Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):o718. doi: 10.1107/S1600536808005308

3-Methyl-1,4-dioxo-1,4-dihydro­naphthalen-2-yl 4-amino­benzoate

Massimo Bambagiotti-Alberti a, Gianluca Bartolucci a, Bruno Bruni a, Silvia Coran a, Massimo Di Vaira b,*
PMCID: PMC2961024  PMID: 21202108

Abstract

The crystal structure of the title compound, C18H13NO4, the oxidized form of the drug aminaftone used in venous disease therapy, is characterized by the presence of ribbons of hydrogen-bonded mol­ecules parallel to the [111] crystallographic direction and by stacking inter­actions between rings [centroid–centroid distance between quinone rings = 3.684 (3) Å and between amino­benzoate rings = 4.157 (3) Å] along the ribbons.

Related literature

For related literature, see: De Anna et al. (1989); Martinez et al. (2005).graphic file with name e-64-0o718-scheme1.jpg

Experimental

Crystal data

  • C18H13NO4

  • M r = 307.29

  • Triclinic, Inline graphic

  • a = 7.6217 (6) Å

  • b = 9.6142 (7) Å

  • c = 10.6456 (7) Å

  • α = 101.618 (6)°

  • β = 110.770 (7)°

  • γ = 89.019 (6)°

  • V = 713.18 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.85 mm−1

  • T = 170 (2) K

  • 0.60 × 0.20 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur PX Ultra CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2006) T min = 0.501, T max = 1.000 (expected range = 0.480–0.959)

  • 6339 measured reflections

  • 2453 independent reflections

  • 1845 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.142

  • S = 1.12

  • 2453 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2006); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005308/rk2078sup1.cif

e-64-0o718-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005308/rk2078Isup2.hkl

e-64-0o718-Isup2.hkl (118KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N—H2N⋯O3i 0.95 (3) 2.13 (3) 2.960 (2) 145.6 (19)
N—H1N⋯O4ii 0.89 (2) 2.25 (2) 3.045 (2) 147.3 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from the Italian Ministero dell’Istruzione, dell’Universitá e della Ricerca.

supplementary crystallographic information

Comment

Previuos studies concerning the quality control of aminaftone, 4–aminobenzoic acid 1,4–dihydroxy–3–methyl–naphtalen–2–yl ester, which is the active pharmaceutical ingredient of some commercial drugs used in the therapy of chronic venous and lymphatic stasis (De Anna et al., 1989; Martinez et al., 2005), have shown that this drug substance rapidly undergoes oxidation in solution at room temperature. The oxidized compound, featuring a quinone ring instead of a hydroquinone moiety, is also a potential impurity of the bulk drug. A structure determination of the oxidized form, I, has been undertaken at 170 K.

There are two molecules of I, related by the inversion centre, in the triclinic unit cell. The molecular geometry and labelling are shown in Fig 1. Bond distances are consistent with the presence of the quinonic form. Each molecule behaves as a hydrogen–bond donor, toward two other molecules, through its aminic H atoms: N—H2N···O3i (N···O3i = 2.960 (2) Å, N—H2N···O3i = 146 (2)°; symmetry code (i): 2 - x, 2 - y, 1 - z) and N—H1N···O4ii (N···O4ii = 3.045 (2) Å, N—H1N···O4ii = 147 (2)°; symmetry code (ii): 1 + x, 1 + y, 1 + z). Conversely, through the above hydrogen bonds each molecule behaves as an acceptor from two separate molecules, by means of its quinone O atoms. As a result, ribbons of hydrogen–bonded molecules, parallel to the crystallographic [1 1 1] direction, are formed (Fig. 2). Moreover, stacking interactions occur along the ribbons, with 3.684 (3)Å distance between the centroids of symmetry–related quinone rings and 4.157 (3)Å distance between the centroids of the aminobenzoic rings, the shortest C···C contact distances between atoms of facing rings being C8···C16iii = 3.532 (3)Å ((iii): 1 - x, 1 - y, -z) and C2···C3i = 3.286 (2) Å, respectively, for the above two types of interactions. The largest deviation (0.098 (1) Å) from the plane of the aminobenzoic group is presented by the carbonylic O2 atom whereas, among the atoms lying on the naphtoquinone plane, the hinge atom O1 exhibits the largest deviation (0.141 (2) Å) from that plane; the angle between these two planes measures 84.46 (3)°.

Experimental

Samples of aminonaftone were kindly provided by SIMS (SIMS srl, Reggello Firenze, Italy). Crystals of I, suitable for X–ray diffraction analysis, were obtained by slow evaporation from methanol solutions of aminaftone.

Refinement

Crystals did not diffract strongly and it was deemed that collecting data at θ higher than 72° would not yield improvement. Hydrogen atoms were in geometrically generated positions, riding, except for the amino H atoms, which were refined freely. The constraint U(H) = 1.2Ueq(C,N), or 1.5Ueq(C) for methyl group H atoms, was applied. Range of bond distances involving refined hydrogen atoms: N—H 0.89–0.95 Å.

Figures

Fig. 1.

Fig. 1.

A view of the molecule of I with the atom numbering schene. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the crystal packing in the structure of I, showing the presence of ribbons formed by H–bonded molecules. H–bonds are denoted by dashed lines.

Crystal data

C18H13NO4 Z = 2
Mr = 307.29 F000 = 320
Triclinic, P1 Dx = 1.431 Mg m3
Hall symbol: -P 1 Cu Kα radiation λ = 1.54180 Å
a = 7.6217 (6) Å Cell parameters from 3411 reflections
b = 9.6142 (7) Å θ = 9.6–53.4º
c = 10.6456 (7) Å µ = 0.85 mm1
α = 101.618 (6)º T = 170 (2) K
β = 110.770 (7)º Flat prism, red
γ = 89.019 (6)º 0.60 × 0.20 × 0.05 mm
V = 713.18 (10) Å3

Data collection

Oxford Diffraction Xcalibur PX Ultra CCD diffractometer 2453 independent reflections
Radiation source: Fine–focus sealed tube 1845 reflections with I > 2σ(I)
Monochromator: Oxford Diffraction Enhance ULTRA assembly Rint = 0.022
Detector resolution: 8.1241 pixels mm-1 θmax = 72.4º
T = 170(2) K θmin = 4.5º
ω scans h = −9→9
Absorption correction: multi-scan(ABSPACK; Oxford Diffraction, 2006) k = −11→11
Tmin = 0.501, Tmax = 1.000 l = −12→12
6339 measured reflections

Refinement

Refinement on F2 Secondary atom site location: Difmap
Least-squares matrix: Full Hydrogen site location: Difmap
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.142   w = 1/[σ2(Fo2) + (0.0941P)2 + 0.0064P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
2453 reflections Δρmax = 0.17 e Å3
215 parameters Δρmin = −0.23 e Å3
Primary atom site location: Direct Extinction correction: None

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6680 (2) 1.03157 (16) 0.34314 (16) 0.0361 (4)
C2 0.8411 (2) 1.01124 (16) 0.32984 (16) 0.0373 (4)
H2 0.8613 0.9234 0.2787 0.045*
C3 0.9857 (3) 1.11583 (17) 0.38923 (16) 0.0392 (4)
H3 1.1038 1.0996 0.3791 0.047*
C4 0.9568 (3) 1.24645 (17) 0.46471 (16) 0.0398 (4)
N 1.0987 (3) 1.35138 (17) 0.52199 (17) 0.0508 (4)
H1N 1.083 (3) 1.425 (3) 0.582 (2) 0.061*
H2N 1.225 (4) 1.326 (2) 0.542 (2) 0.061*
C5 0.7833 (3) 1.26644 (17) 0.47801 (17) 0.0449 (5)
H5 0.7624 1.3542 0.5289 0.054*
C6 0.6405 (3) 1.16127 (18) 0.41876 (17) 0.0431 (4)
H6 0.5226 1.1770 0.4294 0.052*
C7 0.5122 (3) 0.92331 (17) 0.27898 (16) 0.0384 (4)
O1 0.57285 (17) 0.79775 (12) 0.22176 (13) 0.0464 (4)
O2 0.35157 (19) 0.93363 (13) 0.27039 (14) 0.0498 (4)
C8 0.4401 (2) 0.68767 (16) 0.14533 (17) 0.0377 (4)
C9 0.4125 (2) 0.58405 (18) 0.22396 (17) 0.0386 (4)
O3 0.48719 (18) 0.60587 (14) 0.34797 (12) 0.0497 (4)
C10 0.2922 (2) 0.45428 (17) 0.14241 (18) 0.0388 (4)
C11 0.2663 (3) 0.3494 (2) 0.2090 (2) 0.0498 (5)
H11 0.3227 0.3623 0.3060 0.060*
C12 0.1572 (3) 0.2263 (2) 0.1317 (2) 0.0602 (6)
H12 0.1414 0.1536 0.1761 0.072*
C13 0.0713 (3) 0.2085 (2) −0.0091 (2) 0.0552 (5)
H13 −0.0036 0.1239 −0.0607 0.066*
C14 0.0936 (3) 0.31287 (18) −0.0752 (2) 0.0466 (5)
H14 0.0330 0.3008 −0.1719 0.056*
C15 0.2056 (2) 0.43605 (16) 0.00057 (17) 0.0376 (4)
O4 0.1557 (2) 0.53290 (14) −0.19534 (13) 0.0593 (4)
C16 0.2311 (2) 0.54714 (17) −0.07165 (17) 0.0405 (4)
C17 0.3535 (2) 0.67684 (17) 0.01047 (18) 0.0393 (4)
C18 0.3757 (3) 0.7879 (2) −0.0642 (2) 0.0516 (5)
H181 0.4980 0.8401 −0.0144 0.077*
H182 0.2753 0.8541 −0.0699 0.077*
H183 0.3683 0.7421 −0.1570 0.077*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0393 (10) 0.0345 (8) 0.0337 (8) 0.0027 (8) 0.0114 (7) 0.0083 (6)
C2 0.0443 (10) 0.0325 (7) 0.0329 (8) 0.0035 (8) 0.0118 (7) 0.0059 (6)
C3 0.0385 (10) 0.0398 (8) 0.0357 (8) 0.0033 (8) 0.0088 (7) 0.0085 (7)
C4 0.0435 (11) 0.0382 (8) 0.0318 (8) −0.0001 (8) 0.0065 (7) 0.0066 (6)
N 0.0484 (10) 0.0413 (8) 0.0487 (9) −0.0045 (8) 0.0063 (7) −0.0016 (7)
C5 0.0529 (12) 0.0360 (8) 0.0417 (10) 0.0019 (9) 0.0175 (8) −0.0017 (7)
C6 0.0449 (11) 0.0407 (9) 0.0436 (9) 0.0035 (8) 0.0176 (8) 0.0053 (7)
C7 0.0443 (11) 0.0347 (8) 0.0362 (8) 0.0032 (8) 0.0136 (7) 0.0091 (6)
O1 0.0370 (7) 0.0339 (6) 0.0615 (8) −0.0006 (5) 0.0156 (6) −0.0013 (5)
O2 0.0410 (8) 0.0444 (7) 0.0622 (8) 0.0016 (6) 0.0202 (6) 0.0040 (6)
C8 0.0326 (9) 0.0313 (7) 0.0480 (10) 0.0026 (7) 0.0164 (7) 0.0021 (7)
C9 0.0322 (9) 0.0423 (8) 0.0402 (9) 0.0065 (8) 0.0137 (7) 0.0050 (7)
O3 0.0438 (8) 0.0612 (8) 0.0397 (7) 0.0022 (6) 0.0124 (5) 0.0057 (6)
C10 0.0331 (9) 0.0366 (8) 0.0476 (10) 0.0031 (8) 0.0153 (7) 0.0092 (7)
C11 0.0484 (12) 0.0500 (10) 0.0583 (11) 0.0063 (9) 0.0248 (9) 0.0173 (9)
C12 0.0629 (14) 0.0438 (10) 0.0877 (16) −0.0002 (10) 0.0405 (12) 0.0192 (10)
C13 0.0464 (12) 0.0389 (9) 0.0817 (15) −0.0021 (9) 0.0316 (10) −0.0003 (9)
C14 0.0366 (10) 0.0391 (9) 0.0578 (11) 0.0037 (8) 0.0157 (8) −0.0017 (8)
C15 0.0320 (9) 0.0330 (8) 0.0472 (10) 0.0068 (7) 0.0168 (7) 0.0032 (7)
O4 0.0774 (11) 0.0530 (7) 0.0385 (7) 0.0067 (7) 0.0124 (6) 0.0053 (6)
C16 0.0386 (10) 0.0385 (8) 0.0414 (10) 0.0089 (8) 0.0121 (7) 0.0064 (7)
C17 0.0368 (10) 0.0355 (8) 0.0477 (10) 0.0073 (8) 0.0173 (8) 0.0095 (7)
C18 0.0535 (12) 0.0465 (10) 0.0626 (12) 0.0078 (9) 0.0245 (9) 0.0222 (9)

Geometric parameters (Å, °)

C1—C2 1.383 (3) C9—O3 1.213 (2)
C1—C6 1.398 (2) C9—C10 1.480 (2)
C1—C7 1.463 (2) C10—C15 1.392 (2)
C2—C3 1.383 (2) C10—C11 1.397 (2)
C2—H2 0.9500 C11—C12 1.387 (3)
C3—C4 1.407 (2) C11—H11 0.9500
C3—H3 0.9500 C12—C13 1.382 (3)
C4—N 1.371 (2) C12—H12 0.9500
C4—C5 1.385 (3) C13—C14 1.381 (3)
N—H1N 0.89 (2) C13—H13 0.9500
N—H2N 0.95 (3) C14—C15 1.394 (2)
C5—C6 1.378 (2) C14—H14 0.9500
C5—H5 0.9500 C15—C16 1.488 (2)
C6—H6 0.9500 O4—C16 1.215 (2)
C7—O2 1.199 (2) C16—C17 1.487 (2)
C7—O1 1.388 (2) C17—C18 1.498 (2)
O1—C8 1.3827 (19) C18—H181 0.9800
C8—C17 1.333 (2) C18—H182 0.9800
C8—C9 1.485 (2) C18—H183 0.9800
C2—C1—C6 118.63 (15) C15—C10—C11 120.01 (16)
C2—C1—C7 122.37 (15) C15—C10—C9 120.57 (14)
C6—C1—C7 118.99 (16) C11—C10—C9 119.42 (16)
C1—C2—C3 121.52 (15) C12—C11—C10 119.25 (19)
C1—C2—H2 119.2 C12—C11—H11 120.4
C3—C2—H2 119.2 C10—C11—H11 120.4
C2—C3—C4 119.58 (17) C13—C12—C11 120.62 (17)
C2—C3—H3 120.2 C13—C12—H12 119.7
C4—C3—H3 120.2 C11—C12—H12 119.7
N—C4—C5 121.40 (16) C14—C13—C12 120.40 (17)
N—C4—C3 119.83 (18) C14—C13—H13 119.8
C5—C4—C3 118.76 (15) C12—C13—H13 119.8
C4—N—H1N 116.7 (15) C13—C14—C15 119.68 (18)
C4—N—H2N 119.0 (13) C13—C14—H14 120.2
H1N—N—H2N 114 (2) C15—C14—H14 120.2
C6—C5—C4 121.14 (16) C10—C15—C14 120.02 (16)
C6—C5—H5 119.4 C10—C15—C16 120.62 (14)
C4—C5—H5 119.4 C14—C15—C16 119.37 (16)
C5—C6—C1 120.36 (17) O4—C16—C17 120.01 (15)
C5—C6—H6 119.8 O4—C16—C15 121.32 (15)
C1—C6—H6 119.8 C17—C16—C15 118.67 (14)
O2—C7—O1 121.27 (15) C8—C17—C16 118.88 (14)
O2—C7—C1 128.52 (16) C8—C17—C18 123.35 (16)
O1—C7—C1 110.20 (15) C16—C17—C18 117.75 (15)
C8—O1—C7 118.14 (13) C17—C18—H181 109.5
C17—C8—O1 120.33 (14) C17—C18—H182 109.5
C17—C8—C9 124.77 (14) H181—C18—H182 109.5
O1—C8—C9 114.83 (14) C17—C18—H183 109.5
O3—C9—C10 122.82 (15) H181—C18—H183 109.5
O3—C9—C8 120.89 (15) H182—C18—H183 109.5
C10—C9—C8 116.28 (14)
C6—C1—C2—C3 −0.1 (2) C8—C9—C10—C11 177.37 (17)
C7—C1—C2—C3 178.82 (14) C15—C10—C11—C12 1.4 (3)
C1—C2—C3—C4 −0.2 (2) C9—C10—C11—C12 −178.40 (17)
C2—C3—C4—N −178.97 (15) C10—C11—C12—C13 −1.5 (3)
C2—C3—C4—C5 0.3 (2) C11—C12—C13—C14 0.3 (3)
N—C4—C5—C6 179.17 (15) C12—C13—C14—C15 0.8 (3)
C3—C4—C5—C6 −0.1 (3) C11—C10—C15—C14 −0.3 (3)
C4—C5—C6—C1 −0.2 (3) C9—C10—C15—C14 179.56 (16)
C2—C1—C6—C5 0.3 (2) C11—C10—C15—C16 179.70 (16)
C7—C1—C6—C5 −178.65 (15) C9—C10—C15—C16 −0.5 (3)
C2—C1—C7—O2 −171.14 (16) C13—C14—C15—C10 −0.9 (3)
C6—C1—C7—O2 7.8 (3) C13—C14—C15—C16 179.15 (17)
C2—C1—C7—O1 7.5 (2) C10—C15—C16—O4 −179.69 (17)
C6—C1—C7—O1 −173.56 (14) C14—C15—C16—O4 0.3 (3)
O2—C7—O1—C8 4.8 (2) C10—C15—C16—C17 1.0 (3)
C1—C7—O1—C8 −174.01 (13) C14—C15—C16—C17 −179.01 (16)
C7—O1—C8—C17 89.9 (2) O1—C8—C17—C16 171.84 (14)
C7—O1—C8—C9 −92.86 (17) C9—C8—C17—C16 −5.1 (3)
C17—C8—C9—O3 −175.24 (17) O1—C8—C17—C18 −7.0 (3)
O1—C8—C9—O3 7.7 (2) C9—C8—C17—C18 176.11 (16)
C17—C8—C9—C10 5.5 (3) O4—C16—C17—C8 −177.60 (17)
O1—C8—C9—C10 −171.56 (14) C15—C16—C17—C8 1.7 (2)
O3—C9—C10—C15 178.30 (17) O4—C16—C17—C18 1.3 (3)
C8—C9—C10—C15 −2.5 (2) C15—C16—C17—C18 −179.42 (16)
O3—C9—C10—C11 −1.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N—H2N···O3i 0.95 (3) 2.13 (3) 2.960 (2) 145.6 (19)
N—H1N···O4ii 0.89 (2) 2.25 (2) 3.045 (2) 147.3 (19)

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2078).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. De Anna, D., Mari, F., Intini, S., Gasbarro, V., Sortini, A., Pozza, E., Marzola, R., Taddeo, U., Bresadola, F. & Donini, I. (1989). Minerva Cardioangiol.37, 251–254. [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Martinez, M. J., Bonfill, X., Moreno, R. M., Vargas, E. & Capella, D. (2005). Cochrane Database Syst. Rev. CD003229. [DOI] [PubMed]
  5. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  6. Oxford Diffraction (2006). CrysAlisPro CCD and CrysAlisPro RED (including ABSPACK). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005308/rk2078sup1.cif

e-64-0o718-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005308/rk2078Isup2.hkl

e-64-0o718-Isup2.hkl (118KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES