Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 5;64(Pt 4):m520–m521. doi: 10.1107/S1600536808005655

2-Amino­pyridinium (2-amino­pyridine)trichloridonickelate(II)

Hoong-Kun Fun a,*, S Franklin b, Samuel Robinson Jebas a,, T Balasubramanian b
PMCID: PMC2961041  PMID: 21201988

Abstract

In the title compound, (C5H7N2)[NiCl3(C5H6N2)], the NiII atom is four-coordinated by three chloride anions and one N atom of a 2-amino­pyridine ligand, forming a distorted tetra­hedral coordination. In the crystal structure, cations and complex anions are linked into chains along the a, b and c axes by N—H⋯Cl hydrogen bonds, leading to the formation of a three-dimensional framework.

Related literature

For related literature, see: Batsanov & Howard (2001); Bis & Zaworotko (2005); Chao et al. (1975); Corain et al. (1985); Jebas et al. (2006); Valdés-Martínez et al. (2001); Sletten & Kovacs (1993); Smith et al. (2000, 2001); Stibrany et al. (2004); Wei & Willett (1995); Windholz (1976).graphic file with name e-64-0m520-scheme1.jpg

Experimental

Crystal data

  • (C5H7N2)[NiCl3(C5H6N2)]

  • M r = 354.3

  • Monoclinic, Inline graphic

  • a = 12.9265 (1) Å

  • b = 8.0644 (1) Å

  • c = 13.9893 (1) Å

  • β = 106.163 (1)°

  • V = 1400.67 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.94 mm−1

  • T = 100.0 (1) K

  • 0.37 × 0.08 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer with Oxford Cryosystems Cobra low-temperature attachment

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.533, T max = 0.876

  • 19539 measured reflections

  • 6427 independent reflections

  • 5088 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.079

  • S = 1.05

  • 6427 reflections

  • 167 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.64 e Å−3

  • Absolute structure: Flack (1983), 1953 Friedel pairs

  • Flack parameter: 0.065 (9)

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005655/ci2566sup1.cif

e-64-0m520-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005655/ci2566Isup2.hkl

e-64-0m520-Isup2.hkl (308.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ni1—N1 2.0287 (17)
Ni1—Cl2 2.2625 (6)
Ni1—Cl1 2.2665 (5)
Ni1—Cl3 2.2722 (6)
N1—Ni1—Cl2 114.10 (5)
N1—Ni1—Cl1 109.21 (5)
Cl2—Ni1—Cl1 107.77 (2)
N1—Ni1—Cl3 104.63 (5)
Cl2—Ni1—Cl3 108.62 (2)
Cl1—Ni1—Cl3 112.60 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯Cl2i 0.82 (3) 2.81 (3) 3.380 (2) 128 (2)
N2—H2B⋯Cl2 0.86 2.53 3.3475 (19) 159
N2—H2C⋯Cl1ii 0.86 2.63 3.4866 (19) 172
N4—H4B⋯Cl3i 0.86 2.36 3.197 (2) 165
N4—H4C⋯Cl1iii 0.86 2.54 3.344 (2) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for the award a postdoctoral research fellowship.

supplementary crystallographic information

Comment

2-Aminopyridine is used in the manufacture of pharmaceuticals, especially antihistaminic drugs (Windholz, 1976). As a part of our investigations on the binding modes of 2-aminopyridine with metals, we report here the crystal structure of 2-aminopyridinium (2-aminopyridine)trichloronickel(II).

The asymmetric unit of the title compound contains one 2-aminopyridinium cation and one (2-aminopyridine)trichloronickel(II) anion. Protonation of atom N3 of the uncomplexed 2-aminopyridine results in the widening of the C6—N3—C10 angle to 123.3 (2)°, which is 117.7 (1)° in neutral 2-aminopyridine (Chao et al., 1975). The bond lengths and angles are comparable with those observed in related structures (Bis & Zaworotko, 2005; Smith et al., 2000; Jebas et al., 2006).

In the monomeric complex, the NiII ion is four-coordinated by three Cl anions and the N atom of the 2-aminopyridine ligand, forming a distorted tetrahedral coordination (Fig 1). The Ni—Cl bond lengths (Table 1) are comparable with that reported in the literature (Valdés-Martínez et al., 2001; Batsanov et al., 2001; Sletten & Kovacs, 1993; Corain et al., 1985; Stibrany et al., 2004). The Cl—Ni—Cl bond angles (107.77 (2)° and 108.62 (2)°) are close to the values reported in the literature (Smith et al., 2001; Wei et al., 1995). The dihedral angle between the pyridine and pyridinium rings is 0.9 (2)°.

In the crystal structure, the cations and anionic complexes are stacked into chains along the a, b and c axes and are linked into a three-dimensional framework by N—H···Cl hydrogen bonds (Fig 2).

Experimental

Solutions of 2-aminopyridine and NiCl2.2H2O in water were mixed in a molar ratio of 2:1. Few drops of dilute hydrochloric acid were added to the solution and heated at 363 K for 2 h. Blue crystals of the title compound were obtained by slow evaporation after a period of one week.

Refinement

After checking their presence in a difference map, all H atoms except H1N3 were placed in calculated positions, with C—H = 0.93 Å and N—H = 0.86 Å and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N). Atom H1N3 was refined isotropically.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

(C5H7N2)[NiCl3(C5H6N2)] F000 = 720
Mr = 354.3 Dx = 1.68 Mg m3
Monoclinic, Cc Mo Kα radiation λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 8411 reflections
a = 12.9265 (1) Å θ = 3.0–30.6º
b = 8.0644 (1) Å µ = 1.94 mm1
c = 13.9893 (1) Å T = 100.0 (1) K
β = 106.163 (1)º Block, blue
V = 1400.67 (2) Å3 0.37 × 0.08 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5088 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1 Rint = 0.031
ω scans θmax = 40.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005) θmin = 3.0º
Tmin = 0.533, Tmax = 0.876 h = −23→23
19539 measured reflections k = −14→14
6427 independent reflections l = −25→16

Refinement

Refinement on F2 H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.035 (Δ/σ)max < 0.001
wR(F2) = 0.079 Δρmax = 0.52 e Å3
S = 1.05 Δρmin = −0.64 e Å3
6427 reflections Extinction correction: none
167 parameters Absolute structure: Flack (1983), 1953 Friedel pairs
2 restraints Flack parameter: 0.065 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.245028 (18) 0.65589 (3) 0.188212 (18) 0.01865 (6)
Cl1 0.40142 (4) 0.66552 (7) 0.14504 (4) 0.01889 (9)
Cl2 0.19741 (4) 0.38637 (6) 0.19116 (4) 0.02255 (10)
Cl3 0.10912 (4) 0.79387 (7) 0.07906 (4) 0.02299 (10)
N1 0.26459 (13) 0.7760 (2) 0.31947 (12) 0.0157 (3)
N2 0.30301 (15) 0.5422 (2) 0.41934 (14) 0.0228 (4)
H2B 0.2895 0.4816 0.3667 0.027*
H2C 0.322 0.4966 0.4772 0.027*
N3 0.55299 (14) 0.0900 (2) 0.44965 (14) 0.0191 (3)
N4 0.53731 (16) −0.1509 (2) 0.35719 (15) 0.0228 (4)
H4B 0.5574 −0.2072 0.4114 0.027*
H4C 0.5224 −0.2007 0.3006 0.027*
C1 0.29457 (15) 0.7074 (3) 0.41122 (15) 0.0181 (4)
C2 0.31669 (17) 0.8074 (3) 0.49792 (16) 0.0213 (4)
H2A 0.3384 0.7591 0.5607 0.026*
C3 0.30568 (17) 0.9761 (3) 0.48792 (18) 0.0254 (4)
H3A 0.3199 1.0431 0.5442 0.03*
C4 0.27352 (17) 1.0463 (3) 0.39438 (18) 0.0245 (4)
H4A 0.2652 1.1605 0.3867 0.029*
C5 0.25411 (16) 0.9441 (3) 0.31322 (17) 0.0198 (4)
H5A 0.2326 0.992 0.2503 0.024*
C6 0.52944 (15) 0.0123 (2) 0.36071 (15) 0.0173 (3)
C7 0.49768 (16) 0.1116 (3) 0.27449 (16) 0.0203 (4)
H7A 0.4813 0.0628 0.2118 0.024*
C8 0.49108 (16) 0.2795 (3) 0.28322 (16) 0.0217 (4)
H8A 0.4704 0.3447 0.2262 0.026*
C9 0.51508 (17) 0.3550 (3) 0.37731 (18) 0.0229 (4)
H9A 0.5093 0.4693 0.3832 0.027*
C10 0.54691 (16) 0.2575 (3) 0.45963 (17) 0.0222 (4)
H10A 0.5645 0.3051 0.5227 0.027*
H1N3 0.571 (2) 0.030 (3) 0.499 (2) 0.023 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.02016 (11) 0.02167 (12) 0.01419 (12) −0.00140 (10) 0.00489 (9) −0.00168 (10)
Cl1 0.0188 (2) 0.0211 (2) 0.0179 (2) −0.00022 (15) 0.00699 (18) −0.00025 (16)
Cl2 0.0285 (2) 0.0194 (2) 0.0211 (2) −0.00610 (19) 0.0092 (2) −0.00511 (18)
Cl3 0.0208 (2) 0.0324 (3) 0.0142 (2) 0.00279 (19) 0.00214 (17) 0.00196 (19)
N1 0.0151 (7) 0.0181 (7) 0.0133 (7) −0.0002 (6) 0.0030 (6) 0.0000 (6)
N2 0.0313 (9) 0.0201 (9) 0.0150 (8) 0.0021 (7) 0.0032 (7) 0.0003 (6)
N3 0.0170 (7) 0.0273 (9) 0.0132 (8) 0.0013 (6) 0.0043 (6) 0.0020 (7)
N4 0.0283 (9) 0.0220 (8) 0.0168 (9) −0.0019 (7) 0.0038 (7) 0.0029 (6)
C1 0.0146 (8) 0.0238 (10) 0.0165 (9) 0.0012 (6) 0.0053 (7) 0.0011 (7)
C2 0.0180 (8) 0.0307 (11) 0.0149 (9) −0.0009 (7) 0.0043 (7) −0.0018 (8)
C3 0.0224 (9) 0.0269 (11) 0.0278 (12) −0.0030 (8) 0.0087 (9) −0.0105 (9)
C4 0.0251 (10) 0.0189 (9) 0.0309 (12) −0.0026 (8) 0.0099 (9) −0.0067 (9)
C5 0.0195 (8) 0.0179 (9) 0.0224 (10) −0.0007 (7) 0.0065 (8) −0.0002 (8)
C6 0.0153 (8) 0.0220 (9) 0.0142 (9) −0.0021 (7) 0.0035 (7) 0.0011 (7)
C7 0.0183 (8) 0.0269 (10) 0.0145 (9) 0.0001 (7) 0.0023 (7) 0.0026 (8)
C8 0.0201 (9) 0.0261 (10) 0.0185 (10) 0.0034 (8) 0.0050 (8) 0.0059 (8)
C9 0.0204 (9) 0.0225 (10) 0.0272 (12) 0.0019 (7) 0.0092 (9) −0.0010 (8)
C10 0.0183 (8) 0.0288 (11) 0.0200 (10) 0.0008 (8) 0.0062 (8) −0.0052 (8)

Geometric parameters (Å, °)

Ni1—N1 2.0287 (17) C2—C3 1.371 (3)
Ni1—Cl2 2.2625 (6) C2—H2A 0.93
Ni1—Cl1 2.2665 (5) C3—C4 1.380 (3)
Ni1—Cl3 2.2722 (6) C3—H3A 0.93
N1—C1 1.352 (3) C4—C5 1.369 (3)
N1—C5 1.363 (3) C4—H4A 0.93
N2—C1 1.339 (3) C5—H5A 0.93
N2—H2B 0.86 C6—C7 1.410 (3)
N2—H2C 0.86 C7—C8 1.364 (3)
N3—C6 1.350 (3) C7—H7A 0.93
N3—C10 1.362 (3) C8—C9 1.404 (3)
N3—H1N3 0.82 (3) C8—H8A 0.93
N4—C6 1.322 (3) C9—C10 1.360 (3)
N4—H4B 0.86 C9—H9A 0.93
N4—H4C 0.86 C10—H10A 0.93
C1—C2 1.417 (3)
N1—Ni1—Cl2 114.10 (5) C2—C3—C4 120.0 (2)
N1—Ni1—Cl1 109.21 (5) C2—C3—H3A 120
Cl2—Ni1—Cl1 107.77 (2) C4—C3—H3A 120
N1—Ni1—Cl3 104.63 (5) C5—C4—C3 118.5 (2)
Cl2—Ni1—Cl3 108.62 (2) C5—C4—H4A 120.8
Cl1—Ni1—Cl3 112.60 (2) C3—C4—H4A 120.8
C1—N1—C5 117.72 (18) N1—C5—C4 123.6 (2)
C1—N1—Ni1 126.48 (14) N1—C5—H5A 118.2
C5—N1—Ni1 115.59 (13) C4—C5—H5A 118.2
C1—N2—H2B 120 N4—C6—N3 119.8 (2)
C1—N2—H2C 120 N4—C6—C7 122.7 (2)
H2B—N2—H2C 120 N3—C6—C7 117.51 (19)
C6—N3—C10 123.36 (19) C8—C7—C6 119.8 (2)
C6—N3—H1N3 115.9 (18) C8—C7—H7A 120.1
C10—N3—H1N3 120.7 (18) C6—C7—H7A 120.1
C6—N4—H4B 120 C7—C8—C9 120.7 (2)
C6—N4—H4C 120 C7—C8—H8A 119.6
H4B—N4—H4C 120 C9—C8—H8A 119.6
N2—C1—N1 118.88 (18) C10—C9—C8 118.6 (2)
N2—C1—C2 120.05 (19) C10—C9—H9A 120.7
N1—C1—C2 121.1 (2) C8—C9—H9A 120.7
C3—C2—C1 119.1 (2) C9—C10—N3 119.9 (2)
C3—C2—H2A 120.4 C9—C10—H10A 120
C1—C2—H2A 120.4 N3—C10—H10A 120
Cl2—Ni1—N1—C1 28.37 (17) C2—C3—C4—C5 −0.5 (3)
Cl1—Ni1—N1—C1 −92.28 (15) C1—N1—C5—C4 0.8 (3)
Cl3—Ni1—N1—C1 146.95 (15) Ni1—N1—C5—C4 −174.29 (16)
Cl2—Ni1—N1—C5 −156.98 (11) C3—C4—C5—N1 0.1 (3)
Cl1—Ni1—N1—C5 82.36 (13) C10—N3—C6—N4 179.99 (18)
Cl3—Ni1—N1—C5 −38.41 (13) C10—N3—C6—C7 0.4 (3)
C5—N1—C1—N2 178.47 (16) N4—C6—C7—C8 179.96 (19)
Ni1—N1—C1—N2 −7.0 (3) N3—C6—C7—C8 −0.5 (3)
C5—N1—C1—C2 −1.4 (3) C6—C7—C8—C9 −0.3 (3)
Ni1—N1—C1—C2 173.14 (13) C7—C8—C9—C10 1.1 (3)
N2—C1—C2—C3 −178.84 (18) C8—C9—C10—N3 −1.2 (3)
N1—C1—C2—C3 1.0 (3) C6—N3—C10—C9 0.5 (3)
C1—C2—C3—C4 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···Cl2i 0.82 (3) 2.81 (3) 3.380 (2) 128 (2)
N2—H2B···Cl2 0.86 2.53 3.3475 (19) 159
N2—H2C···Cl1ii 0.86 2.63 3.4866 (19) 172
N4—H4B···Cl3i 0.86 2.36 3.197 (2) 165
N4—H4C···Cl1iii 0.86 2.54 3.344 (2) 156

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x, −y+1, z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2566).

References

  1. Batsanov, A. S. & Howard, J. A. K. (2001). Acta Cryst. E57, m308–m309.
  2. Bis, J. A. & Zaworotko, M. J. (2005). Cryst. Growth Des.5, 1169–1179.
  3. Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12a) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2922–2924.
  5. Corain, B., Longato, B., Angeletti, R. & Valle, G. (1985). Inorg. Chim. Acta, 104, 15–18.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, m1818–m1819.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sletten, J. & Kovacs, J. A. (1993). J. Crystallogr. Spectrosc. Res.23, 239.
  10. Smith, G., Bott, R. C. & Wermuth, U. D. (2000). Acta Cryst. C56, 1505–1506. [DOI] [PubMed]
  11. Smith, M. C., Davies, S. C., Hughes, D. L. & Evans, D. J. (2001). Acta Cryst. E57, m509–m510. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Stibrany, R. T., Matturro, M. G., Zushma, S. & Patil, A. O. (2004). Acta Cryst. E60, m188–m189.
  14. Valdés-Martínez, J., Alstrum-Acevedo, J. H., Toscano, R. A., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). Acta Cryst. E57, m137–m139.
  15. Wei, M. & Willett, R. D. (1995). Inorg. Chem.34, 3780–3782.
  16. Windholz, M. (1976). The Merck Index, 9th ed. Rahway, New Jersey, USA: Merck & Co., Inc.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808005655/ci2566sup1.cif

e-64-0m520-sup1.cif (15.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808005655/ci2566Isup2.hkl

e-64-0m520-Isup2.hkl (308.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES