Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):m518–m519. doi: 10.1107/S1600536808005643

Bis[benzyl N′-(3-phenyl­prop-2-enyl­idene)hydrazinecarbodithio­ato-κ2 N′,S]zinc(II)

Hoong-Kun Fun a,, Suchada Chantrapromma b,§, M T H Tarafder c,*, M Toihidul Islam c, C M Zakaria c, M A A A A Islam d
PMCID: PMC2961027  PMID: 21201987

Abstract

In the title ZnII complex, [Zn(C17H15N2S2)2], the ZnII atom lies on a twofold rotation axis. It exists in a tetra­hedral geometry, chelated by two deprotonated Schiff base ligands. The dihedral angle between each ligand is 71.48 (8)°. Mol­ecules are connected by weak C—H⋯S inter­molecular inter­actions into chains along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions involving the phenyl ring of the 3-phenyl­prop-2-enyl­idene unit.

Related literature

For the synthesis and structure of S-benzyl­dithio­carbaza­tes, see: Ali & Tarafder (1977); Shanmuga Sundara Raj et al. (2000). For the structures of ZnII complexes, see: Latheef et al. (2007); Tarafder, Chew et al. (2002). For the structures of other metal dithio­carbaza­tes, see: Ali et al. (2001, 2002, 2008); Chew et al. (2004); Crouse et al. (2004); Tarafder et al. (2001, 2008); Tarafder, Chew et al. (2002); Tarafder, Jin et al. (2002). For the bioactivity of metal S-benzyl­dithio­carbaza­tes, see, for example: Ali et al. (2001, 2002); Tarafder et al. (2001); Tarafder, Jin et al. (2002).graphic file with name e-64-0m518-scheme1.jpg

Experimental

Crystal data

  • [Zn(C17H15N2S2)2]

  • M r = 688.23

  • Orthorhombic, Inline graphic

  • a = 36.0897 (4) Å

  • b = 9.9310 (1) Å

  • c = 8.7633 (1) Å

  • V = 3140.83 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 100.0 (1) K

  • 0.37 × 0.25 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.692, T max = 0.841

  • 82655 measured reflections

  • 4580 independent reflections

  • 4071 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.091

  • S = 1.15

  • 4580 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005643/ng2427sup1.cif

e-64-0m518-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005643/ng2427Isup2.hkl

e-64-0m518-Isup2.hkl (224.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯S2i 0.93 2.76 3.6697 (17) 167
C11—H11BCg1ii 0.97 2.98 3.5785 (17) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MTHT and MTI thank Rajshahi University for financial support. SC thanks Prince of Songkla University for generous support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

supplementary crystallographic information

Comment

The coordination chemistry of the ligands derived from S-benzyldithiocarbazate (SBDTC) had been of immense interests because of their intriguing coordination chemistry as well as their increasingly important biomedical properties (Ali et al., 2001; 2002; Tarafder et al., 2001; Tarafder, Jin et al., 2002b). Synthesis (Ali & Tarafder, 1977) and structure (Shanmuga Sundara Raj et al., 2000) of SBDTC were reported. We have previously reported the Schiff bases complexes derived from dithiocarbazate derivatives (Ali et al., 2001; 2002; 2008; Chew et al., 2004; Crouse et al., 2004; Tarafder et al., 2001, 2008; Tarafder, Chew et al., 2002; Tarafder, Jin et al., 2002). In continuation of our interests, we report herein the X-ray structure of the zinc(II) complex of Schiff base ligand of SBDTC which is found to be isostructural with the copper(II) analog (Tarafder et al., 2008).

The ZnII atom of the title complex, lies on a twofold rotation axis and therefore the asymmetric unit contains one-half of a molecule (Fig. 1). The ligands coordinate to the ZnII through the two azomethine nitrogen and the two thiolate sulfur atoms forming a distorted tetrahedral geometry (Fig. 1). Both the two nitrogen atoms (N1 and N1A) and two sulfur atoms (S1 and S1A) from the two ligands are coordinated at opposite positions. The NS chelation results in the two five membered ZnII-bidentate rings (Zn1, N1, N2, C8, S1), atom Zn1 having a maximum deviation of 0.0839 (5) Å. The dihedral angle between these ZnII-bidentate rings is 80.03 (4) °. The smaller angle around ZnII is 86.96 (3) ° for N1—Zn1—S1. The N—Zn—N and S—Zn—S bond angles are 104.32 (7) ° and 134.49 (2) °, respectively. The Zn1—N1 distance of 2.0662 (12) Å is slightly longer compared to the [Zn(C14H18N3OS)2] by Latheef et al., 2007 (Zn—N = 2.026 (3) and 2.040 (3) Å) whereas the Zn1—S1 distance of 2.2636 (4) Å in the title complex is in the same range (Zn—S = 2.2597 (13) and 2.2462 (12) Å (Latheef et al., 2007)). The mean plane of the prop-2-enylidene moiety (C7/C8/C9/N1/N2) makes a dihedral angle of 12.25 (12)° with mean plane of the attached C1–C6 phenyl ring. Atoms N1, N2, C10, S1 and S2 lie on the same plane and this plane makes a dihedral angle of 76.75 (6) ° with the C12–C17 phenyl ring. The dihedral angle between the two phenhyl rings (C1–C6 and C12–C17) is 71.48 (8)°. Bond lengths and angles observed in the Schiff base ligand are of normal values.

In the crystal packing (Fig. 2), the molecules are interconnected by weak C—H···S intermolecular interactions (Table 1) into chains along the c axis. The crystal is further stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1) of the 3-phenylprop-2-enylidene moiety.

Experimental

The Schiff base ligand was prepared following the literature procedure (Tarafder et al., 2008) by adding cinamaldehyde (1.32 g, 10 mmol) to a hot solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (40 ml). The mixture was refluxed for 10 min. The yellow precipitate, which formed, was isolated and washed with hot ethanol. The yellow solid was recrystallized from absolute ethanol (Yield: 1.52 g, 46%). The zinc complex was synthesized by adding the solution of the Schiff base ligand (0.31 g, 1 mmol) in absolute ethanol (70 ml) to a solution of zinc nitrate hexahydrate (0.15 g, 0.5 mmol) in absolute ethanol (5 ml) and stirred under boiling condition for 10 min. A resultant yellow precipitate was separated and washed with hot ethanol (Yield: 0.29 g, 63%). Yellow single crystals of the title complex were crystallized from a mixture solution of chloroform/absolute ethanol (70:5 v/v) after 40 days at room temperature and further recrystallized from chloroform (40 ml) by slow evaporation at 296 K after 10 days, M.p 457–458 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for CH and aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.60 Å from C1 and the deepest hole is located at 0.54 Å from Zn1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Atoms labelled with suffix A are generated by the symmetry operation (-x, y, 1/2 - z).

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···S weak interactions are shown as dashed lines.

Crystal data

[Zn(C17H15N2S2)2] Dx = 1.455 Mg m3
Mr = 688.23 Melting point = 457–458 K
Orthorhombic, Pbcn Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 4580 reflections
a = 36.0897 (4) Å θ = 1.1–30.0º
b = 9.9310 (1) Å µ = 1.08 mm1
c = 8.7633 (1) Å T = 100.0 (1) K
V = 3140.83 (6) Å3 Block, yellow
Z = 4 0.37 × 0.25 × 0.17 mm
F000 = 1424

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4580 independent reflections
Radiation source: fine-focus sealed tube 4071 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.042
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 1.1º
ω scans h = −50→50
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −13→13
Tmin = 0.692, Tmax = 0.841 l = −12→12
82655 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.091   w = 1/[σ2(Fo2) + (0.0478P)2 + 1.4067P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max = 0.001
4580 reflections Δρmax = 0.49 e Å3
195 parameters Δρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.0000 0.42216 (2) 0.2500 0.01855 (8)
S1 −0.056843 (10) 0.51031 (4) 0.20596 (5) 0.02295 (9)
S2 −0.126368 (10) 0.40453 (4) 0.31408 (5) 0.02541 (10)
N1 −0.02538 (3) 0.29452 (12) 0.40410 (14) 0.0177 (2)
N2 −0.06402 (3) 0.29289 (12) 0.40147 (14) 0.0183 (2)
C1 0.10940 (4) 0.21479 (15) 0.60174 (17) 0.0215 (3)
H1A 0.1007 0.2854 0.5420 0.026*
C2 0.14657 (4) 0.20851 (16) 0.63939 (18) 0.0238 (3)
H2B 0.1627 0.2745 0.6040 0.029*
C3 0.16001 (4) 0.10408 (18) 0.72987 (18) 0.0251 (3)
H3A 0.1851 0.0999 0.7541 0.030*
C4 0.13595 (4) 0.00646 (18) 0.78363 (19) 0.0263 (3)
H4A 0.1448 −0.0627 0.8451 0.032*
C5 0.09847 (4) 0.01154 (17) 0.74589 (18) 0.0233 (3)
H5A 0.0824 −0.0543 0.7825 0.028*
C6 0.08479 (4) 0.11508 (15) 0.65326 (16) 0.0191 (3)
C7 0.04530 (4) 0.11779 (15) 0.61642 (17) 0.0197 (3)
H7A 0.0304 0.0534 0.6627 0.024*
C8 0.02865 (4) 0.20541 (15) 0.52127 (17) 0.0203 (3)
H8A 0.0434 0.2660 0.4676 0.024*
C9 −0.01069 (4) 0.20968 (15) 0.49886 (16) 0.0194 (3)
H9A −0.0258 0.1509 0.5530 0.023*
C10 −0.07830 (4) 0.38814 (15) 0.31855 (16) 0.0188 (3)
C11 −0.14245 (4) 0.29477 (17) 0.46680 (18) 0.0239 (3)
H11A −0.1382 0.2011 0.4407 0.029*
H11B −0.1295 0.3146 0.5611 0.029*
C12 −0.18343 (4) 0.32244 (15) 0.48382 (17) 0.0216 (3)
C13 −0.19570 (4) 0.42883 (18) 0.5729 (2) 0.0300 (3)
H13A −0.1785 0.4831 0.6226 0.036*
C14 −0.23315 (5) 0.4555 (2) 0.5890 (2) 0.0327 (4)
H14A −0.2410 0.5265 0.6503 0.039*
C15 −0.25893 (4) 0.37653 (18) 0.51415 (19) 0.0281 (3)
H15A −0.2841 0.3942 0.5249 0.034*
C16 −0.24710 (4) 0.27147 (19) 0.4234 (2) 0.0316 (4)
H16A −0.2644 0.2187 0.3722 0.038*
C17 −0.20951 (4) 0.24407 (17) 0.4082 (2) 0.0281 (3)
H17A −0.2018 0.1729 0.3470 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.01629 (12) 0.02017 (13) 0.01920 (13) 0.000 0.00389 (8) 0.000
S1 0.02122 (17) 0.02294 (18) 0.02470 (18) 0.00512 (13) 0.00525 (14) 0.00599 (14)
S2 0.01511 (16) 0.0341 (2) 0.02701 (19) 0.00377 (14) −0.00046 (13) 0.00913 (15)
N1 0.0135 (5) 0.0205 (5) 0.0191 (5) 0.0002 (4) 0.0008 (4) −0.0007 (4)
N2 0.0131 (5) 0.0227 (6) 0.0191 (5) −0.0007 (4) −0.0003 (4) 0.0002 (5)
C1 0.0198 (6) 0.0222 (7) 0.0226 (7) 0.0018 (5) −0.0006 (5) 0.0003 (5)
C2 0.0176 (6) 0.0265 (7) 0.0272 (7) −0.0010 (5) 0.0016 (5) −0.0024 (6)
C3 0.0168 (6) 0.0325 (8) 0.0260 (7) 0.0047 (6) −0.0026 (5) −0.0048 (6)
C4 0.0240 (7) 0.0294 (8) 0.0255 (7) 0.0061 (6) −0.0039 (6) 0.0025 (6)
C5 0.0214 (7) 0.0241 (7) 0.0243 (7) 0.0016 (6) −0.0001 (5) 0.0029 (6)
C6 0.0166 (6) 0.0224 (6) 0.0184 (6) 0.0019 (5) −0.0006 (5) −0.0011 (5)
C7 0.0163 (6) 0.0228 (7) 0.0199 (6) −0.0003 (5) 0.0008 (5) −0.0003 (5)
C8 0.0155 (6) 0.0235 (7) 0.0219 (6) −0.0004 (5) 0.0011 (5) 0.0008 (5)
C9 0.0164 (6) 0.0226 (7) 0.0192 (6) −0.0007 (5) 0.0009 (5) 0.0008 (5)
C10 0.0156 (6) 0.0227 (7) 0.0182 (6) 0.0008 (5) 0.0010 (5) −0.0008 (5)
C11 0.0151 (6) 0.0301 (8) 0.0266 (7) 0.0006 (5) −0.0003 (5) 0.0060 (6)
C12 0.0148 (6) 0.0268 (7) 0.0230 (7) 0.0001 (5) −0.0011 (5) 0.0044 (6)
C13 0.0212 (7) 0.0377 (9) 0.0311 (8) −0.0008 (6) −0.0057 (6) −0.0092 (7)
C14 0.0235 (8) 0.0425 (10) 0.0322 (8) 0.0068 (7) −0.0010 (6) −0.0106 (8)
C15 0.0153 (6) 0.0392 (9) 0.0297 (8) 0.0025 (6) 0.0009 (6) 0.0018 (7)
C16 0.0172 (7) 0.0347 (9) 0.0428 (10) −0.0042 (6) −0.0036 (6) −0.0053 (7)
C17 0.0189 (7) 0.0273 (8) 0.0380 (9) −0.0004 (6) −0.0015 (6) −0.0070 (7)

Geometric parameters (Å, °)

Zn1—N1 2.0662 (12) C6—C7 1.4616 (19)
Zn1—N1i 2.0662 (12) C7—C8 1.347 (2)
Zn1—S1i 2.2634 (4) C7—H7A 0.9300
Zn1—S1 2.2636 (4) C8—C9 1.4337 (19)
S1—C10 1.7450 (15) C8—H8A 0.9300
S2—C10 1.7428 (14) C9—H9A 0.9300
S2—C11 1.8210 (16) C11—C12 1.5118 (19)
N1—C9 1.2964 (18) C11—H11A 0.9700
N1—N2 1.3948 (15) C11—H11B 0.9700
N2—C10 1.2994 (19) C12—C13 1.386 (2)
C1—C2 1.383 (2) C12—C17 1.390 (2)
C1—C6 1.405 (2) C13—C14 1.384 (2)
C1—H1A 0.9300 C13—H13A 0.9300
C2—C3 1.393 (2) C14—C15 1.382 (2)
C2—H2B 0.9300 C14—H14A 0.9300
C3—C4 1.384 (2) C15—C16 1.379 (2)
C3—H3A 0.9300 C15—H15A 0.9300
C4—C5 1.393 (2) C16—C17 1.390 (2)
C4—H4A 0.9300 C16—H16A 0.9300
C5—C6 1.400 (2) C17—H17A 0.9300
C5—H5A 0.9300
N1—Zn1—N1i 104.32 (7) C7—C8—C9 123.08 (13)
N1—Zn1—S1i 121.84 (3) C7—C8—H8A 118.5
N1i—Zn1—S1i 86.96 (3) C9—C8—H8A 118.5
N1—Zn1—S1 86.96 (3) N1—C9—C8 120.80 (13)
N1i—Zn1—S1 121.84 (3) N1—C9—H9A 119.6
S1i—Zn1—S1 134.50 (2) C8—C9—H9A 119.6
C10—S1—Zn1 92.11 (5) N2—C10—S2 118.39 (11)
C10—S2—C11 104.17 (7) N2—C10—S1 130.26 (11)
C9—N1—N2 114.33 (12) S2—C10—S1 111.35 (8)
C9—N1—Zn1 129.50 (10) C12—C11—S2 105.99 (10)
N2—N1—Zn1 116.07 (9) C12—C11—H11A 110.5
C10—N2—N1 113.42 (12) S2—C11—H11A 110.5
C2—C1—C6 120.33 (14) C12—C11—H11B 110.5
C2—C1—H1A 119.8 S2—C11—H11B 110.5
C6—C1—H1A 119.8 H11A—C11—H11B 108.7
C1—C2—C3 120.48 (14) C13—C12—C17 118.62 (14)
C1—C2—H2B 119.8 C13—C12—C11 120.44 (14)
C3—C2—H2B 119.8 C17—C12—C11 120.92 (14)
C4—C3—C2 119.80 (14) C14—C13—C12 121.01 (15)
C4—C3—H3A 120.1 C14—C13—H13A 119.5
C2—C3—H3A 120.1 C12—C13—H13A 119.5
C3—C4—C5 120.19 (15) C15—C14—C13 120.01 (16)
C3—C4—H4A 119.9 C15—C14—H14A 120.0
C5—C4—H4A 119.9 C13—C14—H14A 120.0
C4—C5—C6 120.44 (15) C16—C15—C14 119.63 (15)
C4—C5—H5A 119.8 C16—C15—H15A 120.2
C6—C5—H5A 119.8 C14—C15—H15A 120.2
C5—C6—C1 118.75 (13) C15—C16—C17 120.35 (15)
C5—C6—C7 119.05 (13) C15—C16—H16A 119.8
C1—C6—C7 122.18 (13) C17—C16—H16A 119.8
C8—C7—C6 125.72 (14) C12—C17—C16 120.37 (15)
C8—C7—H7A 117.1 C12—C17—H17A 119.8
C6—C7—H7A 117.1 C16—C17—H17A 119.8
N1—Zn1—S1—C10 −6.84 (6) C6—C7—C8—C9 −174.96 (14)
N1i—Zn1—S1—C10 98.14 (6) N2—N1—C9—C8 −176.13 (12)
S1i—Zn1—S1—C10 −140.35 (5) Zn1—N1—C9—C8 7.7 (2)
N1i—Zn1—N1—C9 64.77 (12) C7—C8—C9—N1 −178.89 (14)
S1i—Zn1—N1—C9 −30.62 (14) N1—N2—C10—S2 −176.19 (9)
S1—Zn1—N1—C9 −173.11 (13) N1—N2—C10—S1 3.1 (2)
N1i—Zn1—N1—N2 −111.33 (10) C11—S2—C10—N2 11.23 (14)
S1i—Zn1—N1—N2 153.28 (8) C11—S2—C10—S1 −168.22 (8)
S1—Zn1—N1—N2 10.79 (9) Zn1—S1—C10—N2 4.50 (14)
C9—N1—N2—C10 172.96 (13) Zn1—S1—C10—S2 −176.13 (7)
Zn1—N1—N2—C10 −10.34 (15) C10—S2—C11—C12 171.23 (11)
C6—C1—C2—C3 −0.6 (2) S2—C11—C12—C13 −84.45 (16)
C1—C2—C3—C4 −0.6 (2) S2—C11—C12—C17 94.11 (16)
C2—C3—C4—C5 0.8 (2) C17—C12—C13—C14 1.2 (3)
C3—C4—C5—C6 0.1 (2) C11—C12—C13—C14 179.80 (16)
C4—C5—C6—C1 −1.2 (2) C12—C13—C14—C15 −0.8 (3)
C4—C5—C6—C7 −179.72 (14) C13—C14—C15—C16 −0.1 (3)
C2—C1—C6—C5 1.4 (2) C14—C15—C16—C17 0.6 (3)
C2—C1—C6—C7 179.91 (14) C13—C12—C17—C16 −0.7 (3)
C5—C6—C7—C8 −175.41 (15) C11—C12—C17—C16 −179.28 (16)
C1—C6—C7—C8 6.1 (2) C15—C16—C17—C12 −0.2 (3)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13A···S2ii 0.93 2.76 3.6697 (17) 167
C11—H11B···Cg1iii 0.97 2.98 3.5785 (17) 121

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2427).

References

  1. Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron, 27, 71–79.
  2. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, A. M. (2001). Inorg. Chim. Acta, 320, 1–6.
  3. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem.92, 141–148. [DOI] [PubMed]
  4. Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem.39, 1785–1788.
  5. Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 1385–1392.
  7. Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron, 23, 161–168.
  8. Latheef, L., Manoj, E. & Kurup, M. R. P. (2007). Polyhedron, 26, 4107–4113.
  9. Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
  13. Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. [DOI] [PMC free article] [PubMed]
  14. Tarafder, M. T. H., Jin, K.-T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
  15. Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron, 20, 2363–2370.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005643/ng2427sup1.cif

e-64-0m518-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005643/ng2427Isup2.hkl

e-64-0m518-Isup2.hkl (224.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES