Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 12;64(Pt 4):o705. doi: 10.1107/S1600536808006430

N-(2-Chloro-4-nitro­phen­yl)-2-nitro­benzamide

Aamer Saeed a,*, Shahid Hussain a, Ulrich Flörke b
PMCID: PMC2961029  PMID: 21202096

Abstract

In the title compound, C13H8ClN3O5, the dihedral angle between the two aromatic rings is 70.74 (6)°. The nitro groups of the Cl-substituted and benzamide benzene rings are twisted by 2.6 (1) and 31.3 (2)°, respectively. The crystal packing shows inter­molecular C—H⋯O hydrogen bonds that link mol­ecules into sheets stacked along [010].

Related literature

For the biological activities of benzanilides and related compounds, see: Makino et al. (2003); Ho et al. (2002); Zhichkin et al. (2007); Jackson et al. (1994); Capdeville et al. (2002); Igawa et al. (1999). For related structures, see: Di Rienzo et al. (1980); Batsanov & Lyubchik (2003).graphic file with name e-64-0o705-scheme1.jpg

Experimental

Crystal data

  • C13H8ClN3O5

  • M r = 321.67

  • Orthorhombic, Inline graphic

  • a = 7.8053 (9) Å

  • b = 13.8621 (17) Å

  • c = 24.101 (3) Å

  • V = 2607.7 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 120 (2) K

  • 0.47 × 0.20 × 0.14 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.863, T max = 0.956

  • 21562 measured reflections

  • 3111 independent reflections

  • 2424 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.107

  • S = 1.04

  • 3111 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006430/si2073sup1.cif

e-64-0o705-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006430/si2073Isup2.hkl

e-64-0o705-Isup2.hkl (152.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O1 0.95 2.24 2.848 (2) 121
C10—H10A⋯O4i 0.95 2.35 3.246 (2) 157
C11—H11A⋯O2ii 0.95 2.55 3.202 (2) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AS gratefully acknowledges a research grant from Quaid-i-Azam University, Islamabad.

supplementary crystallographic information

Comment

The benzanilide core is present in compounds with such a wide range of biological activities that it has been called a privileged structure. Benzanilides serve as intermediates towards benzothiadiazin-4-ones (Makino et al., 2003), benzodiazepine-2,5-diones (Ho et al., 2002), and 2,3-disubstituted 3H-quinazoline-4-ones (Zhichkin et al., 2007). Benzanilides have established their efficacy as centroid elements of ligands that bind to a wide variety of receptor types. Thus benzanilides containing aminoalkyl groups originally designed as a peptidomimetic, have been incorporated in an Arg-Gly-Asp cyclic peptide yielding a high affinity GPIIb/IIIa ligand (Jackson et al., 1994). Imatinib is an ATP-site binding kinase inhibitor and platelet-derived growth factor receptor kinases (Capdeville et al., 2002).Benzamides have activities as acetyl-CoA carboxylase and farnesyl transferase inhibitors (Igawa et al., 1999) The literature is full of the function of the 2-chloro-4-nitrophenyl group (CNP) and also structures of nitrobenzamide (NB) and related compounds (Di Rienzo et al., 1980; Batsanov & Lyubchik, 2003). The aim of the present work was to combine CNP and NB in a single structure which is not well known in the literature.

Geometric parameters of the title compound, C13H8ClN3O5, are in the usual ranges. The dihedral angle between the two aromatic rings is 70.74 (6)°. The N2 nitro group is twisted by 31.3 (2)° from the plane of the C2–C7 phenyl ring, and the N3 group 2.6 (2)° from the C8–C13 plane, respectively. The crystal packing shows intermolecular C–H···O hydrogen bonds, from the Cl-phenyl group to both nitro groups. Details are depicted in Table 1. By these hydrogen bonds molecules are linked to endless sheets that are stacked along [010]. Additionally, stacking of molecules along [100] can be recognized. The intramolecular C13–H13A···O1 interaction is a common feature for this molecule with an almost planar O1–C1–N1–C8–C13 arrangement. The corresponding torsion angles are C8–N1–C1–O1 6.7 (3)° and C1–N1–C8–C13 - 7.6 (3)°, respectively.

Experimental

2-Nitrobenzoyl chloride (5.4 mmol) in CHCl3 was treated with 2-chloro-4-nitroaniline (21.6 mmol) under a nitrogen atmosphere at reflux for 3 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%) as white needles: IR (KBr) 3226, 1665, 1616, 1520, 1352 cm-1; 1H NMR (CDCl3, 400 MHz) ? 8.13 (d, J) 8 Hz, 1H), 7.81 (d, J) 8 Hz, 1H), 7.51 (dd, J) 8 Hz, 1H), 7.66 (dd, J) 8 Hz, 1H), 7.43 (d, J) 8 Hz, 2H), 7.36 (br s, 1H), 7.25 (d, J) 8 Hz, 1H); 13 C NMR (100 MHz) ? 164.7, 147.8, 134.6, 134.4, 132.7, 132.1, 130.3, 129.9, 129.3, 125.0. Anal. Calcd. For C13H9N3O5, C, 48.54; H, 2.51; Cl, 11.02; N, 13.06 found C, 48.12; H, 2.31; Cl, 11.3; N, 12.94.

Refinement

Hydrogen atoms were located in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C13H8ClN3O5 F000 = 1312
Mr = 321.67 Dx = 1.639 Mg m3
Orthorhombic, Pbca Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 769 reflections
a = 7.8053 (9) Å θ = 2.9–25.7º
b = 13.8621 (17) Å µ = 0.32 mm1
c = 24.101 (3) Å T = 120 (2) K
V = 2607.7 (5) Å3 Prism, colourless
Z = 8 0.47 × 0.20 × 0.14 mm

Data collection

Bruker SMART APEX diffractometer 3111 independent reflections
Radiation source: sealed tube 2424 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.053
T = 120(2) K θmax = 27.9º
φ and ω scans θmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −10→10
Tmin = 0.863, Tmax = 0.956 k = −18→16
21562 measured reflections l = −31→31

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0553P)2 + 0.7975P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3111 reflections Δρmax = 0.39 e Å3
199 parameters Δρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.13944 (6) 0.38512 (3) 0.446787 (18) 0.02271 (13)
O1 0.49413 (17) 0.41462 (11) 0.39481 (5) 0.0317 (3)
O2 0.6129 (2) 0.24007 (10) 0.33719 (6) 0.0374 (4)
O3 0.4575 (2) 0.23191 (11) 0.26277 (7) 0.0428 (4)
O4 0.38629 (18) 0.37084 (12) 0.57016 (6) 0.0388 (4)
O5 0.54709 (19) 0.33143 (11) 0.63925 (5) 0.0345 (4)
N1 0.7841 (2) 0.41233 (11) 0.40825 (6) 0.0221 (3)
H1A 0.8816 0.4222 0.3908 0.027*
N2 0.5594 (2) 0.27328 (11) 0.29309 (7) 0.0269 (4)
N3 0.5267 (2) 0.35472 (11) 0.59071 (6) 0.0229 (3)
C1 0.6395 (2) 0.41795 (13) 0.37682 (7) 0.0208 (4)
C2 0.6749 (2) 0.43395 (13) 0.31581 (7) 0.0191 (4)
C3 0.7458 (2) 0.52025 (13) 0.29780 (7) 0.0226 (4)
H3A 0.7797 0.5675 0.3242 0.027*
C4 0.7676 (3) 0.53806 (14) 0.24147 (7) 0.0253 (4)
H4A 0.8179 0.5969 0.2296 0.030*
C5 0.7163 (3) 0.47032 (14) 0.20255 (7) 0.0254 (4)
H5A 0.7310 0.4831 0.1641 0.030*
C6 0.6437 (2) 0.38416 (14) 0.21950 (7) 0.0237 (4)
H6A 0.6073 0.3376 0.1931 0.028*
C7 0.6253 (2) 0.36732 (13) 0.27579 (7) 0.0200 (4)
C8 0.7961 (2) 0.39263 (12) 0.46521 (7) 0.0190 (4)
C9 0.9581 (2) 0.37737 (12) 0.48863 (7) 0.0196 (4)
C10 0.9792 (2) 0.35510 (13) 0.54414 (7) 0.0216 (4)
H10A 1.0907 0.3443 0.5587 0.026*
C11 0.8378 (2) 0.34852 (13) 0.57846 (7) 0.0211 (4)
H11A 0.8497 0.3338 0.6168 0.025*
C12 0.6785 (2) 0.36410 (12) 0.55510 (7) 0.0192 (4)
C13 0.6534 (2) 0.38633 (12) 0.49987 (7) 0.0194 (4)
H13A 0.5414 0.3971 0.4858 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0156 (2) 0.0279 (2) 0.0246 (2) 0.00115 (17) 0.00315 (15) 0.00015 (17)
O1 0.0189 (7) 0.0559 (10) 0.0203 (6) 0.0026 (7) 0.0019 (5) 0.0048 (6)
O2 0.0461 (10) 0.0290 (8) 0.0371 (8) −0.0004 (7) 0.0064 (7) 0.0124 (6)
O3 0.0422 (10) 0.0316 (8) 0.0545 (10) −0.0107 (7) −0.0013 (8) −0.0119 (7)
O4 0.0163 (7) 0.0739 (12) 0.0262 (7) −0.0008 (7) −0.0005 (6) 0.0062 (7)
O5 0.0305 (8) 0.0551 (10) 0.0178 (6) 0.0020 (7) 0.0025 (5) 0.0071 (6)
N1 0.0153 (8) 0.0339 (9) 0.0172 (7) 0.0003 (7) 0.0018 (6) 0.0034 (6)
N2 0.0255 (9) 0.0226 (8) 0.0325 (9) 0.0008 (7) 0.0081 (7) −0.0029 (7)
N3 0.0203 (8) 0.0300 (9) 0.0182 (7) −0.0007 (7) 0.0008 (6) −0.0010 (6)
C1 0.0205 (9) 0.0234 (9) 0.0186 (8) 0.0022 (7) 0.0016 (7) 0.0004 (7)
C2 0.0138 (9) 0.0243 (9) 0.0191 (8) 0.0035 (7) 0.0011 (6) 0.0020 (7)
C3 0.0195 (10) 0.0239 (9) 0.0245 (9) 0.0002 (8) 0.0013 (7) −0.0004 (7)
C4 0.0238 (10) 0.0243 (9) 0.0278 (9) 0.0030 (8) 0.0062 (8) 0.0069 (8)
C5 0.0252 (10) 0.0331 (11) 0.0178 (8) 0.0079 (8) 0.0043 (7) 0.0052 (8)
C6 0.0237 (10) 0.0276 (10) 0.0197 (8) 0.0048 (8) −0.0005 (7) −0.0048 (7)
C7 0.0162 (9) 0.0212 (9) 0.0226 (9) 0.0026 (7) 0.0028 (7) 0.0002 (7)
C8 0.0182 (9) 0.0197 (9) 0.0191 (8) 0.0001 (7) −0.0012 (7) 0.0003 (7)
C9 0.0162 (9) 0.0172 (9) 0.0254 (9) 0.0003 (7) 0.0029 (7) −0.0016 (7)
C10 0.0164 (9) 0.0249 (10) 0.0236 (9) 0.0019 (7) −0.0038 (7) 0.0003 (7)
C11 0.0217 (9) 0.0230 (9) 0.0187 (8) 0.0008 (8) −0.0030 (7) 0.0015 (7)
C12 0.0196 (9) 0.0186 (8) 0.0192 (8) −0.0008 (7) 0.0018 (7) −0.0015 (7)
C13 0.0153 (9) 0.0238 (9) 0.0191 (8) −0.0009 (7) −0.0012 (6) −0.0010 (7)

Geometric parameters (Å, °)

Cl1—C9 1.7411 (18) C4—C5 1.386 (3)
O1—C1 1.216 (2) C4—H4A 0.9500
O2—N2 1.231 (2) C5—C6 1.383 (3)
O3—N2 1.223 (2) C5—H5A 0.9500
O4—N3 1.223 (2) C6—C7 1.384 (2)
O5—N3 1.2240 (19) C6—H6A 0.9500
N1—C1 1.362 (2) C8—C13 1.395 (2)
N1—C8 1.403 (2) C8—C9 1.401 (2)
N1—H1A 0.8800 C9—C10 1.383 (2)
N2—C7 1.462 (2) C10—C11 1.383 (3)
N3—C12 1.469 (2) C10—H10A 0.9500
C1—C2 1.512 (2) C11—C12 1.381 (3)
C2—C3 1.388 (3) C11—H11A 0.9500
C2—C7 1.391 (3) C12—C13 1.380 (2)
C3—C4 1.390 (2) C13—H13A 0.9500
C3—H3A 0.9500
C1—N1—C8 127.64 (15) C5—C6—C7 118.53 (17)
C1—N1—H1A 116.2 C5—C6—H6A 120.7
C8—N1—H1A 116.2 C7—C6—H6A 120.7
O3—N2—O2 124.13 (17) C6—C7—C2 122.60 (17)
O3—N2—C7 118.45 (16) C6—C7—N2 117.81 (16)
O2—N2—C7 117.41 (16) C2—C7—N2 119.51 (16)
O4—N3—O5 123.50 (16) C13—C8—C9 118.04 (16)
O4—N3—C12 118.03 (14) C13—C8—N1 123.03 (16)
O5—N3—C12 118.46 (15) C9—C8—N1 118.92 (16)
O1—C1—N1 124.98 (16) C10—C9—C8 122.07 (16)
O1—C1—C2 121.51 (16) C10—C9—Cl1 118.51 (14)
N1—C1—C2 113.45 (15) C8—C9—Cl1 119.41 (13)
C3—C2—C7 117.83 (16) C11—C10—C9 119.91 (17)
C3—C2—C1 120.22 (16) C11—C10—H10A 120.0
C7—C2—C1 121.73 (16) C9—C10—H10A 120.0
C2—C3—C4 120.48 (17) C12—C11—C10 117.65 (16)
C2—C3—H3A 119.8 C12—C11—H11A 121.2
C4—C3—H3A 119.8 C10—C11—H11A 121.2
C5—C4—C3 120.34 (17) C13—C12—C11 123.77 (17)
C5—C4—H4A 119.8 C13—C12—N3 117.93 (16)
C3—C4—H4A 119.8 C11—C12—N3 118.28 (15)
C6—C5—C4 120.21 (16) C12—C13—C8 118.55 (17)
C6—C5—H5A 119.9 C12—C13—H13A 120.7
C4—C5—H5A 119.9 C8—C13—H13A 120.7
C8—N1—C1—O1 6.7 (3) O2—N2—C7—C2 −29.6 (2)
C8—N1—C1—C2 −176.12 (17) C1—N1—C8—C13 −7.6 (3)
O1—C1—C2—C3 110.1 (2) C1—N1—C8—C9 171.65 (18)
N1—C1—C2—C3 −67.2 (2) C13—C8—C9—C10 1.0 (3)
O1—C1—C2—C7 −64.4 (3) N1—C8—C9—C10 −178.25 (16)
N1—C1—C2—C7 118.28 (19) C13—C8—C9—Cl1 −179.73 (13)
C7—C2—C3—C4 −0.8 (3) N1—C8—C9—Cl1 1.0 (2)
C1—C2—C3—C4 −175.50 (17) C8—C9—C10—C11 −0.8 (3)
C2—C3—C4—C5 1.0 (3) Cl1—C9—C10—C11 179.93 (14)
C3—C4—C5—C6 −0.3 (3) C9—C10—C11—C12 0.5 (3)
C4—C5—C6—C7 −0.5 (3) C10—C11—C12—C13 −0.4 (3)
C5—C6—C7—C2 0.8 (3) C10—C11—C12—N3 178.34 (16)
C5—C6—C7—N2 −175.84 (17) O4—N3—C12—C13 −2.9 (2)
C3—C2—C7—C6 −0.1 (3) O5—N3—C12—C13 177.27 (17)
C1—C2—C7—C6 174.54 (17) O4—N3—C12—C11 178.28 (18)
C3—C2—C7—N2 176.43 (16) O5—N3—C12—C11 −1.6 (3)
C1—C2—C7—N2 −8.9 (3) C11—C12—C13—C8 0.7 (3)
O3—N2—C7—C6 −31.8 (2) N3—C12—C13—C8 −178.11 (15)
O2—N2—C7—C6 147.07 (18) C9—C8—C13—C12 −0.9 (2)
O3—N2—C7—C2 151.52 (17) N1—C8—C13—C12 178.32 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13A···O1 0.95 2.24 2.848 (2) 121
C10—H10A···O4i 0.95 2.35 3.246 (2) 157
C11—H11A···O2ii 0.95 2.55 3.202 (2) 126

Symmetry codes: (i) x+1, y, z; (ii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2073).

References

  1. Batsanov, A. S. & Lyubchik, S. B. (2003). Acta Cryst. E59, o155–o157.
  2. Bruker (2002). SMART (Version 5.62) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug. Discov.1, 493–502. [DOI] [PubMed]
  4. Di Rienzo, F., Domenicano, A. & Riva di Sanseverino, L. (1980). Acta Cryst. B36, 586–591.
  5. Ho, T.-I., Chen, W.-S., Hsu, C.-W., Tsai, Y.-M. & Fang, J.-M. (2002). Heterocycles, 57, 1501–1506.
  6. Igawa, H., Nishimura, M., Okada, K. & Nakamura, T. (1999). Jpn Kokai Tokkyo Koho JP 11171848.
  7. Jackson, S., DeGrado, W., Dwivedi, A., Parthasarathy, A., Higley, A., Krywko, J., Rockwell, A., Markwalder, J., Wells, G., Wexler, R., Mousa, S. & Harlow, R. (1994). J. Am. Chem. Soc.116, 3220–3230.
  8. Makino, S., Nakanishi, E. & Tsuji, T. (2003). Bull. Korean Chem. Soc.24, 389–392.
  9. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zhichkin, P., Kesicki, E., Treiberg, J., Bourdon, L., Ronsheim, M., Ooi, H. C., White, S., Judkins, A. & Fairfax, D. (2007). Org. Lett.9, 1415–1418. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808006430/si2073sup1.cif

e-64-0o705-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006430/si2073Isup2.hkl

e-64-0o705-Isup2.hkl (152.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES