Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 14;64(Pt 4):m548. doi: 10.1107/S160053680800634X

Aqua­bis(4-methyl­benzoato)-κO2 O,O′-bis­(pyridine-κN)nickel(II)

Wen-Dong Song a,*, Hao Wang a, Li-Li Ji a
PMCID: PMC2961051  PMID: 21202005

Abstract

In the title mononuclear complex, [Ni(C8H7O2)2(C5H5N)2(H2O)], the NiII atom is in a distorted octa­hedral arrangement, coordinated by three carboxylate O atoms from one bidentate 4-methyl­benzoate ligand and one monodentate 4-methyl­benzoate ligand, two N atoms from pyridine ligands, axially positioned, and a water mol­ecule. The equatorially positioned water mol­ecule and uncoordinated carb­oxylate O atom form an intra­molecular hydrogen bond. An inter­molecular O—H⋯O hydrogen bond between the coordinated water mol­ecule and carboxylate O atom of the 4-methyl­benzoate ligand forms infinite chains along the b axis. These chains are connected by C—H⋯π inter­actions.

Related literature

For related literature, see: Song et al. (2007).graphic file with name e-64-0m548-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H7O2)2(C5H5N)2(H2O)]

  • M r = 505.20

  • Monoclinic, Inline graphic

  • a = 13.6181 (1) Å

  • b = 5.9526 (1) Å

  • c = 15.1380 (2) Å

  • β = 107.215 (1)°

  • V = 1172.16 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 296 (2) K

  • 0.26 × 0.23 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.806, T max = 0.846

  • 11325 measured reflections

  • 5102 independent reflections

  • 4798 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.065

  • S = 1.03

  • 5102 reflections

  • 315 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983)

  • Flack parameter: 0.00

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and XP in SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800634X/kp2154sup1.cif

e-64-0m548-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800634X/kp2154Isup2.hkl

e-64-0m548-Isup2.hkl (249.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

N1—Ni1 2.0941 (17)
N2—Ni1 2.0981 (16)
Ni1—O3 2.0165 (14)
Ni1—O1W 2.0412 (15)
Ni1—O2 2.1107 (12)
Ni1—O1 2.1710 (15)
O3—Ni1—O1W 94.41 (6)
O3—Ni1—N1 86.71 (6)
O1W—Ni1—N1 89.53 (6)
O3—Ni1—N2 89.22 (6)
O1W—Ni1—N2 92.99 (6)
N1—Ni1—N2 175.36 (7)
O3—Ni1—O2 165.26 (7)
O1W—Ni1—O2 99.83 (8)
N1—Ni1—O2 89.57 (6)
N2—Ni1—O2 93.83 (6)
O3—Ni1—O1 104.00 (6)
O1W—Ni1—O1 161.59 (5)
N1—Ni1—O1 91.67 (6)
N2—Ni1—O1 87.17 (6)
O2—Ni1—O1 61.82 (7)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O4 0.819 (9) 1.834 (13) 2.587 (2) 152 (2)
O1W—H1W⋯O1i 0.809 (9) 1.957 (12) 2.739 (2) 162 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

In the structural investigation of 4-methylbenzoate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)] with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Ni complex obtained by the reaction of 4-methylbenzoic acid, pyridine and nickel chloride in alkaline aqueous solution.

The NiII atom exhibits a disordered octahedral environment (Fig. 1, Table 1) defined by three carboxyl O atoms from one bidentate 4-methylbenzoate ligand and one monodentate 4-methylbenzoate ligand, two N atoms from two pyridine ligands and a water molecule. The intermolecular O—H···O hydrogen bond (Table 2, Fig. 2) between the coordinated water molecule and carboxy O atom of 4-methylbenzoate ligand generates a chain along the axis b. The intermolecular hydrogen bond C1—H1···O also involves water molecule [3.339 (3) %A, 145%]. An intramolecular hydrogen bond connects the coordinated water molecule and uncoordinated oxygen atom O4 (Table 2). C—H···π interactions connect hydrogen bonded chains: C3– H3···Cg (C12→ C17, symmetry code: -2 - x, 1/2 + y, 2 - z) of 3.482 (2) %A; 132%, and C14– H14···Cg(C12→ C17, symmetry code: 1 - x, -1/2 + y, 2 - z) of 3.603 (2) %A; 134%; C22– H22···Cg(C20→ C25, symmetry code: 2 - x, -1/2 + y, 1 - z) of 3.504 (2) %A; 133%.

Experimental

A mixture of nickel chloride (1 mmol), 4-methylbenzoic acid (1 mmol), pyridine(1 mmol), NaOH (1.5 mmol) and H2O (12 ml) were placed into a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å for aromatic rings, C—H = 0.96 Å for methyl group, and with Uiso(H) = 1.2 Ueq(C). Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.82 Å and H···H = 1.29 Å, each within a standard deviation of 0.01 Å; and with Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.

Fig. 1.

The structure of (I) showing the atomic numbering scheme and octahedral coordination of NiII. Non-H atoms are shown with the 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of (I). The intermolecluar hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C8H7O2)2(C5H5N)2(H2O)] F000 = 528
Mr = 505.20 Dx = 1.431 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4520 reflections
a = 13.61810 (10) Å θ = 1.4–28º
b = 5.95260 (10) Å µ = 0.87 mm1
c = 15.1380 (2) Å T = 296 (2) K
β = 107.2150 (10)º Block, blue
V = 1172.16 (3) Å3 0.26 × 0.23 × 0.20 mm
Z = 2

Data collection

Bruker APEXII area-detector diffractometer 5102 independent reflections
Radiation source: fine-focus sealed tube 4798 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
T = 296(2) K θmax = 27.5º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −17→17
Tmin = 0.806, Tmax = 0.846 k = −7→7
11325 measured reflections l = −19→17

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028   w = 1/[σ2(Fo2) + (0.0307P)2 + 0.1736P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.25 e Å3
5102 reflections Δρmin = −0.28 e Å3
315 parameters Extinction correction: none
4 restraints Absolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.95095 (15) 0.1169 (4) 0.82231 (15) 0.0247 (4)
H1 0.9142 0.0108 0.7803 0.030*
C2 1.05343 (16) 0.0757 (4) 0.86802 (16) 0.0296 (5)
H2 1.0845 −0.0563 0.8571 0.036*
C3 1.10915 (16) 0.2322 (4) 0.92999 (16) 0.0305 (5)
H3 1.1782 0.2083 0.9613 0.037*
C4 1.06002 (16) 0.4243 (4) 0.94418 (15) 0.0292 (5)
H4 1.0954 0.5331 0.9855 0.035*
C5 0.95739 (16) 0.4540 (4) 0.89642 (15) 0.0261 (5)
H5 0.9250 0.5847 0.9067 0.031*
C6 0.55162 (16) 0.2440 (4) 0.62678 (16) 0.0272 (5)
H6 0.5903 0.1158 0.6259 0.033*
C7 0.45288 (17) 0.2553 (4) 0.56751 (17) 0.0322 (5)
H7 0.4258 0.1367 0.5278 0.039*
C8 0.39535 (17) 0.4435 (4) 0.56807 (18) 0.0352 (6)
H8 0.3286 0.4545 0.5288 0.042*
C9 0.43788 (17) 0.6170 (4) 0.62781 (17) 0.0345 (5)
H9 0.4004 0.7468 0.6292 0.041*
C10 0.53759 (16) 0.5937 (4) 0.68568 (15) 0.0273 (5)
H10 0.5661 0.7104 0.7260 0.033*
C11 0.69445 (14) 0.1687 (3) 0.88686 (14) 0.0200 (4)
C12 0.66663 (15) 0.0548 (4) 0.96375 (14) 0.0214 (4)
C13 0.62152 (14) −0.1580 (4) 0.95154 (13) 0.0227 (4)
H13 0.6066 −0.2280 0.8941 0.027*
C14 0.59873 (15) −0.2661 (4) 1.02416 (15) 0.0257 (5)
H14 0.5669 −0.4059 1.0143 0.031*
C15 0.62267 (15) −0.1690 (4) 1.11155 (14) 0.0263 (5)
C16 0.66774 (16) 0.0436 (4) 1.12359 (15) 0.0289 (5)
H16 0.6843 0.1115 1.1815 0.035*
C17 0.68834 (16) 0.1557 (4) 1.05043 (15) 0.0252 (4)
H17 0.7168 0.2990 1.0594 0.030*
C18 0.6011 (2) −0.2912 (5) 1.19129 (17) 0.0405 (6)
H18A 0.6522 −0.2515 1.2479 0.061*
H18B 0.6030 −0.4503 1.1816 0.061*
H18C 0.5343 −0.2494 1.1950 0.061*
C19 0.78596 (14) 0.4041 (4) 0.58580 (14) 0.0216 (5)
C20 0.82429 (14) 0.3106 (3) 0.50984 (14) 0.0209 (5)
C21 0.87038 (15) 0.0988 (4) 0.51907 (15) 0.0237 (4)
H21 0.8747 0.0125 0.5713 0.028*
C22 0.90959 (16) 0.0170 (4) 0.45091 (15) 0.0258 (5)
H22 0.9409 −0.1235 0.4584 0.031*
C23 0.90311 (16) 0.1405 (4) 0.37128 (15) 0.0285 (5)
C24 0.85529 (15) 0.3503 (5) 0.36190 (13) 0.0294 (4)
H24 0.8491 0.4350 0.3089 0.035*
C25 0.81695 (16) 0.4341 (4) 0.43050 (15) 0.0258 (5)
H25 0.7859 0.5748 0.4232 0.031*
C26 0.9479 (2) 0.0517 (5) 0.29837 (16) 0.0423 (6)
H26A 0.8973 0.0607 0.2389 0.063*
H26B 0.9682 −0.1020 0.3118 0.063*
H26C 1.0068 0.1398 0.2980 0.063*
N1 0.90261 (12) 0.3038 (3) 0.83626 (12) 0.0219 (4)
N2 0.59440 (12) 0.4102 (3) 0.68585 (12) 0.0213 (4)
Ni1 0.748180 (17) 0.36693 (5) 0.764977 (16) 0.01841 (7)
O1 0.69972 (10) 0.0586 (2) 0.81637 (9) 0.0226 (3)
O2 0.71436 (10) 0.3781 (4) 0.89227 (9) 0.0241 (3)
O3 0.78210 (11) 0.2707 (2) 0.64966 (10) 0.0232 (3)
O4 0.76152 (12) 0.6085 (3) 0.58101 (10) 0.0310 (4)
O1W 0.78338 (11) 0.6967 (2) 0.75308 (10) 0.0245 (3)
H2W 0.7754 (18) 0.715 (4) 0.6978 (7) 0.037*
H1W 0.7470 (16) 0.789 (3) 0.7669 (14) 0.037*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0227 (10) 0.0198 (10) 0.0305 (11) −0.0009 (9) 0.0060 (9) −0.0009 (9)
C2 0.0248 (11) 0.0261 (12) 0.0374 (13) 0.0035 (10) 0.0083 (9) 0.0022 (10)
C3 0.0191 (10) 0.0396 (14) 0.0307 (12) −0.0009 (10) 0.0041 (9) 0.0063 (11)
C4 0.0276 (10) 0.0332 (15) 0.0241 (11) −0.0077 (9) 0.0036 (9) −0.0048 (9)
C5 0.0287 (11) 0.0266 (11) 0.0232 (11) 0.0003 (9) 0.0079 (9) −0.0019 (8)
C6 0.0235 (10) 0.0251 (12) 0.0319 (12) 0.0003 (9) 0.0066 (9) −0.0033 (10)
C7 0.0285 (12) 0.0341 (13) 0.0308 (13) −0.0050 (11) 0.0038 (10) −0.0029 (10)
C8 0.0218 (10) 0.0407 (14) 0.0387 (14) −0.0009 (10) 0.0021 (10) 0.0098 (10)
C9 0.0245 (11) 0.0316 (13) 0.0466 (15) 0.0077 (10) 0.0092 (10) 0.0048 (11)
C10 0.0279 (11) 0.0249 (11) 0.0293 (11) 0.0008 (9) 0.0087 (9) −0.0014 (9)
C11 0.0161 (9) 0.0205 (11) 0.0235 (10) 0.0041 (8) 0.0061 (8) 0.0006 (8)
C12 0.0189 (9) 0.0206 (11) 0.0253 (10) 0.0048 (8) 0.0075 (8) 0.0004 (9)
C13 0.0230 (8) 0.0204 (12) 0.0239 (9) 0.0016 (9) 0.0056 (7) −0.0027 (10)
C14 0.0229 (10) 0.0232 (11) 0.0316 (12) −0.0011 (9) 0.0089 (9) −0.0001 (9)
C15 0.0252 (9) 0.0285 (15) 0.0271 (10) 0.0042 (9) 0.0108 (8) 0.0047 (10)
C16 0.0294 (11) 0.0341 (13) 0.0224 (11) 0.0022 (10) 0.0067 (9) −0.0055 (10)
C17 0.0251 (10) 0.0218 (11) 0.0284 (11) 0.0000 (9) 0.0076 (9) −0.0040 (9)
C18 0.0501 (15) 0.0426 (15) 0.0337 (14) 0.0007 (13) 0.0202 (12) 0.0064 (12)
C19 0.0159 (8) 0.0243 (15) 0.0230 (10) 0.0013 (9) 0.0032 (7) −0.0002 (9)
C20 0.0156 (8) 0.0236 (12) 0.0222 (10) −0.0017 (7) 0.0037 (7) −0.0029 (8)
C21 0.0202 (9) 0.0229 (11) 0.0275 (11) 0.0000 (9) 0.0065 (8) 0.0020 (9)
C22 0.0231 (10) 0.0220 (11) 0.0327 (12) 0.0028 (9) 0.0089 (9) −0.0038 (10)
C23 0.0258 (10) 0.0332 (13) 0.0272 (11) −0.0001 (9) 0.0090 (9) −0.0065 (10)
C24 0.0350 (10) 0.0332 (12) 0.0216 (9) 0.0018 (13) 0.0106 (8) 0.0035 (13)
C25 0.0258 (10) 0.0223 (11) 0.0290 (11) 0.0034 (8) 0.0076 (9) 0.0018 (8)
C26 0.0485 (15) 0.0510 (17) 0.0313 (13) 0.0134 (13) 0.0177 (11) −0.0049 (13)
N1 0.0202 (8) 0.0233 (10) 0.0221 (8) −0.0003 (6) 0.0061 (7) 0.0014 (7)
N2 0.0198 (7) 0.0215 (12) 0.0228 (8) −0.0004 (7) 0.0066 (6) −0.0004 (7)
Ni1 0.01837 (11) 0.01668 (11) 0.02025 (11) 0.00073 (12) 0.00583 (8) −0.00085 (14)
O1 0.0258 (7) 0.0196 (7) 0.0244 (7) 0.0010 (6) 0.0103 (6) −0.0028 (6)
O2 0.0285 (6) 0.0193 (7) 0.0264 (7) −0.0009 (9) 0.0110 (5) −0.0020 (9)
O3 0.0260 (7) 0.0231 (7) 0.0221 (8) 0.0015 (6) 0.0097 (6) −0.0011 (6)
O4 0.0437 (9) 0.0232 (8) 0.0288 (8) 0.0098 (7) 0.0151 (7) 0.0014 (7)
O1W 0.0283 (7) 0.0186 (8) 0.0274 (8) 0.0013 (6) 0.0097 (6) −0.0031 (7)

Geometric parameters (Å, °)

C1—N1 1.341 (3) C15—C18 1.511 (3)
C1—C2 1.384 (3) C16—C17 1.391 (3)
C1—H1 0.9300 C16—H16 0.9300
C2—C3 1.379 (3) C17—H17 0.9300
C2—H2 0.9300 C18—H18A 0.9600
C3—C4 1.373 (3) C18—H18B 0.9600
C3—H3 0.9300 C18—H18C 0.9600
C4—C5 1.382 (3) C19—O4 1.258 (3)
C4—H4 0.9300 C19—O3 1.264 (3)
C5—N1 1.335 (3) C19—C20 1.503 (3)
C5—H5 0.9300 C20—C25 1.386 (3)
C6—N2 1.345 (3) C20—C21 1.396 (3)
C6—C7 1.380 (3) C21—C22 1.383 (3)
C6—H6 0.9300 C21—H21 0.9300
C7—C8 1.369 (3) C22—C23 1.393 (3)
C7—H7 0.9300 C22—H22 0.9300
C8—C9 1.382 (4) C23—C24 1.396 (4)
C8—H8 0.9300 C23—C26 1.506 (3)
C9—C10 1.388 (3) C24—C25 1.386 (3)
C9—H9 0.9300 C24—H24 0.9300
C10—N2 1.338 (3) C25—H25 0.9300
C10—H10 0.9300 C26—H26A 0.9600
C11—O1 1.272 (2) C26—H26B 0.9600
C11—O2 1.273 (3) C26—H26C 0.9600
C11—C12 1.490 (3) N1—Ni1 2.0941 (17)
C12—C17 1.393 (3) N2—Ni1 2.0981 (16)
C12—C13 1.396 (3) Ni1—O3 2.0165 (14)
C13—C14 1.386 (3) Ni1—O1W 2.0412 (15)
C13—H13 0.9300 Ni1—O2 2.1107 (12)
C14—C15 1.391 (3) Ni1—O1 2.1710 (15)
C14—H14 0.9300 O1W—H2W 0.819 (9)
C15—C16 1.395 (3) O1W—H1W 0.809 (9)
N1—C1—C2 122.5 (2) H18B—C18—H18C 109.5
N1—C1—H1 118.7 O4—C19—O3 125.6 (2)
C2—C1—H1 118.7 O4—C19—C20 117.39 (19)
C3—C2—C1 119.4 (2) O3—C19—C20 117.1 (2)
C3—C2—H2 120.3 C25—C20—C21 118.70 (19)
C1—C2—H2 120.3 C25—C20—C19 120.93 (19)
C4—C3—C2 118.2 (2) C21—C20—C19 120.35 (18)
C4—C3—H3 120.9 C22—C21—C20 120.3 (2)
C2—C3—H3 120.9 C22—C21—H21 119.8
C3—C4—C5 119.3 (2) C20—C21—H21 119.8
C3—C4—H4 120.4 C21—C22—C23 121.3 (2)
C5—C4—H4 120.4 C21—C22—H22 119.3
N1—C5—C4 123.1 (2) C23—C22—H22 119.3
N1—C5—H5 118.5 C22—C23—C24 117.94 (19)
C4—C5—H5 118.5 C22—C23—C26 120.9 (2)
N2—C6—C7 122.9 (2) C24—C23—C26 121.2 (2)
N2—C6—H6 118.5 C25—C24—C23 120.9 (2)
C7—C6—H6 118.5 C25—C24—H24 119.5
C8—C7—C6 119.0 (2) C23—C24—H24 119.5
C8—C7—H7 120.5 C20—C25—C24 120.8 (2)
C6—C7—H7 120.5 C20—C25—H25 119.6
C7—C8—C9 119.1 (2) C24—C25—H25 119.6
C7—C8—H8 120.5 C23—C26—H26A 109.5
C9—C8—H8 120.5 C23—C26—H26B 109.5
C8—C9—C10 118.7 (2) H26A—C26—H26B 109.5
C8—C9—H9 120.6 C23—C26—H26C 109.5
C10—C9—H9 120.6 H26A—C26—H26C 109.5
N2—C10—C9 122.7 (2) H26B—C26—H26C 109.5
N2—C10—H10 118.7 C5—N1—C1 117.51 (18)
C9—C10—H10 118.7 C5—N1—Ni1 120.29 (14)
O1—C11—O2 119.64 (18) C1—N1—Ni1 122.19 (14)
O1—C11—C12 120.77 (18) C10—N2—C6 117.56 (17)
O2—C11—C12 119.58 (17) C10—N2—Ni1 125.46 (14)
C17—C12—C13 118.57 (19) C6—N2—Ni1 116.87 (14)
C17—C12—C11 120.52 (19) O3—Ni1—O1W 94.41 (6)
C13—C12—C11 120.87 (18) O3—Ni1—N1 86.71 (6)
C14—C13—C12 120.61 (19) O1W—Ni1—N1 89.53 (6)
C14—C13—H13 119.7 O3—Ni1—N2 89.22 (6)
C12—C13—H13 119.7 O1W—Ni1—N2 92.99 (6)
C13—C14—C15 121.1 (2) N1—Ni1—N2 175.36 (7)
C13—C14—H14 119.4 O3—Ni1—O2 165.26 (7)
C15—C14—H14 119.4 O1W—Ni1—O2 99.83 (8)
C14—C15—C16 118.13 (19) N1—Ni1—O2 89.57 (6)
C14—C15—C18 120.9 (2) N2—Ni1—O2 93.83 (6)
C16—C15—C18 121.0 (2) O3—Ni1—O1 104.00 (6)
C17—C16—C15 121.1 (2) O1W—Ni1—O1 161.59 (5)
C17—C16—H16 119.5 N1—Ni1—O1 91.67 (6)
C15—C16—H16 119.5 N2—Ni1—O1 87.17 (6)
C16—C17—C12 120.4 (2) O2—Ni1—O1 61.82 (7)
C16—C17—H17 119.8 C11—O1—Ni1 87.92 (12)
C12—C17—H17 119.8 C11—O2—Ni1 90.59 (12)
C15—C18—H18A 109.5 C19—O3—Ni1 123.76 (14)
C15—C18—H18B 109.5 Ni1—O1W—H2W 104.8 (19)
H18A—C18—H18B 109.5 Ni1—O1W—H1W 117.0 (18)
C15—C18—H18C 109.5 H2W—O1W—H1W 105.6 (15)
H18A—C18—H18C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O4 0.819 (9) 1.834 (13) 2.587 (2) 152 (2)
O1W—H1W···O1i 0.809 (9) 1.957 (12) 2.739 (2) 162 (2)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2154).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680800634X/kp2154sup1.cif

e-64-0m548-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800634X/kp2154Isup2.hkl

e-64-0m548-Isup2.hkl (249.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES