Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 7;64(Pt 4):m531–m532. doi: 10.1107/S1600536808006090

(2,2′-Bipyridine-κ2 N,N′){[(3-meth­oxy-2-oxidobenzyl­idene-κO 2)hydrazono]methano­lato-κ2 N 2,O}dimethyl­tin(IV)

Shaukat Shuja a, Saqib Ali a, M Nawaz Tahir b, Nasir Khalid c, Islam Ullah Khan d,*
PMCID: PMC2961040  PMID: 21201994

Abstract

In the crystal structure of the title compound, [Sn(CH3)2(C9H8N2O3)(C10H8N2)], the Sn atom exhibits a penta­gonal bipyramidal coordination geometry defined by two C, three N and two O atoms. The bond distances for Sn—C, Sn—N and Sn—O are in the ranges 2.097 (3)–2.098 (3), 2.298 (2)–2.623 (2) and 2.157 (2)–2.266 (2) Å, respectively. The mol­ecular structure of the monomeric compound is stabilized by three intra­molecular C—H⋯O hydrogen bonds, all involving bipyridine C—H groups.

Related literature

For related literature, see: Chen et al. (2006); Diouf et al. (2004); Shuja et al. (2007a ,b , 2007c ). For bond-length data, see: Allen (2002).graphic file with name e-64-0m531-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)2(C9H8N2O3)(C10H8N2)]

  • M r = 497.12

  • Monoclinic, Inline graphic

  • a = 12.3834 (3) Å

  • b = 9.9094 (2) Å

  • c = 17.1730 (4) Å

  • β = 103.302 (1)°

  • V = 2050.80 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.749, T max = 0.820

  • 24401 measured reflections

  • 5524 independent reflections

  • 4407 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.066

  • S = 1.04

  • 5524 reflections

  • 280 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006090/im2056sup1.cif

e-64-0m531-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006090/im2056Isup2.hkl

e-64-0m531-Isup2.hkl (265KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Sn1—C9 2.097 (3)
Sn1—C10 2.098 (3)
Sn1—O1 2.1572 (14)
Sn1—O2 2.2658 (15)
Sn1—N1 2.2980 (18)
Sn1—N3 2.5825 (18)
Sn1—N4 2.6231 (19)
C9—Sn1—C10 169.76 (11)
C9—Sn1—O1 93.97 (9)
C10—Sn1—O1 90.20 (9)
C9—Sn1—O2 94.23 (9)
C10—Sn1—O2 87.60 (11)
O1—Sn1—O2 145.23 (6)
C9—Sn1—N1 94.39 (9)
C10—Sn1—N1 95.65 (10)
O1—Sn1—N1 77.12 (6)
O2—Sn1—N1 68.60 (6)
C9—Sn1—N3 80.37 (9)
C10—Sn1—N3 90.33 (9)
O1—Sn1—N3 138.83 (6)
O2—Sn1—N3 75.90 (6)
N1—Sn1—N3 143.65 (6)
O1—Sn1—N4 76.91 (6)
O2—Sn1—N4 136.43 (6)
N1—Sn1—N4 153.65 (6)
N3—Sn1—N4 62.68 (6)
N4—Sn1—C9 91.77 (9)
N4—Sn1—C10 80.06 (10)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.93 2.40 2.993 (3) 121
C21—H21⋯O1 0.93 2.36 2.968 (3) 123
C21—H21⋯O3 0.93 2.50 3.390 (3) 161

Acknowledgments

The authors acknowledge the Higher Education Com­mision, Islamabad, Pakistan, for funding the purchase of the diffractometer and for financial support to SS for PhD under the Indigenous Scholarship Scheme (PIN Code: 042–111889).

supplementary crystallographic information

Comment

Diorganotin(IV) complexes of Schiff base ligands derived from 3-methoxysalicylaldehyde and hydrazine derivatives are limited in number (Chen et al., 2006, Diouf et al., 2004). In continuation of our efforts to synthesize various Schiff base ligands of substituted salicylaldehydes with hydrazines or amino acids as well as the corresponding organotin derivatives (Shuja et al., 2007a, 2007b, 2007c), we herein report the structure of the title compound (I).

In the monomeric structure of the title compound (I), the coordination around Sn consists of two O-atoms and one N-atom of the Schiff base ligand [N-Formyl-N'-(3-methoxy-2-oxidobenzylidene)hydrazine], two N-atoms of 2,2'-bipyridine and two C-atoms of methyl groups. The shortest bond of Sn is realised with the methyl C-atoms showing nearly equal values (2.097 (3) and 2.098 (3) Å) corresponding very well with the bond lengths observed in [(3-Methoxy-2-oxidobenzaldehyde benzoylhydrazonato)dimethyltin(IV)] (Chen et al., 2006). The Sn1—O1 bond distance of 2.157 (1) Å is greater than the values reported for [diphenyl(methoxy-N-salicylideneacetylhydrazonato)tin(IV)] (2.068 (2) Å, Diouf et al., 2004 and 2.131 (3) Å, Chen et al., 2006). The same is true for the bonds Sn1—O2 (2.266 (2) Å) and Sn1—N1 (2.298 (2) Å) also being longer compared to those previously reported (Diouf et al., 2004, Chen et al., 2006). These observations are most probably due to the additional coordination of bipyridine to tin. A CCDC search (Allen, 2002) showed that the title compund is indeed the first structurally characterized tin organyl with a bipyridine ligand attached to tin. The bond distances of N-atoms of bipyridine measure to 2.583 (2) Å (Sn1—N3) and 2.623 (2) Å (Sn1—N4), respectively. The bond distances in the hydrazine ligand are comparable with those reported for {[N-Formyl-N'-(2-oxidobenzylidene)hydrazine-κ3O,N,O']diphenyl tin(IV)} (Shuja et al., 2007b). The bond angles around Sn1 are in the range between 68.60 (6)° and 169.8 (1)°. The dihedral angle between (O1/C1/C2/C3/C4 /C5/C6/C7) and (N1/N2/C8/O2) is 36.0 (1)° while the angle between the rings (N3/C12/C13/C14/C15/C16) and (N4/C17/C18/C19/C20/C21) is 17.0 (1)°. The molecular structure of the title compound as well as the observed conformation are stabilized by three intramolecular H-bonds of C—H···O type (Fig. 1) all involving bipyridine C–H functions (Table 2). The closest intermolecular contact of molecules is at a distance of 3.208 (3) Å between O1···C15i [symmetry code: i = x, -y + 1/2, z + 1/2]. A postive electron peak corresponding to 1.12 Å-3 remains at a distance of 0.93 Å near Sn1.

Experimental

N-(2-hydroxy-3-methoxy-benzylidene)formylhydrazine (0.58 g, 3 mmol) and Et3N (0.86 ml, 6 mmol) were added to anhydrous toluene (100 ml) in a round bottom flask equipped with a reflux condenser. Dimethyltin(IV) dichloride (0.66 g, 3 mmol) dissolved in anhydrous toluene (20 ml) and 2,2'-bipyridine (0.47 g, 3 mmol) were then added. The reaction mixture was stirred at room temperature for 5 hr and allowed to stand overnight. The Et3NHCl salt formed during the reaction was filtered off and the resulting clear yellow solution was evaporated with a rotary evaporator under reduced pressure. Recrystallization from chloroform yielded crystals suitable for X-ray diffraction.

Refinement

The coordinates of H-atoms of methyl carbons attached to tin were refined freely. The remaining H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms. The Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x=1.2 for arromatic H atoms.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 for Windows (Farrugia, 1997) drawing of the title compound, C21H22N4O3Sn with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.

Fig. 2.

Fig. 2.

The unit cell packing of (I) (Spek, 2003), showing that there is no intermolecular hydrogen bonding.

Crystal data

[Sn(CH3)2(C9H8N2O3)(C10H8N2)] F000 = 1000
Mr = 497.12 Dx = 1.610 Mg m3
Monoclinic, P21/c Mo Kα radiation radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4407 reflections
a = 12.3834 (3) Å θ = 1.7–29.2º
b = 9.9094 (2) Å µ = 1.28 mm1
c = 17.1730 (4) Å T = 296 (2) K
β = 103.302 (1)º Prismatic, yellow
V = 2050.80 (8) Å3 0.25 × 0.18 × 0.15 mm
Z = 4

Data collection

Bruker KappaAPEXII CCD diffractometer 5524 independent reflections
Radiation source: fine-focus sealed tube 4407 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.028
Detector resolution: 7.3 pixels mm-1 θmax = 29.2º
T = 296(2) K θmin = 1.7º
ω scans h = −16→16
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −13→12
Tmin = 0.749, Tmax = 0.820 l = −23→23
24401 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066   w = 1/[σ2(Fo2) + (0.0299P)2 + 0.9401P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.003
5524 reflections Δρmax = 1.12 e Å3
280 parameters Δρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.268225 (12) 0.389388 (13) 1.008997 (8) 0.03310 (5)
O1 0.22028 (13) 0.22099 (15) 1.07319 (9) 0.0415 (4)
O2 0.31515 (18) 0.61079 (15) 1.01551 (11) 0.0514 (4)
O3 0.11847 (15) −0.01098 (16) 1.07144 (11) 0.0528 (4)
N1 0.23627 (17) 0.48884 (18) 1.12248 (11) 0.0425 (4)
N2 0.2877 (2) 0.6145 (2) 1.14445 (14) 0.0565 (6)
N3 0.31169 (16) 0.43881 (18) 0.87174 (11) 0.0383 (4)
N4 0.29433 (16) 0.18153 (18) 0.92055 (11) 0.0408 (4)
C1 0.13973 (19) 0.2149 (2) 1.11147 (13) 0.0387 (5)
C2 0.0823 (2) 0.0913 (2) 1.11224 (14) 0.0442 (5)
C3 −0.0043 (2) 0.0808 (3) 1.15032 (17) 0.0594 (7)
H3 −0.0432 0.0001 1.1482 0.071*
C4 −0.0336 (3) 0.1904 (3) 1.19174 (18) 0.0671 (8)
H4 −0.0921 0.1829 1.2171 0.081*
C5 0.0230 (2) 0.3077 (3) 1.19522 (16) 0.0572 (7)
H5 0.0041 0.3795 1.2244 0.069*
C6 0.1101 (2) 0.3234 (2) 1.15545 (13) 0.0425 (5)
C7 0.1685 (2) 0.4502 (3) 1.16414 (14) 0.0467 (6)
H7 0.1559 0.5090 1.2033 0.056*
C8 0.3242 (2) 0.6617 (3) 1.08479 (16) 0.0556 (7)
H8 0.3620 0.7434 1.0939 0.067*
C9 0.1069 (2) 0.4231 (3) 0.94090 (17) 0.0460 (6)
H9A 0.056 (3) 0.407 (3) 0.969 (2) 0.069*
H9B 0.093 (3) 0.370 (3) 0.896 (2) 0.069*
H9C 0.099 (2) 0.506 (3) 0.9240 (18) 0.069*
C10 0.4361 (2) 0.3463 (3) 1.05755 (18) 0.0523 (6)
H10A 0.477 (3) 0.366 (3) 1.027 (2) 0.078*
H10B 0.444 (3) 0.252 (3) 1.0710 (18) 0.078*
H10C 0.463 (3) 0.399 (3) 1.104 (2) 0.078*
C11 0.0699 (3) −0.1410 (3) 1.07460 (19) 0.0639 (8)
H11A 0.1023 −0.2040 1.0441 0.096*
H11B −0.0086 −0.1358 1.0527 0.096*
H11C 0.0835 −0.1707 1.1292 0.096*
C12 0.2997 (2) 0.5636 (2) 0.84114 (15) 0.0469 (6)
H12 0.2818 0.6325 0.8727 0.056*
C13 0.3121 (2) 0.5960 (2) 0.76579 (15) 0.0510 (6)
H13 0.3021 0.6840 0.7468 0.061*
C14 0.3398 (2) 0.4948 (3) 0.71961 (15) 0.0557 (7)
H14 0.3498 0.5134 0.6687 0.067*
C15 0.3526 (2) 0.3653 (3) 0.74940 (14) 0.0504 (6)
H15 0.3717 0.2957 0.7188 0.060*
C16 0.33668 (17) 0.3393 (2) 0.82525 (12) 0.0363 (4)
C17 0.34066 (18) 0.2002 (2) 0.85795 (13) 0.0378 (5)
C18 0.3865 (2) 0.0940 (3) 0.82431 (16) 0.0530 (6)
H18 0.4185 0.1088 0.7811 0.064*
C19 0.3843 (3) −0.0340 (3) 0.85548 (18) 0.0630 (8)
H19 0.4156 −0.1060 0.8338 0.076*
C20 0.3361 (3) −0.0541 (3) 0.91812 (17) 0.0580 (7)
H20 0.3328 −0.1399 0.9393 0.070*
C21 0.2919 (2) 0.0563 (2) 0.94976 (16) 0.0506 (6)
H21 0.2593 0.0429 0.9928 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.03738 (9) 0.02873 (8) 0.03378 (8) −0.00102 (6) 0.00941 (6) −0.00056 (5)
O1 0.0526 (9) 0.0335 (8) 0.0437 (9) 0.0000 (7) 0.0223 (7) 0.0018 (6)
O2 0.0729 (12) 0.0353 (8) 0.0494 (10) −0.0122 (8) 0.0214 (9) −0.0058 (7)
O3 0.0625 (11) 0.0398 (9) 0.0580 (11) −0.0116 (8) 0.0180 (9) 0.0027 (8)
N1 0.0546 (12) 0.0355 (9) 0.0383 (10) −0.0012 (8) 0.0128 (9) −0.0050 (8)
N2 0.0823 (17) 0.0419 (11) 0.0469 (12) −0.0131 (10) 0.0181 (12) −0.0141 (9)
N3 0.0462 (11) 0.0341 (9) 0.0345 (9) −0.0023 (8) 0.0091 (8) 0.0016 (7)
N4 0.0515 (11) 0.0322 (9) 0.0417 (10) 0.0015 (8) 0.0171 (9) 0.0008 (8)
C1 0.0434 (12) 0.0430 (12) 0.0301 (10) −0.0003 (9) 0.0093 (9) 0.0070 (9)
C2 0.0502 (14) 0.0445 (13) 0.0379 (12) −0.0018 (10) 0.0101 (11) 0.0088 (9)
C3 0.0587 (17) 0.0640 (17) 0.0588 (17) −0.0135 (13) 0.0204 (14) 0.0175 (13)
C4 0.0664 (19) 0.076 (2) 0.0713 (19) 0.0012 (15) 0.0403 (16) 0.0179 (16)
C5 0.0649 (17) 0.0664 (18) 0.0490 (15) 0.0104 (14) 0.0311 (13) 0.0086 (12)
C6 0.0502 (13) 0.0465 (13) 0.0336 (11) 0.0046 (10) 0.0154 (10) 0.0057 (9)
C7 0.0622 (16) 0.0455 (13) 0.0354 (12) 0.0060 (11) 0.0176 (11) −0.0026 (10)
C8 0.0755 (19) 0.0366 (12) 0.0558 (16) −0.0149 (12) 0.0172 (14) −0.0122 (11)
C9 0.0414 (13) 0.0469 (13) 0.0488 (15) 0.0023 (11) 0.0085 (11) 0.0030 (11)
C10 0.0409 (14) 0.0609 (16) 0.0540 (16) 0.0022 (12) 0.0089 (12) 0.0071 (13)
C11 0.075 (2) 0.0450 (14) 0.0666 (18) −0.0154 (13) 0.0046 (15) 0.0119 (13)
C12 0.0601 (16) 0.0368 (11) 0.0420 (13) −0.0029 (11) 0.0080 (11) 0.0053 (10)
C13 0.0586 (16) 0.0459 (13) 0.0443 (13) −0.0095 (11) 0.0030 (12) 0.0123 (10)
C14 0.0630 (17) 0.0678 (17) 0.0354 (13) −0.0094 (13) 0.0095 (12) 0.0131 (12)
C15 0.0595 (16) 0.0587 (15) 0.0349 (12) −0.0012 (12) 0.0147 (11) −0.0012 (10)
C16 0.0359 (11) 0.0404 (11) 0.0324 (10) −0.0029 (9) 0.0072 (9) −0.0001 (9)
C17 0.0413 (12) 0.0374 (11) 0.0341 (11) 0.0010 (9) 0.0075 (9) −0.0027 (8)
C18 0.0666 (18) 0.0526 (15) 0.0438 (14) 0.0124 (12) 0.0208 (13) −0.0028 (11)
C19 0.086 (2) 0.0432 (14) 0.0623 (17) 0.0189 (14) 0.0222 (16) −0.0097 (12)
C20 0.079 (2) 0.0317 (12) 0.0644 (17) 0.0067 (12) 0.0197 (15) −0.0009 (12)
C21 0.0698 (17) 0.0313 (11) 0.0570 (15) 0.0013 (11) 0.0278 (13) 0.0019 (10)

Geometric parameters (Å, °)

Sn1—C9 2.097 (3) C7—H7 0.9300
Sn1—C10 2.098 (3) C8—H8 0.9300
Sn1—O1 2.1572 (14) C9—H9A 0.90 (3)
Sn1—O2 2.2658 (15) C9—H9B 0.92 (3)
Sn1—N1 2.2980 (18) C9—H9C 0.87 (3)
Sn1—N3 2.5825 (18) C10—H10A 0.84 (3)
Sn1—N4 2.6231 (19) C10—H10B 0.96 (3)
O1—C1 1.316 (2) C10—H10C 0.95 (3)
O2—C8 1.273 (3) C11—H11A 0.9600
O3—C2 1.365 (3) C11—H11B 0.9600
O3—C11 1.428 (3) C11—H11C 0.9600
N1—C7 1.280 (3) C12—C13 1.376 (3)
N1—N2 1.410 (3) C12—H12 0.9300
N2—C8 1.298 (3) C13—C14 1.369 (4)
N3—C12 1.338 (3) C13—H13 0.9300
N3—C16 1.349 (3) C14—C15 1.378 (3)
N4—C21 1.341 (3) C14—H14 0.9300
N4—C17 1.343 (3) C15—C16 1.385 (3)
C1—C6 1.410 (3) C15—H15 0.9300
C1—C2 1.417 (3) C16—C17 1.486 (3)
C2—C3 1.383 (3) C17—C18 1.383 (3)
C3—C4 1.391 (4) C18—C19 1.379 (4)
C3—H3 0.9300 C18—H18 0.9300
C4—C5 1.352 (4) C19—C20 1.360 (4)
C4—H4 0.9300 C19—H19 0.9300
C5—C6 1.412 (3) C20—C21 1.389 (3)
C5—H5 0.9300 C20—H20 0.9300
C6—C7 1.441 (4) C21—H21 0.9300
C9—Sn1—C10 169.76 (11) N1—C7—H7 117.2
C9—Sn1—O1 93.97 (9) C6—C7—H7 117.2
C10—Sn1—O1 90.20 (9) O2—C8—N2 128.5 (2)
C9—Sn1—O2 94.23 (9) O2—C8—H8 115.7
C10—Sn1—O2 87.60 (11) N2—C8—H8 115.7
O1—Sn1—O2 145.23 (6) Sn1—C9—H9A 111 (2)
C9—Sn1—N1 94.39 (9) Sn1—C9—H9B 110 (2)
C10—Sn1—N1 95.65 (10) H9A—C9—H9B 110 (3)
O1—Sn1—N1 77.12 (6) Sn1—C9—H9C 110 (2)
O2—Sn1—N1 68.60 (6) H9A—C9—H9C 109 (3)
C9—Sn1—N3 80.37 (9) H9B—C9—H9C 106 (3)
C10—Sn1—N3 90.33 (9) Sn1—C10—H10A 113 (2)
O1—Sn1—N3 138.83 (6) Sn1—C10—H10B 109.5 (19)
O2—Sn1—N3 75.90 (6) H10A—C10—H10B 109 (3)
N1—Sn1—N3 143.65 (6) Sn1—C10—H10C 110 (2)
O1—Sn1—N4 76.91 (6) H10A—C10—H10C 105 (3)
O2—Sn1—N4 136.43 (6) H10B—C10—H10C 110 (3)
N1—Sn1—N4 153.65 (6) O3—C11—H11A 109.5
N3—Sn1—N4 62.68 (6) O3—C11—H11B 109.5
N4—Sn1—C9 91.77 (9) H11A—C11—H11B 109.5
N4—Sn1—C10 80.06 (10) O3—C11—H11C 109.5
Sn1—N4—C17 119.20 (14) H11A—C11—H11C 109.5
Sn1—N4—C21 119.56 (14) H11B—C11—H11C 109.5
C17—N4—C21 118.52 (20) N3—C12—C13 124.0 (2)
C1—O1—Sn1 128.33 (14) N3—C12—H12 118.0
C8—O2—Sn1 113.35 (15) C13—C12—H12 118.0
C2—O3—C11 117.4 (2) C14—C13—C12 118.1 (2)
C7—N1—N2 115.4 (2) C14—C13—H13 120.9
C7—N1—Sn1 127.50 (16) C12—C13—H13 120.9
N2—N1—Sn1 116.77 (14) C13—C14—C15 119.3 (2)
C8—N2—N1 109.0 (2) C13—C14—H14 120.3
C12—N3—C16 117.6 (2) C15—C14—H14 120.3
C12—N3—Sn1 120.40 (16) C14—C15—C16 119.5 (2)
C16—N3—Sn1 121.75 (14) C14—C15—H15 120.2
C21—N4—C17 118.52 (19) C16—C15—H15 120.2
O1—C1—C6 123.5 (2) N3—C16—C15 121.5 (2)
O1—C1—C2 119.0 (2) N3—C16—C17 116.54 (19)
C6—C1—C2 117.4 (2) C15—C16—C17 121.9 (2)
O3—C2—C3 124.7 (2) N4—C17—C18 121.4 (2)
O3—C2—C1 114.3 (2) N4—C17—C16 116.58 (19)
C3—C2—C1 121.0 (2) C18—C17—C16 122.0 (2)
C2—C3—C4 120.3 (3) C19—C18—C17 119.4 (2)
C2—C3—H3 119.9 C19—C18—H18 120.3
C4—C3—H3 119.9 C17—C18—H18 120.3
C5—C4—C3 120.1 (2) C20—C19—C18 119.6 (2)
C5—C4—H4 120.0 C20—C19—H19 120.2
C3—C4—H4 120.0 C18—C19—H19 120.2
C4—C5—C6 121.3 (3) C19—C20—C21 118.6 (2)
C4—C5—H5 119.4 C19—C20—H20 120.7
C6—C5—H5 119.4 C21—C20—H20 120.7
C1—C6—C5 119.8 (2) N4—C21—C20 122.5 (2)
C1—C6—C7 122.3 (2) N4—C21—H21 118.7
C5—C6—C7 117.8 (2) C20—C21—H21 118.7
N1—C7—C6 125.5 (2)
C9—Sn1—O1—C1 −51.1 (2) O3—C2—C3—C4 178.7 (3)
C10—Sn1—O1—C1 138.3 (2) C1—C2—C3—C4 −2.8 (4)
O2—Sn1—O1—C1 52.2 (2) C2—C3—C4—C5 −0.3 (5)
N1—Sn1—O1—C1 42.51 (18) C3—C4—C5—C6 1.9 (5)
N3—Sn1—O1—C1 −131.00 (17) O1—C1—C6—C5 −179.6 (2)
C9—Sn1—O2—C8 108.9 (2) C2—C1—C6—C5 −2.6 (3)
C10—Sn1—O2—C8 −81.2 (2) O1—C1—C6—C7 −1.9 (4)
O1—Sn1—O2—C8 5.7 (3) C2—C1—C6—C7 175.1 (2)
N1—Sn1—O2—C8 15.83 (19) C4—C5—C6—C1 −0.4 (4)
N3—Sn1—O2—C8 −172.1 (2) C4—C5—C6—C7 −178.1 (3)
C9—Sn1—N1—C7 63.7 (2) N2—N1—C7—C6 −177.0 (2)
C10—Sn1—N1—C7 −118.3 (2) Sn1—N1—C7—C6 10.3 (4)
O1—Sn1—N1—C7 −29.4 (2) C1—C6—C7—N1 14.3 (4)
O2—Sn1—N1—C7 156.5 (2) C5—C6—C7—N1 −168.0 (2)
N3—Sn1—N1—C7 143.42 (19) Sn1—O2—C8—N2 −16.6 (4)
C9—Sn1—N1—N2 −108.85 (18) N1—N2—C8—O2 2.1 (4)
C10—Sn1—N1—N2 69.17 (19) C16—N3—C12—C13 −0.5 (4)
O1—Sn1—N1—N2 158.07 (18) Sn1—N3—C12—C13 −174.4 (2)
O2—Sn1—N1—N2 −16.02 (17) N3—C12—C13—C14 −0.8 (4)
N3—Sn1—N1—N2 −29.1 (2) C12—C13—C14—C15 0.9 (4)
C7—N1—N2—C8 −159.7 (2) C13—C14—C15—C16 0.3 (4)
Sn1—N1—N2—C8 13.8 (3) C12—N3—C16—C15 1.8 (3)
C9—Sn1—N3—C12 70.26 (19) Sn1—N3—C16—C15 175.57 (18)
C10—Sn1—N3—C12 −114.1 (2) C12—N3—C16—C17 −175.2 (2)
O1—Sn1—N3—C12 155.26 (17) Sn1—N3—C16—C17 −1.5 (3)
O2—Sn1—N3—C12 −26.62 (18) C14—C15—C16—N3 −1.7 (4)
N1—Sn1—N3—C12 −14.0 (2) C14—C15—C16—C17 175.1 (2)
C9—Sn1—N3—C16 −103.34 (18) C21—N4—C17—C18 −0.8 (4)
C10—Sn1—N3—C16 72.34 (18) C21—N4—C17—C16 177.2 (2)
O1—Sn1—N3—C16 −18.3 (2) N3—C16—C17—N4 15.3 (3)
O2—Sn1—N3—C16 159.78 (18) C15—C16—C17—N4 −161.8 (2)
N1—Sn1—N3—C16 172.37 (15) N3—C16—C17—C18 −166.7 (2)
Sn1—O1—C1—C6 −36.9 (3) C15—C16—C17—C18 16.3 (4)
Sn1—O1—C1—C2 146.18 (17) N4—C17—C18—C19 0.2 (4)
C11—O3—C2—C3 −5.9 (4) C16—C17—C18—C19 −177.7 (3)
C11—O3—C2—C1 175.5 (2) C17—C18—C19—C20 0.8 (5)
O1—C1—C2—O3 −0.1 (3) C18—C19—C20—C21 −1.1 (5)
C6—C1—C2—O3 −177.2 (2) C17—N4—C21—C20 0.5 (4)
O1—C1—C2—C3 −178.7 (2) C19—C20—C21—N4 0.5 (5)
C6—C1—C2—C3 4.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2 0.93 2.40 2.993 (3) 121
C21—H21···O1 0.93 2.36 2.968 (3) 123
C21—H21···O3 0.93 2.50 3.390 (3) 161

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2056).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  4. Chen, S.-W., Yin, H.-D. & Wang, D.-Q. (2006). Acta Cryst. E62, m1654–m1655.
  5. Diouf, O., Gaye, M., Sall, A. S. & Slebodnick, C. (2004). Z. Kristallogr.219, 435–436.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Shuja, S., Ali, S., Khalid, N., Broker, G. A. & Tiekink, E. R. T. (2007a). Acta Cryst. E63, m1025–m1026.
  10. Shuja, S., Ali, S., Khalid, N. & Parvez, M. (2007c). Acta Cryst. E63, o879–o880.
  11. Shuja, S., Ali, S., Meetsma, A., Broker, G. A. & Tiekink, E. R. T. (2007b). Acta Cryst. E63, m1130–m1132.
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006090/im2056sup1.cif

e-64-0m531-sup1.cif (23.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006090/im2056Isup2.hkl

e-64-0m531-Isup2.hkl (265KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES