Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m545–m546. doi: 10.1107/S1600536808006673

6-(2-Chloro­benzyl­amino)purinium tetra­chlorido(dimethyl sulfoxide-κO)(nitrosyl-κN)ruthenate(III) monohydrate

Zdeněk Trávníček a, Miroslava Matiková-Maľarová a, Kamila Štěpánková a,*
PMCID: PMC2961006  PMID: 21202003

Abstract

The asymmetric unit of the title complex salt, (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O, contains a 6-(2-chloro­benzyl­amino)purinium cation, a tetra­chlorido(dimethyl sulfoxide)nitro­sylruthenate(III) anion and one solvent water mol­ecule. The RuIII atom is octa­hedrally coordinated by four Cl atoms in the equatorial plane, and by a dimethyl sulfoxide O atom and a nitrosyl N atom in axial positions. The cation is an N3-protonated N7 tautomer. Inter­molecular N–H⋯N hydrogen bonds connect two cations into centrosymmetric dimers, with an N⋯N distance of 2.821 (4) Å. The crystal structure also involves N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds.

Related literature

For related structures of 6-benzyl­amino­purine derivatives, see: Maloň et al. (2001, 2002); Trávníček et al. (2004, 2005, 2007); Trávníček & Matiková-Maľarová (2006). For the structure of a related Ru complex, see: Serli et al. (2002). For a description of the Cambridge Structural Database, see: Allen (2002).graphic file with name e-64-0m545-scheme1.jpg

Experimental

Crystal data

  • (C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O

  • M r = 629.73

  • Orthorhombic, Inline graphic

  • a = 15.6229 (5) Å

  • b = 12.8014 (4) Å

  • c = 22.6866 (16) Å

  • V = 4537.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 120 (2) K

  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Oxford Diffraction Xcalibur2 diffractometer with CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.604, T max = 0.721

  • 36172 measured reflections

  • 3984 independent reflections

  • 3588 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.079

  • S = 1.09

  • 3984 reflections

  • 279 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006673/tk2253sup1.cif

e-64-0m545-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006673/tk2253Isup2.hkl

e-64-0m545-Isup2.hkl (195.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N9i 0.88 1.97 2.821 (4) 164
N6—H6A⋯O3ii 0.88 2.41 3.046 (4) 130
N6—H6A⋯Cl2ii 0.88 2.66 3.312 (3) 132
N7—H7A⋯O3ii 0.88 2.45 2.976 (4) 119
N7—H7A⋯Cl2ii 0.88 2.68 3.290 (3) 127
N7—H7A⋯Cl3ii 0.88 2.82 3.424 (3) 128
O3—H3W⋯Cl3iii 0.904 (19) 2.56 (3) 3.386 (3) 152 (4)
O3—H3V⋯Cl4iv 0.909 (19) 2.61 (3) 3.402 (3) 146 (4)
O3—H3V⋯Cl5iv 0.909 (19) 2.69 (3) 3.406 (3) 136 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support of this work by the Ministry of Education, Youth and Sport of the Czech Republic (MSM6198959218) and the Grant Agency of the Czech Republic (GAČR 203/08/P436) is gratefully acknowledged.

supplementary crystallographic information

Comment

As a part of our systematic study of Ru(III) complexes involving substituted 6-benzylaminopurines, we have prepared the title complex salt, (I), Fig. 1. The structure comprises a 6-(2-chlorobenzylamino)purin-3-ium cation, a [tetrachloro(dimethyl sulfoxide-κO)(nitrosyl-κN)]ruthenate(III) anion and one water molecule of crystallization. The cation exists as the N3-protonated N7 tautomer and contains three different aromatic rings: benzene, pyrimidine (A) and imidazole (B). The A and B rings are nearly co-planar forming a dihedral angle of 1.49 (1)°, while the angle between the benzene ring and purine skeleton (rings A + B) is 85.95 (7)°. The bond lengths and angles in the cation of (I) are similar to those found for 6-(3-chlorobenzylamino)purinium chloride (Maloň et al., 2001), 6-(4-chlorobenzylamino)purinium perchlorate (Maloň et al., 2002), 6-(4-methoxybenzylamino)purinium chloride (Trávníček et al., 2004), 6-(3-methoxybenzylamino)purinium chloride monohydrate (Trávníček et al., 2005), 6-(3-bromobenzylamino)purinium chloride (Trávníček et al., 2006) and 6-(4-hydroxybenzylamino)purinium chloride (Trávníček et al., 2007). Suprisingly, only nine Ru complexes having a RuCl4NO coordination geometry have been structurally characterized up to now and deposited in the CSD (Cambridge Structural Database, Version 5.29; Allen, 2002). Moreover, the title complex salt represents only the second X-ray structure determined involving a Ru(NO-κN)Cl4(DMSO-κO) moiety.

The geometry about the RuIII atom can be described as a distorted octahedron, as can be seen from the following angles: Cl2-Ru1-Cl4 (174.92 (3)°), Cl3-Ru1-Cl5 (172.39 (3)°), and O1-Ru1-N2 (178.16 (12)°). The N-bonded nitrosyl group occupies a position trans to the O-coordinated dimethyl sulfoxide (DMSO). The Ru–Cl, Ru–N and Ru–O bond lengths of 2.3585 (9)-2.3798 (8), 1.703 (3), and 2.042 (2) Å, respectively, are close to those found for [(DMSO)2H][trans-RuCl4(NO)(DMSO-κO)] (2.356 (2)-2.373 (2), 1.712 (5), and 2.029 (3) Å, respectively) (Serli et al., 2002).

The O—H···Cl, N—H···Cl, N–H···O and N—H···N hydrogen bonds in (I) contribute to the stabilization of the secondary structure (Table 1, Figs. 2 and 3). Non-bonding interactions of the type C17···C11xi (3.3914 (5) Å), C17···Cl6xi (3.3825 (4) Å), C17—H17A···O3xii (C···O = 3.4419 (5) Å), C16—H16C···Cl3vii (C···Cl = 3.5709 (6) Å) are also present [symmetry codes: xi: 1-x, 0.5+y, 0.5-z; xii: 1.5-x, 0.5+y, z; vii: -0.5+x, y, 0.5-z]. The periodic alternation of anionic and cationic layers in the ac plane can be seen from Fig. 3.

Experimental

The title complex salt, (I), was prepared by mixing of an ethanolic suspension (2 ml) of 6-(2-chlorobenzylamino)purine and an ethanolic solution (3 ml) of [(DMSO)2H][RuCl4NO(DMSO-κO)] (DMSO = dimethyl sulfoxide) in a molar ratio of 2:1. The reaction mixture was stirred at room temperature for 5 min. After this time, a violet solution formed which was left to stand at room temperature. Violet crystals, suitable for single-crystal X-ray analysis, were deposited after slow evaporation of the solvent over a period of two days.

Refinement

All H atoms were located in difference maps and refined using a riding model, with C–H distances of 0.95 and 0.99 Å, N–H distances of 0.88 Å, and with Uiso(H) values of 1.2Ueq(C,N). The O–H atoms were refined freely, see Table 1 for distances. The highest unassigned difference Fourier peak of 1.25 e Å-3 is located 0.84 Å from the Ru1 atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the non-H atoms as 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen bonding interactions of the type O—H···Cl, N—H···Cl, N–H···O and N—H···N (dashed lines) operating in the crystal structure of (I). Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1.5 - x, 1 - y, 1/2 + z; (v) 1.5 - x, 1 - y, -1/2 + z; (vi) 1/2 + x, 1 + y, 0.5 - z; (vii) -1/2 + x, y, 0.5 - z; (viii) 2 - x, 1 - y, 1 - z.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of non-bonding C–H···Cl, C–H···O, C···Cl and C···C (dashed lines) interactions. Symmetry codes: (vii) -1/2 + x, y, 0.5 - z; (ix) 1 - x, -1/2 + y, 0.5 - z; (x) 1.5 - x, -1/2 + y, z; (xi) 1 - x, 1/2 + y, 0.5 - z; (xii) 1.5 - x, 1/2 + y, z.

Crystal data

(C12H11ClN5)[RuCl4(NO)(C2H6OS)]·H2O F000 = 2512
Mr = 629.73 Dx = 1.844 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 29289 reflections
a = 15.6229 (5) Å θ = 2.6–31.9º
b = 12.8014 (4) Å µ = 1.40 mm1
c = 22.6866 (16) Å T = 120 (2) K
V = 4537.2 (4) Å3 Prism, violet
Z = 8 0.40 × 0.30 × 0.25 mm

Data collection

Oxford Diffraction Xcalibur2 diffractometer with CCD detector 3984 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3588 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.018
Detector resolution: 8.3611 pixels mm-1 θmax = 25.0º
T = 120(2) K θmin = 2.6º
rotation method ω scans h = −18→15
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) k = −13→15
Tmin = 0.604, Tmax = 0.721 l = −26→26
36172 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079   w = 1/[σ2(Fo2) + (0.0366P)2 + 10.7079P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3984 reflections Δρmax = 1.25 e Å3
279 parameters Δρmin = −0.58 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru1 0.616687 (16) 0.769508 (19) 0.208516 (10) 0.01845 (9)
S1 0.47079 (7) 0.93802 (7) 0.19053 (4) 0.0406 (3)
N1 0.57623 (16) 0.3182 (2) 0.47999 (11) 0.0210 (6)
O1 0.52917 (14) 0.85527 (17) 0.16242 (10) 0.0250 (5)
Cl2 0.67103 (5) 0.72294 (6) 0.11452 (3) 0.02083 (17)
C2 0.5321 (2) 0.2412 (2) 0.45576 (14) 0.0225 (7)
H2A 0.5052 0.2546 0.4190 0.027*
N2 0.68824 (19) 0.6944 (2) 0.24609 (12) 0.0285 (6)
O2 0.7319 (2) 0.6425 (2) 0.27444 (12) 0.0498 (8)
O3 0.87301 (19) 0.6670 (2) 0.18872 (13) 0.0445 (7)
Cl3 0.70383 (5) 0.92198 (7) 0.20765 (4) 0.0304 (2)
N3 0.52234 (16) 0.1460 (2) 0.47885 (11) 0.0199 (5)
H3A 0.4903 0.0986 0.4615 0.024*
Cl4 0.55053 (6) 0.81931 (7) 0.29846 (3) 0.0326 (2)
C4 0.56383 (19) 0.1251 (2) 0.53017 (13) 0.0183 (6)
Cl5 0.51797 (6) 0.63075 (7) 0.20103 (4) 0.0317 (2)
C5 0.61254 (19) 0.2011 (2) 0.55736 (14) 0.0198 (6)
Cl6 0.63017 (6) 0.69071 (6) 0.46836 (4) 0.0329 (2)
C6 0.61565 (18) 0.3025 (2) 0.53287 (14) 0.0189 (6)
N6 0.65345 (17) 0.3834 (2) 0.55878 (12) 0.0224 (6)
H6A 0.6813 0.3724 0.5919 0.027*
N7 0.64498 (18) 0.1527 (2) 0.60684 (12) 0.0237 (6)
H7A 0.6788 0.1809 0.6335 0.028*
C8 0.6151 (2) 0.0543 (3) 0.60655 (15) 0.0237 (7)
H8A 0.6287 0.0044 0.6361 0.028*
N9 0.56465 (17) 0.0337 (2) 0.56098 (12) 0.0219 (6)
C9 0.6513 (2) 0.4892 (2) 0.53527 (14) 0.0239 (7)
H9A 0.6635 0.5389 0.5676 0.029*
H9B 0.5928 0.5040 0.5207 0.029*
C10 0.7143 (2) 0.5083 (2) 0.48574 (14) 0.0210 (7)
C11 0.7108 (2) 0.6004 (2) 0.45299 (14) 0.0247 (7)
C12 0.7666 (2) 0.6214 (3) 0.40738 (15) 0.0306 (8)
H12A 0.7636 0.6859 0.3868 0.037*
C13 0.8268 (2) 0.5472 (3) 0.39215 (16) 0.0358 (9)
H13A 0.8648 0.5597 0.3602 0.043*
C14 0.8317 (2) 0.4551 (3) 0.42324 (17) 0.0357 (9)
H14A 0.8732 0.4041 0.4126 0.043*
C15 0.7766 (2) 0.4362 (3) 0.47003 (15) 0.0281 (7)
H15A 0.7815 0.3729 0.4916 0.034*
C16 0.3684 (3) 0.8778 (5) 0.1860 (3) 0.094 (2)
H16A 0.3664 0.8177 0.2128 0.142*
H16B 0.3583 0.8542 0.1455 0.142*
H16C 0.3242 0.9282 0.1973 0.142*
C17 0.4570 (3) 1.0279 (3) 0.13257 (18) 0.0391 (9)
H17A 0.5108 1.0654 0.1257 0.059*
H17B 0.4121 1.0780 0.1431 0.059*
H17C 0.4405 0.9905 0.0967 0.059*
H3W 0.860 (3) 0.606 (2) 0.2071 (18) 0.050*
H3V 0.9236 (18) 0.687 (3) 0.2050 (18) 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru1 0.02301 (15) 0.01753 (15) 0.01482 (14) −0.00037 (10) −0.00315 (10) −0.00055 (9)
S1 0.0678 (7) 0.0305 (5) 0.0233 (4) 0.0244 (5) 0.0070 (4) −0.0014 (4)
N1 0.0198 (14) 0.0203 (14) 0.0229 (14) −0.0022 (11) −0.0009 (11) 0.0034 (11)
O1 0.0259 (12) 0.0285 (12) 0.0207 (11) 0.0062 (10) −0.0028 (9) −0.0053 (10)
Cl2 0.0188 (4) 0.0246 (4) 0.0191 (4) 0.0011 (3) −0.0003 (3) −0.0024 (3)
C2 0.0215 (16) 0.0227 (16) 0.0232 (17) −0.0017 (13) −0.0035 (13) 0.0038 (13)
N2 0.0396 (17) 0.0275 (15) 0.0183 (13) 0.0064 (14) −0.0060 (13) −0.0014 (12)
O2 0.062 (2) 0.0545 (18) 0.0328 (15) 0.0269 (16) −0.0130 (14) 0.0043 (13)
O3 0.0407 (16) 0.0503 (18) 0.0424 (17) −0.0016 (14) −0.0104 (13) 0.0060 (14)
Cl3 0.0320 (5) 0.0241 (4) 0.0350 (5) −0.0075 (3) −0.0039 (4) −0.0059 (3)
N3 0.0186 (13) 0.0181 (13) 0.0229 (14) −0.0032 (11) −0.0041 (11) −0.0002 (11)
Cl4 0.0444 (5) 0.0349 (5) 0.0186 (4) 0.0014 (4) 0.0033 (4) −0.0049 (3)
C4 0.0161 (15) 0.0169 (15) 0.0218 (16) −0.0008 (12) 0.0021 (12) −0.0004 (12)
Cl5 0.0378 (5) 0.0261 (4) 0.0312 (5) −0.0117 (4) 0.0078 (4) −0.0043 (3)
C5 0.0185 (15) 0.0197 (15) 0.0212 (15) −0.0019 (13) −0.0024 (12) 0.0025 (13)
Cl6 0.0488 (5) 0.0182 (4) 0.0316 (4) 0.0042 (4) 0.0020 (4) −0.0021 (3)
C6 0.0148 (15) 0.0189 (15) 0.0231 (16) −0.0004 (12) 0.0029 (12) 0.0012 (13)
N6 0.0259 (14) 0.0175 (13) 0.0238 (14) −0.0049 (11) −0.0042 (11) 0.0023 (11)
N7 0.0257 (14) 0.0228 (14) 0.0225 (14) −0.0066 (12) −0.0072 (11) 0.0039 (11)
C8 0.0257 (17) 0.0198 (16) 0.0257 (17) −0.0049 (13) −0.0057 (14) 0.0059 (13)
N9 0.0230 (14) 0.0187 (13) 0.0240 (14) −0.0026 (11) −0.0022 (11) 0.0041 (11)
C9 0.0279 (17) 0.0184 (16) 0.0255 (17) −0.0014 (13) 0.0023 (14) −0.0007 (13)
C10 0.0222 (16) 0.0188 (15) 0.0220 (16) −0.0056 (13) −0.0043 (13) −0.0021 (13)
C11 0.0289 (18) 0.0214 (16) 0.0238 (17) −0.0051 (14) −0.0048 (14) −0.0046 (13)
C12 0.037 (2) 0.0308 (19) 0.0239 (17) −0.0133 (16) −0.0009 (15) 0.0044 (14)
C13 0.0263 (19) 0.053 (2) 0.0280 (19) −0.0101 (17) 0.0050 (15) 0.0023 (17)
C14 0.0235 (18) 0.045 (2) 0.038 (2) 0.0023 (16) 0.0033 (16) −0.0018 (18)
C15 0.0237 (17) 0.0291 (18) 0.0317 (18) −0.0014 (14) −0.0010 (14) 0.0026 (15)
C16 0.050 (3) 0.075 (4) 0.158 (6) 0.028 (3) 0.062 (4) 0.052 (4)
C17 0.045 (2) 0.031 (2) 0.041 (2) 0.0084 (17) 0.0006 (18) 0.0047 (17)

Geometric parameters (Å, °)

Ru1—N2 1.703 (3) N6—H6A 0.8800
Ru1—O1 2.042 (2) N7—C8 1.344 (4)
Ru1—Cl5 2.3585 (9) N7—H7A 0.8800
Ru1—Cl2 2.3713 (8) C8—N9 1.326 (4)
Ru1—Cl4 2.3746 (8) C8—H8A 0.9500
Ru1—Cl3 2.3798 (8) C9—C10 1.514 (4)
S1—O1 1.536 (2) C9—H9A 0.9900
S1—C17 1.761 (4) C9—H9B 0.9900
S1—C16 1.778 (6) C10—C15 1.388 (5)
N1—C2 1.323 (4) C10—C11 1.394 (5)
N1—C6 1.363 (4) C11—C12 1.379 (5)
C2—N3 1.335 (4) C12—C13 1.382 (5)
C2—H2A 0.9500 C12—H12A 0.9500
N2—O2 1.149 (4) C13—C14 1.376 (5)
O3—H3W 0.904 (19) C13—H13A 0.9500
O3—H3V 0.909 (19) C14—C15 1.388 (5)
N3—C4 1.359 (4) C14—H14A 0.9500
N3—H3A 0.8800 C15—H15A 0.9500
C4—N9 1.363 (4) C16—H16A 0.9800
C4—C5 1.380 (4) C16—H16B 0.9800
C5—N7 1.379 (4) C16—H16C 0.9800
C5—C6 1.412 (5) C17—H17A 0.9800
Cl6—C11 1.745 (3) C17—H17B 0.9800
C6—N6 1.329 (4) C17—H17C 0.9800
N6—C9 1.457 (4)
N2—Ru1—O1 178.16 (12) C5—N7—H7A 126.6
N2—Ru1—Cl5 92.30 (10) N9—C8—N7 113.4 (3)
O1—Ru1—Cl5 86.00 (7) N9—C8—H8A 123.3
N2—Ru1—Cl2 94.19 (10) N7—C8—H8A 123.3
O1—Ru1—Cl2 85.09 (6) C8—N9—C4 103.6 (3)
Cl5—Ru1—Cl2 88.86 (3) N6—C9—C10 114.0 (3)
N2—Ru1—Cl4 90.41 (10) N6—C9—H9A 108.7
O1—Ru1—Cl4 90.24 (7) C10—C9—H9A 108.7
Cl5—Ru1—Cl4 88.82 (3) N6—C9—H9B 108.7
Cl2—Ru1—Cl4 174.92 (3) C10—C9—H9B 108.7
N2—Ru1—Cl3 95.26 (10) H9A—C9—H9B 107.6
O1—Ru1—Cl3 86.44 (7) C15—C10—C11 116.9 (3)
Cl5—Ru1—Cl3 172.39 (3) C15—C10—C9 122.6 (3)
Cl2—Ru1—Cl3 89.65 (3) C11—C10—C9 120.5 (3)
Cl4—Ru1—Cl3 92.06 (3) C12—C11—C10 122.7 (3)
O1—S1—C17 102.31 (16) C12—C11—Cl6 118.4 (3)
O1—S1—C16 102.2 (2) C10—C11—Cl6 118.8 (3)
C17—S1—C16 97.5 (3) C11—C12—C13 118.9 (3)
C2—N1—C6 119.4 (3) C11—C12—H12A 120.5
S1—O1—Ru1 123.75 (13) C13—C12—H12A 120.5
N1—C2—N3 125.2 (3) C14—C13—C12 120.0 (3)
N1—C2—H2A 117.4 C14—C13—H13A 120.0
N3—C2—H2A 117.4 C12—C13—H13A 120.0
O2—N2—Ru1 175.0 (3) C13—C14—C15 120.4 (4)
H3W—O3—H3V 104 (4) C13—C14—H14A 119.8
C2—N3—C4 117.4 (3) C15—C14—H14A 119.8
C2—N3—H3A 121.3 C14—C15—C10 121.1 (3)
C4—N3—H3A 121.3 C14—C15—H15A 119.5
N3—C4—N9 127.7 (3) C10—C15—H15A 119.5
N3—C4—C5 120.5 (3) S1—C16—H16A 109.5
N9—C4—C5 111.8 (3) S1—C16—H16B 109.5
N7—C5—C4 104.5 (3) H16A—C16—H16B 109.5
N7—C5—C6 136.1 (3) S1—C16—H16C 109.5
C4—C5—C6 119.4 (3) H16A—C16—H16C 109.5
N6—C6—N1 118.4 (3) H16B—C16—H16C 109.5
N6—C6—C5 123.9 (3) S1—C17—H17A 109.5
N1—C6—C5 117.8 (3) S1—C17—H17B 109.5
C6—N6—C9 123.5 (3) H17A—C17—H17B 109.5
C6—N6—H6A 118.2 S1—C17—H17C 109.5
C9—N6—H6A 118.2 H17A—C17—H17C 109.5
C8—N7—C5 106.8 (3) H17B—C17—H17C 109.5
C8—N7—H7A 126.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N9i 0.88 1.97 2.821 (4) 164
N6—H6A···O3ii 0.88 2.41 3.046 (4) 130
N6—H6A···Cl2ii 0.88 2.66 3.312 (3) 132
N7—H7A···O3ii 0.88 2.45 2.976 (4) 119
N7—H7A···Cl2ii 0.88 2.68 3.290 (3) 127
N7—H7A···Cl3ii 0.88 2.82 3.424 (3) 128
O3—H3W···Cl3iii 0.904 (19) 2.56 (3) 3.386 (3) 152 (4)
O3—H3V···Cl4iv 0.909 (19) 2.61 (3) 3.402 (3) 146 (4)
O3—H3V···Cl5iv 0.909 (19) 2.69 (3) 3.406 (3) 136 (4)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3/2, −y+1, z+1/2; (iii) −x+3/2, y−1/2, z; (iv) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2253).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Maloň, M., Trávníček, Z., Maryško, M., Marek, J., Doležal, K., Rolčík, J. & Strnad, M. (2002). Transition Met. Chem.27, 580–586.
  4. Maloň, M., Trávníček, Z., Maryško, M., Zbořil, R., Mašláň, M., Marek, J., Doležal, K., Rolčík, J., Kryštof, V. & Strnad, M. (2001). Inorg. Chim. Acta, 323, 119–129.
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  6. Serli, B., Zangrando, E., Iengo, E., Mestroni, G., Yellowlees, L. & Alessio, E. (2002). Inorg. Chem.41, 4033–4043. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Trávníček, Z., George, K. M., Matiková-Maľarová, M. & Baran, P. (2007). Acta Cryst. E63, o3859.
  9. Trávníček, Z., Klanicová, A., Popa, I. & Rolčík, J. (2005). J. Inorg. Biochem.99, 776–786. [DOI] [PubMed]
  10. Trávníček, Z. & Matiková-Maľarová, M. (2006). Acta Cryst. E62, o5097–o5099.
  11. Trávníček, Z., Popa, I. & Doležal, K. (2004). Acta Cryst. C60, o662–o664. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006673/tk2253sup1.cif

e-64-0m545-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006673/tk2253Isup2.hkl

e-64-0m545-Isup2.hkl (195.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES