Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m547. doi: 10.1107/S1600536808006533

Poly[[bis­[μ2-8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ato]manganese(II)] dihydrate]

Jing Huang a, Wei-Ping Hu b, Zhe An a,*
PMCID: PMC2961022  PMID: 21202004

Abstract

In the title compound, {[Mn(C14H16N5O3)2]·2H2O}n, the MnII atom (site symmetry Inline graphic) exhibits a distorted trans-MnN2O4 octa­hedral geometry defined by two monodentate N-bonded and two bidentate O,O′-bonded 8-ethyl-5-oxo-2-(piperazin-1-yl)-5,8-dihydro­pyrido[2,3-d]pyrimidine-6-carboxyl­ate anions. An N—H⋯O hydrogen bond is present in the crystal structure. The extended two-dimensional structure is a square grid and the disordered uncoordinated water mol­ecules occupy cavities within the grid.

Related literature

For background, see: Mizuki et al. (1996).graphic file with name e-64-0m547-scheme1.jpg

Experimental

Crystal data

  • [Mn(C14H16N5O3)2]·2H2O

  • M r = 695.58

  • Monoclinic, Inline graphic

  • a = 6.0422 (2) Å

  • b = 21.5673 (8) Å

  • c = 12.7395 (5) Å

  • β = 99.617 (1)°

  • V = 1636.8 (1) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 295 (2) K

  • 0.34 × 0.26 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.861, T max = 0.910

  • 10030 measured reflections

  • 3938 independent reflections

  • 3465 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.191

  • S = 1.10

  • 3938 reflections

  • 227 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006533/hb2703sup1.cif

e-64-0m547-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006533/hb2703Isup2.hkl

e-64-0m547-Isup2.hkl (193KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Mn1—O1 2.106 (2)
Mn1—O3 2.1667 (16)
Mn1—N5i 2.372 (2)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯O2ii 0.893 (10) 2.268 (12) 3.149 (3) 169 (3)

Symmetry code: (ii) Inline graphic.

Acknowledgments

The authors thank the Innovation Science Foundation of Harbin Medical University for financial support (grant No. 060041).

supplementary crystallographic information

Comment

Pipemidic acid (Hppa, C14H17N5O3, 8-Ethyl-5,8-dihydro-5-oxo-2- (1-piperazinyl)-pyrido(2,3 - d)-pyrimidine-6-carboxylic acid) is member of a class of quinolones used to treat infections (Mizuki et al., 1996). The metal complexes of the ppa anion have not been reported; the title manganese(II) complex, (I), is reported here (Fig. 1).

The MnII atom in (I) with site symmetry 1 is coordinated by four oxygen atoms and two N atoms from four ppa ligands (two monodentate-N and two O,O-bidentate) (Table 1) to form a square grid propagating in (Fig. 2). An N—H···O hydrogen bond (Table 2) helps to stabilize this arrangement.

The disordered, uncoordinated, water molecules occupy cavities within the grid. In the present study, their attached H atoms could not be located.

Experimental

A mixture of Mn(CH3COO)2.4H2O (0.061 g, 0.25 mmol), Hppa (0.15 g, 0.5 mmol), sodium hydroxide (0.04 g, 1 mmol) and water (12 ml) was stirred for 30 min in air. The mixture was then transferred to a 23 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, colourless prisms of (I) were obtained from the reaction mixture.

Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference map and its position was freely refined with Uiso(H) = 1.2Ueq(N).

The water H atoms could not be placed due to disorder.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I) showing the showing 50% displacement ellipsoids (water molecule O atoms have been omitted for clarity).

Fig. 2.

Fig. 2.

A view of part of a two-dimensional polymeric sheet in (I) showing the square-grid connectivity (H atoms and water molecule O atoms omitted for clarity).

Crystal data

[Mn(C14H16N5O3)2]·2H2O F000 = 718.0
Mr = 695.58 Dx = 1.399 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4747 reflections
a = 6.0422 (2) Å θ = 2.5–28.3º
b = 21.5673 (8) Å µ = 0.47 mm1
c = 12.7395 (5) Å T = 295 (2) K
β = 99.617 (1)º Prism, colorless
V = 1636.8 (1) Å3 0.34 × 0.26 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 3938 independent reflections
Radiation source: fine-focus sealed tube 3465 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.019
T = 295(2) K θmax = 28.3º
ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −6→8
Tmin = 0.861, Tmax = 0.910 k = −27→28
10030 measured reflections l = −15→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.191   w = 1/[σ2(Fo2) + (0.1066P)2 + 1.0983P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
3938 reflections Δρmax = 0.98 e Å3
227 parameters Δρmin = −0.48 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.5000 0.5000 0.5000 0.02831 (19)
O1W 0.388 (4) 0.5235 (7) 0.9613 (10) 0.244 (9) 0.50
O1 0.7068 (3) 0.49893 (7) 0.38228 (16) 0.0341 (4)
O2W −0.081 (2) 0.4426 (8) 0.9246 (7) 0.194 (6) 0.50
O2 0.8721 (5) 0.51863 (13) 0.2451 (2) 0.0717 (8)
O3 0.3574 (3) 0.58106 (8) 0.41354 (14) 0.0378 (4)
N1 0.5078 (5) 0.67158 (12) 0.1504 (2) 0.0533 (7)
N2 −0.0007 (4) 0.73723 (11) 0.2985 (2) 0.0464 (6)
N3 0.2395 (4) 0.74681 (10) 0.16596 (18) 0.0432 (5)
N4 −0.0102 (4) 0.82368 (10) 0.19027 (19) 0.0384 (5)
N5 −0.2339 (3) 0.93726 (9) 0.11005 (17) 0.0322 (4)
H5N −0.140 (4) 0.9649 (12) 0.146 (2) 0.048*
C1 0.7282 (4) 0.52991 (11) 0.3018 (2) 0.0358 (5)
C2 0.5782 (4) 0.58537 (11) 0.2731 (2) 0.0354 (5)
C3 0.4044 (4) 0.60559 (10) 0.33118 (19) 0.0313 (5)
C4 0.2852 (4) 0.66087 (11) 0.28824 (19) 0.0336 (5)
C5 0.1042 (5) 0.68542 (12) 0.3304 (2) 0.0425 (6)
H5A 0.0546 0.6635 0.3848 0.051*
C6 0.0805 (4) 0.76813 (12) 0.2189 (2) 0.0360 (5)
C7 0.3383 (5) 0.69362 (12) 0.2010 (2) 0.0395 (6)
C8 0.6170 (5) 0.61896 (14) 0.1875 (2) 0.0496 (7)
H8A 0.7282 0.6046 0.1512 0.059*
C9 0.5717 (8) 0.7043 (2) 0.0566 (3) 0.0725 (12)
H9A 0.5531 0.7486 0.0645 0.087*
H9B 0.7285 0.6963 0.0537 0.087*
C10 0.4373 (10) 0.6840 (4) −0.0400 (5) 0.116 (2)
H10A 0.4583 0.6403 −0.0488 0.174*
H10B 0.4811 0.7059 −0.0989 0.174*
H10C 0.2822 0.6923 −0.0375 0.174*
C11 −0.1446 (6) 0.85820 (14) 0.2560 (2) 0.0499 (7)
H11A −0.0477 0.8852 0.3045 0.060*
H11B −0.2170 0.8295 0.2980 0.060*
C12 −0.3226 (5) 0.89702 (13) 0.1855 (2) 0.0433 (6)
H12A −0.4326 0.8693 0.1460 0.052*
H12B −0.3996 0.9225 0.2308 0.052*
C13 −0.1018 (4) 0.89946 (12) 0.0466 (2) 0.0372 (5)
H13A −0.0347 0.9264 −0.0003 0.045*
H13B −0.2015 0.8710 0.0025 0.045*
C14 0.0812 (4) 0.86281 (12) 0.1146 (2) 0.0382 (6)
H14A 0.1573 0.8371 0.0693 0.046*
H14B 0.1906 0.8911 0.1530 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0350 (3) 0.0187 (3) 0.0304 (3) −0.00041 (16) 0.0030 (2) 0.00255 (16)
O1W 0.47 (3) 0.155 (12) 0.111 (9) 0.000 (15) 0.058 (14) −0.057 (9)
O1 0.0407 (10) 0.0237 (9) 0.0383 (10) 0.0041 (6) 0.0073 (8) 0.0040 (6)
O2W 0.203 (11) 0.307 (17) 0.088 (6) −0.110 (12) 0.076 (7) −0.028 (8)
O2 0.0854 (18) 0.0730 (16) 0.0674 (16) 0.0491 (15) 0.0441 (14) 0.0338 (13)
O3 0.0448 (10) 0.0297 (9) 0.0403 (9) 0.0085 (7) 0.0110 (7) 0.0122 (7)
N1 0.0730 (17) 0.0433 (13) 0.0500 (14) 0.0245 (12) 0.0294 (12) 0.0196 (11)
N2 0.0498 (13) 0.0386 (12) 0.0550 (14) 0.0152 (10) 0.0211 (11) 0.0213 (11)
N3 0.0549 (13) 0.0339 (11) 0.0434 (12) 0.0165 (10) 0.0157 (10) 0.0150 (9)
N4 0.0418 (11) 0.0301 (10) 0.0458 (12) 0.0107 (9) 0.0146 (9) 0.0133 (9)
N5 0.0344 (10) 0.0231 (9) 0.0382 (10) 0.0029 (7) 0.0034 (8) 0.0012 (8)
C1 0.0410 (13) 0.0311 (12) 0.0355 (12) 0.0080 (10) 0.0071 (10) 0.0029 (9)
C2 0.0429 (13) 0.0281 (11) 0.0360 (12) 0.0084 (9) 0.0092 (10) 0.0040 (9)
C3 0.0367 (11) 0.0227 (10) 0.0337 (11) 0.0032 (9) 0.0033 (9) 0.0042 (8)
C4 0.0396 (12) 0.0265 (11) 0.0352 (12) 0.0060 (9) 0.0073 (9) 0.0067 (9)
C5 0.0491 (15) 0.0339 (13) 0.0475 (15) 0.0103 (11) 0.0167 (12) 0.0168 (11)
C6 0.0377 (12) 0.0307 (12) 0.0398 (13) 0.0066 (9) 0.0066 (10) 0.0090 (10)
C7 0.0506 (14) 0.0313 (12) 0.0386 (13) 0.0109 (11) 0.0132 (11) 0.0082 (10)
C8 0.0609 (17) 0.0438 (15) 0.0485 (16) 0.0220 (13) 0.0219 (13) 0.0120 (12)
C9 0.091 (3) 0.071 (2) 0.065 (2) 0.035 (2) 0.041 (2) 0.0293 (19)
C10 0.111 (4) 0.154 (6) 0.085 (4) 0.032 (4) 0.022 (3) 0.021 (4)
C11 0.0604 (17) 0.0465 (15) 0.0478 (15) 0.0251 (14) 0.0234 (13) 0.0176 (13)
C12 0.0427 (13) 0.0368 (13) 0.0535 (16) 0.0129 (11) 0.0169 (12) 0.0133 (12)
C13 0.0394 (13) 0.0308 (12) 0.0414 (13) 0.0087 (10) 0.0071 (10) 0.0078 (10)
C14 0.0365 (12) 0.0304 (12) 0.0497 (14) 0.0075 (9) 0.0128 (11) 0.0136 (10)

Geometric parameters (Å, °)

Mn1—O1 2.106 (2) C2—C8 1.361 (4)
Mn1—O1i 2.106 (2) C2—C3 1.450 (3)
Mn1—O3 2.1667 (16) C3—C4 1.452 (3)
Mn1—O3i 2.1667 (16) C4—C7 1.399 (3)
Mn1—N5ii 2.372 (2) C4—C5 1.400 (4)
Mn1—N5iii 2.3723 (19) C5—H5A 0.9300
O1—C1 1.248 (3) C8—H8A 0.9300
O2—C1 1.244 (3) C9—C10 1.425 (8)
O3—C3 1.249 (3) C9—H9A 0.9700
N1—C8 1.357 (3) C9—H9B 0.9700
N1—C7 1.382 (4) C10—H10A 0.9600
N1—C9 1.493 (4) C10—H10B 0.9600
N2—C5 1.315 (3) C10—H10C 0.9600
N2—C6 1.371 (4) C11—C12 1.531 (4)
N3—C7 1.335 (3) C11—H11A 0.9700
N3—C6 1.344 (3) C11—H11B 0.9700
N4—C6 1.343 (3) C12—H12A 0.9700
N4—C14 1.457 (3) C12—H12B 0.9700
N4—C11 1.463 (3) C13—C14 1.510 (3)
N5—C12 1.461 (3) C13—H13A 0.9700
N5—C13 1.474 (3) C13—H13B 0.9700
N5—Mn1iv 2.3723 (19) C14—H14A 0.9700
N5—H5N 0.90 (3) C14—H14B 0.9700
C1—C2 1.508 (3)
O1—Mn1—O1i 180.0 N4—C6—N3 117.5 (2)
O1—Mn1—O3 83.09 (6) N4—C6—N2 117.0 (2)
O1i—Mn1—O3 96.91 (6) N3—C6—N2 125.4 (2)
O1—Mn1—O3i 96.91 (6) N3—C7—N1 117.7 (2)
O1i—Mn1—O3i 83.09 (6) N3—C7—C4 123.4 (2)
O3—Mn1—O3i 180.0 N1—C7—C4 118.9 (2)
O1—Mn1—N5ii 90.17 (7) N1—C8—C2 125.8 (3)
O1i—Mn1—N5ii 89.83 (7) N1—C8—H8A 117.1
O3—Mn1—N5ii 90.74 (7) C2—C8—H8A 117.1
O3i—Mn1—N5ii 89.26 (7) C10—C9—N1 111.2 (5)
O1—Mn1—N5iii 89.83 (7) C10—C9—H9A 109.4
O1i—Mn1—N5iii 90.17 (7) N1—C9—H9A 109.4
O3—Mn1—N5iii 89.26 (7) C10—C9—H9B 109.4
O3i—Mn1—N5iii 90.73 (7) N1—C9—H9B 109.4
N5ii—Mn1—N5iii 180.0 H9A—C9—H9B 108.0
C1—O1—Mn1 137.22 (16) C9—C10—H10A 109.5
C3—O3—Mn1 129.93 (16) C9—C10—H10B 109.5
C8—N1—C7 118.7 (2) H10A—C10—H10B 109.5
C8—N1—C9 119.8 (3) C9—C10—H10C 109.5
C7—N1—C9 121.4 (2) H10A—C10—H10C 109.5
C5—N2—C6 115.3 (2) H10B—C10—H10C 109.5
C7—N3—C6 116.3 (2) N4—C11—C12 110.2 (2)
C6—N4—C14 120.9 (2) N4—C11—H11A 109.6
C6—N4—C11 122.6 (2) C12—C11—H11A 109.6
C14—N4—C11 113.1 (2) N4—C11—H11B 109.6
C12—N5—C13 108.90 (19) C12—C11—H11B 109.6
C12—N5—Mn1iv 116.15 (15) H11A—C11—H11B 108.1
C13—N5—Mn1iv 111.54 (14) N5—C12—C11 114.3 (2)
C12—N5—H5N 110 (2) N5—C12—H12A 108.7
C13—N5—H5N 107 (2) C11—C12—H12A 108.7
Mn1iv—N5—H5N 103 (2) N5—C12—H12B 108.7
O2—C1—O1 123.4 (2) C11—C12—H12B 108.7
O2—C1—C2 117.6 (2) H12A—C12—H12B 107.6
O1—C1—C2 118.9 (2) N5—C13—C14 112.8 (2)
C8—C2—C3 119.0 (2) N5—C13—H13A 109.0
C8—C2—C1 116.1 (2) C14—C13—H13A 109.0
C3—C2—C1 124.9 (2) N5—C13—H13B 109.0
O3—C3—C2 126.0 (2) C14—C13—H13B 109.0
O3—C3—C4 119.8 (2) H13A—C13—H13B 107.8
C2—C3—C4 114.3 (2) N4—C14—C13 111.1 (2)
C7—C4—C5 114.3 (2) N4—C14—H14A 109.4
C7—C4—C3 123.3 (2) C13—C14—H14A 109.4
C5—C4—C3 122.4 (2) N4—C14—H14B 109.4
N2—C5—C4 124.8 (2) C13—C14—H14B 109.4
N2—C5—H5A 117.6 H14A—C14—H14B 108.0
C4—C5—H5A 117.6
O3—Mn1—O1—C1 −1.4 (3) C7—N3—C6—N4 175.3 (3)
O3i—Mn1—O1—C1 178.6 (3) C7—N3—C6—N2 −6.2 (4)
N5ii—Mn1—O1—C1 −92.1 (3) C5—N2—C6—N4 −174.7 (3)
N5iii—Mn1—O1—C1 87.9 (3) C5—N2—C6—N3 6.8 (4)
O1—Mn1—O3—C3 1.4 (2) C6—N3—C7—N1 −177.9 (3)
O1i—Mn1—O3—C3 −178.6 (2) C6—N3—C7—C4 −0.5 (4)
N5ii—Mn1—O3—C3 91.5 (2) C8—N1—C7—N3 177.3 (3)
N5iii—Mn1—O3—C3 −88.5 (2) C9—N1—C7—N3 −2.9 (5)
Mn1—O1—C1—O2 179.3 (2) C8—N1—C7—C4 −0.1 (5)
Mn1—O1—C1—C2 1.5 (4) C9—N1—C7—C4 179.7 (3)
O2—C1—C2—C8 −1.0 (4) C5—C4—C7—N3 5.6 (4)
O1—C1—C2—C8 177.0 (3) C3—C4—C7—N3 −175.2 (3)
O2—C1—C2—C3 −179.1 (3) C5—C4—C7—N1 −177.1 (3)
O1—C1—C2—C3 −1.2 (4) C3—C4—C7—N1 2.1 (4)
Mn1—O3—C3—C2 −1.8 (4) C7—N1—C8—C2 −1.3 (5)
Mn1—O3—C3—C4 −179.39 (16) C9—N1—C8—C2 178.8 (4)
C8—C2—C3—O3 −176.6 (3) C3—C2—C8—N1 0.8 (5)
C1—C2—C3—O3 1.5 (4) C1—C2—C8—N1 −177.5 (3)
C8—C2—C3—C4 1.1 (4) C8—N1—C9—C10 92.7 (5)
C1—C2—C3—C4 179.2 (2) C7—N1—C9—C10 −87.1 (5)
O3—C3—C4—C7 175.3 (2) C6—N4—C11—C12 −148.9 (3)
C2—C3—C4—C7 −2.5 (4) C14—N4—C11—C12 51.9 (3)
O3—C3—C4—C5 −5.6 (4) C13—N5—C12—C11 54.0 (3)
C2—C3—C4—C5 176.6 (3) Mn1iv—N5—C12—C11 −179.1 (2)
C6—N2—C5—C4 −0.7 (5) N4—C11—C12—N5 −52.9 (4)
C7—C4—C5—N2 −5.0 (4) C12—N5—C13—C14 −55.0 (3)
C3—C4—C5—N2 175.8 (3) Mn1iv—N5—C13—C14 175.47 (16)
C14—N4—C6—N3 −8.0 (4) C6—N4—C14—C13 146.2 (3)
C11—N4—C6—N3 −165.6 (3) C11—N4—C14—C13 −54.2 (3)
C14—N4—C6—N2 173.4 (3) N5—C13—C14—N4 55.9 (3)
C11—N4—C6—N2 15.8 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5N···O2v 0.893 (10) 2.268 (12) 3.149 (3) 169 (3)

Symmetry codes: (v) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2703).

References

  1. Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Mizuki, Y., Fujiwara, I. & Yamaguchi, T. (1996). J. Antimicrob. Chemother. Suppl. A, 37, 41–45. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006533/hb2703sup1.cif

e-64-0m547-sup1.cif (20.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006533/hb2703Isup2.hkl

e-64-0m547-Isup2.hkl (193KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES