 119.5 (6) H37A—C37—H37C 109.5
C13—C14—H14 120.2 H37B—C37—H37C 109.5
C15—C14—H14 120.2 N4—C38—H38A 109.5
C16—C15—C14 119.3 (6) N4—C38—H38B 109.5
C16—C15—Br2 121.4 (6) H38A—C38—H38B 109.5
C14—C15—Br2 119.2 (6) N4—C38—H38C 109.5
C15—C16—C11 121.8 (7) H38A—C38—H38C 109.5
C15—C16—H16 119.1 H38B—C38—H38C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18C···O7 0.96 2.59 3.364 (9) 137
C37—H37C···O2 0.96 2.48 3.307 (8) 144
O3—H3···O1i 0.82 1.98 2.772 (6) 163
O8—H8···O6ii 0.82 2.07 2.888 (6) 176
C16—H16···O7iii 0.93 2.52 3.422 (9) 163
C29—H29···O2iv 0.93 2.45 3.291 (8) 150
C35—H35···O2iv 0.93 2.59 3.408 (8) 147

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z+1; (iii) x+1, y, z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2468).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.
  3. Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156–m158.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.
  7. Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.
  8. Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007915/sj2468sup1.cif

e-64-0m601-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007915/sj2468Isup2.hkl

e-64-0m601-Isup2.hkl (349.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES