Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):o658. doi: 10.1107/S1600536808004340

3,3′-Dibenzoyl-1,1′-(butane-1,4-diyl)­dithio­urea

Yu-Jie Ding a, Xi-Bin Chang b, Xiao-Qing Yang c, Wen-Kui Dong c,*
PMCID: PMC2961008  PMID: 21202055

Abstract

In the centrosymmetric title compound, C20H22N4O2S2, the carbonyl group forms an intra­molecular hydrogen bond with the NH group attached to the butanediyl linker, resulting in a six-membered ring. There are also inter­molecular C—H⋯S inter­actions in the crystal structure, and π–π inter­actions between phenyl groups [2.425 (3) Å].

Related literature

For related literature, see: Breuzard et al. (2000); Burrows et al. (1997); Dong et al. (2006); Foss et al. (2004); Huang et al., 2006; Nan et al. (2000); Teoh et al. (1999); Valdés-Martínez et al. (2004); Zhang et al. (2006).graphic file with name e-64-0o658-scheme1.jpg

Experimental

Crystal data

  • C20H22N4O2S2

  • M r = 414.54

  • Monoclinic, Inline graphic

  • a = 6.0405 (11) Å

  • b = 23.358 (2) Å

  • c = 7.2877 (13) Å

  • β = 104.018 (2)°

  • V = 997.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.22 × 0.16 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.939, T max = 0.980

  • 4845 measured reflections

  • 1735 independent reflections

  • 1044 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.106

  • S = 1.02

  • 1735 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004340/hg2377sup1.cif

e-64-0o658-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004340/hg2377Isup2.hkl

e-64-0o658-Isup2.hkl (85.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.06 2.717 (3) 133
C2—H2A⋯S1 0.97 2.68 3.060 (3) 103
C2—H2B⋯S1i 0.97 2.72 3.468 (3) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (grant No. 0604-01) and the Qing Lan Talent Engineering Fund of Lanzhou Jiaotong University (grant No. QL-03-01A), which are gratefully acknowledged.

supplementary crystallographic information

Comment

Acylthioureas have been the subject of extensive investigation because of their biological activity and their ability to coordinate strongly with metal ions (Teoh et al., 1999; Huang et al., 2006; Foss et al., 2004). Some thioureas are organic catalysts in the metal-catalyzed asymmetric reduction of carbonyl compounds and carbonylative cyclization of o-hydroxyarylacetylenes (Nan et al., 2000; Breuzard et al., 2000). In recent years, thiourea derivatives have been studied because they are excellent H bonding donors and acceptors (Zhang et al., 2006; Valdés-Martínez et al., 2004), and readily form an intramolecular hydrogen bonding between the benzoyl (CO) and the N—H group (Dong et al., 2006). They also easily form intermolecular hydrogen bonds, which can be applied in the design and synthesis of three-dimension supramolecular structure (Burrows et al., 1997). Here we report synthesis and crystal structure of N, N'-(1, 4-tetramethylene)bisbenzoylthiourea (I), C20H22N4O2S2.

The crystal structure of (I) consists of discrete molecules. The carbonyl group forms an intramolecular hydrogen bond with the N2—H2 group, which forms a six-membered ring (C4/N1/C1/N2/H2/O1) structure, the H2···O1 bond length is 2.055 (3) Å. This is similar to the situation found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). There is intermolecular hydrogen bonding between N2—H2 and the C?S group of another molecule, the H2···S1(x + 1, y, z) bond length is 2.906 (3) Å. The C?O bond length of 1.223 (3) Å is longer than the average C?O bond length (1.200 Å), which is due to intramolecular hydrogen bonding. The torsion angles of C2—N2—C1—N1 and C2—N2—C1—S1 are 178.3 (2) and -0.9 (4)°. There are π–π interactions between phenyl groups in the crystal lattice.

Experimental

Benzoyl chloride (1.41 g, 10 mmol) was reacted with ammonium thiocyanate (1.14 g, 15 mmol) in CH2Cl2 (25 ml) solution under solid–liquid phase transfer catalysis, using polyethylene glycol-400 (0.18 g) as the catalyst, to give the corresponding benzoyl isothiocyanate. Then a solution of 1,4-butylenediamine (0.40 g, 4.5 mmol) in CH2Cl2 (15 ml) was added dropwise to benzoyl isothiocyanate, to give the title compound. Yield, 81.8%. m.p. 196–198 °C. Anal. Calc. for C20H22N4O2S2 (%): C, 57.97; H, 5.31; N, 13.53. Found: C, 57.90; H, 5.45; N, 13.35. Selected IR data (cm-1, KBr pellet): 3416, 3222 (ν NH), 1672 (ν C?O), 1146 (ν C?S). 1H NMR (200 MHz, DMSO-d6, δ, p.p.m.): 1.71 (t, 4H, CH2); 3.69 (t, 4H, CH2); 7.48–7.93 (m, 10H, C6H5); 10.95 (s, 1H, NH); 11.06 (s, 1H, NH). A DMF solution of the title compound was placed in a diethyl ether atmosphere, after several days, along with diffusion of diethyl ether into the DMF solution of the title compound, colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I)

Crystal data

C20H22N4O2S2 F000 = 436
Mr = 414.54 Dx = 1.380 Mg m3
Monoclinic, P21/c Melting point = 469–471 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 6.0405 (11) Å Cell parameters from 1545 reflections
b = 23.358 (2) Å θ = 2.9–27.5º
c = 7.2877 (13) Å µ = 0.29 mm1
β = 104.018 (2)º T = 298 (2) K
V = 997.6 (3) Å3 Block, colourless
Z = 2 0.22 × 0.16 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1735 independent reflections
Radiation source: fine-focus sealed tube 1044 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.058
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.939, Tmax = 0.980 k = −27→21
4845 measured reflections l = −8→7

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.0375P)2 + 0.093P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
1735 reflections Δρmax = 0.23 e Å3
127 parameters Δρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6333 (4) 0.33193 (10) 0.2464 (3) 0.0436 (7)
H1 0.4996 0.3174 0.2342 0.052*
N2 0.8393 (4) 0.41571 (9) 0.2530 (3) 0.0378 (6)
H2 0.9588 0.3944 0.2747 0.045*
O1 1.0080 (4) 0.30751 (8) 0.3060 (3) 0.0556 (7)
S1 0.39076 (13) 0.42652 (4) 0.19513 (14) 0.0579 (3)
C1 0.6387 (5) 0.39150 (12) 0.2345 (4) 0.0367 (7)
C2 0.8669 (5) 0.47772 (12) 0.2383 (4) 0.0403 (8)
H2A 0.7351 0.4931 0.1482 0.048*
H2B 1.0004 0.4853 0.1902 0.048*
C3 0.8930 (4) 0.50817 (12) 0.4263 (4) 0.0415 (8)
H3A 0.8946 0.5491 0.4051 0.050*
H3B 0.7612 0.4996 0.4755 0.050*
C4 0.8082 (5) 0.29268 (13) 0.2746 (4) 0.0395 (8)
C5 0.7380 (5) 0.23119 (12) 0.2626 (4) 0.0383 (8)
C6 0.5157 (6) 0.21226 (13) 0.1896 (5) 0.0530 (9)
H6 0.3997 0.2387 0.1462 0.064*
C7 0.4663 (6) 0.15458 (15) 0.1811 (5) 0.0617 (10)
H7 0.3171 0.1425 0.1316 0.074*
C8 0.6341 (6) 0.11496 (14) 0.2445 (5) 0.0557 (10)
H8 0.5993 0.0761 0.2394 0.067*
C9 0.8531 (6) 0.13299 (14) 0.3154 (5) 0.0555 (9)
H9 0.9681 0.1062 0.3581 0.067*
C10 0.9057 (5) 0.19086 (13) 0.3241 (4) 0.0462 (9)
H10 1.0558 0.2026 0.3720 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0352 (14) 0.0346 (15) 0.060 (2) −0.0048 (12) 0.0101 (13) −0.0022 (13)
N2 0.0309 (14) 0.0340 (14) 0.0476 (17) 0.0051 (11) 0.0077 (12) −0.0024 (12)
O1 0.0374 (13) 0.0408 (13) 0.0810 (18) −0.0008 (10) −0.0005 (12) 0.0001 (12)
S1 0.0363 (5) 0.0507 (5) 0.0883 (8) 0.0062 (4) 0.0181 (5) 0.0070 (5)
C1 0.0325 (17) 0.0413 (18) 0.036 (2) 0.0030 (14) 0.0078 (14) 0.0004 (15)
C2 0.0375 (17) 0.0373 (18) 0.047 (2) 0.0039 (14) 0.0125 (15) 0.0036 (16)
C3 0.0386 (17) 0.0299 (17) 0.055 (2) 0.0042 (13) 0.0102 (16) 0.0017 (16)
C4 0.043 (2) 0.0399 (19) 0.033 (2) 0.0048 (15) 0.0035 (16) −0.0001 (15)
C5 0.0455 (19) 0.0358 (18) 0.034 (2) 0.0012 (15) 0.0108 (16) −0.0009 (15)
C6 0.047 (2) 0.042 (2) 0.065 (3) 0.0019 (16) 0.0047 (18) 0.0009 (19)
C7 0.056 (2) 0.049 (2) 0.075 (3) −0.0142 (18) 0.007 (2) −0.005 (2)
C8 0.074 (3) 0.039 (2) 0.057 (3) −0.0035 (19) 0.021 (2) 0.0001 (18)
C9 0.071 (3) 0.043 (2) 0.054 (3) 0.0150 (19) 0.018 (2) 0.0049 (18)
C10 0.044 (2) 0.044 (2) 0.048 (2) 0.0045 (16) 0.0070 (17) −0.0015 (17)

Geometric parameters (Å, °)

N1—C4 1.376 (3) C3—H3B 0.9700
N1—C1 1.395 (3) C4—C5 1.494 (4)
N1—H1 0.8600 C5—C10 1.376 (4)
N2—C1 1.314 (3) C5—C6 1.391 (4)
N2—C2 1.465 (3) C6—C7 1.378 (4)
N2—H2 0.8600 C6—H6 0.9300
O1—C4 1.223 (3) C7—C8 1.368 (4)
S1—C1 1.669 (3) C7—H7 0.9300
C2—C3 1.518 (4) C8—C9 1.365 (4)
C2—H2A 0.9700 C8—H8 0.9300
C2—H2B 0.9700 C9—C10 1.387 (4)
C3—C3i 1.516 (5) C9—H9 0.9300
C3—H3A 0.9700 C10—H10 0.9300
C4—N1—C1 130.2 (2) O1—C4—N1 121.8 (3)
C4—N1—H1 114.9 O1—C4—C5 122.4 (3)
C1—N1—H1 114.9 N1—C4—C5 115.8 (3)
C1—N2—C2 122.4 (2) C10—C5—C6 118.2 (3)
C1—N2—H2 118.8 C10—C5—C4 117.6 (3)
C2—N2—H2 118.8 C6—C5—C4 124.2 (3)
N2—C1—N1 117.2 (2) C7—C6—C5 120.4 (3)
N2—C1—S1 125.0 (2) C7—C6—H6 119.8
N1—C1—S1 117.8 (2) C5—C6—H6 119.8
N2—C2—C3 112.7 (2) C8—C7—C6 120.8 (3)
N2—C2—H2A 109.1 C8—C7—H7 119.6
C3—C2—H2A 109.1 C6—C7—H7 119.6
N2—C2—H2B 109.1 C9—C8—C7 119.3 (3)
C3—C2—H2B 109.1 C9—C8—H8 120.3
H2A—C2—H2B 107.8 C7—C8—H8 120.3
C3i—C3—C2 114.0 (3) C8—C9—C10 120.6 (3)
C3i—C3—H3A 108.8 C8—C9—H9 119.7
C2—C3—H3A 108.8 C10—C9—H9 119.7
C3i—C3—H3B 108.8 C5—C10—C9 120.7 (3)
C2—C3—H3B 108.8 C5—C10—H10 119.7
H3A—C3—H3B 107.7 C9—C10—H10 119.7
C2—N2—C1—N1 178.3 (2) O1—C4—C5—C6 −166.1 (3)
C2—N2—C1—S1 −0.9 (4) N1—C4—C5—C6 13.4 (4)
C4—N1—C1—N2 −0.3 (4) C10—C5—C6—C7 0.5 (5)
C4—N1—C1—S1 179.0 (2) C4—C5—C6—C7 179.0 (3)
C1—N2—C2—C3 88.5 (3) C5—C6—C7—C8 0.2 (5)
N2—C2—C3—C3i 64.4 (4) C6—C7—C8—C9 −0.6 (5)
C1—N1—C4—O1 4.7 (5) C7—C8—C9—C10 0.3 (5)
C1—N1—C4—C5 −174.8 (3) C6—C5—C10—C9 −0.8 (5)
O1—C4—C5—C10 12.4 (4) C4—C5—C10—C9 −179.4 (3)
N1—C4—C5—C10 −168.1 (3) C8—C9—C10—C5 0.4 (5)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.86 2.06 2.717 (3) 133
C2—H2A···S1 0.97 2.68 3.060 (3) 103
C2—H2B···S1ii 0.97 2.72 3.468 (3) 134

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2377).

References

  1. Breuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem.156, 223–232.
  2. Burrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240.
  3. Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.
  4. Foss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021–3032.
  5. Huang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem.25, 168–172.
  6. Nan, Y., Miao, H. & Yang, Z. (2000). Org. Lett.2, 297–299. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  10. Teoh, S.-G., Ang, S.-H. & Fun, H.-K. (1999). J. Organomet. Chem.580, 17–21.
  11. Valdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman, D. R. & West, D. X. (2004). J. Chem. Crystallogr.34, 533–540.
  12. Zhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sin.64, 79–84.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808004340/hg2377sup1.cif

e-64-0o658-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808004340/hg2377Isup2.hkl

e-64-0o658-Isup2.hkl (85.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES