Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Mar 20;64(Pt 4):o736. doi: 10.1107/S1600536808007125

Ethyl 2-(5-phenyl-1,3,4-oxadiazol-2-ylsulfan­yl)acetate

Muhammad Zareef a,*, Rashid Iqbal a, Muhammad Arfan a, Masood Parvez b
PMCID: PMC2961061  PMID: 21202126

Abstract

The title mol­ecule, C12H12N2O3S, is composed of two individually planar units, viz. 5-phenyl-1,3,4-oxadiazol-2-yl-sulfanyl and ethyl acetate, which are oriented at almost right angles [80.07 (8)°] with respect to each other. The structure is stabilized by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds. The phenyl and oxadiazole rings show π–π stacking inter­actions [centroid–centroid distance = 3.846 (2) Å] and there is also a short π-inter­action between the carbonyl O atom and the oxadiazole ring [the distance from this O atom to the centroid of the oxadiazole ring is 3.156 (2) Å].

Related literature

For related literature, see: Cao et al. (2002); Iqbal et al. (2007); Kadi et al. (2007); Mir & Siddiqui (1970); Zareef et al. (2006, 2007).graphic file with name e-64-0o736-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O3S

  • M r = 264.30

  • Monoclinic, Inline graphic

  • a = 8.777 (3) Å

  • b = 11.008 (5) Å

  • c = 13.177 (6) Å

  • β = 103.59 (3)°

  • V = 1237.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 173 (2) K

  • 0.16 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.959, T max = 0.979

  • 5263 measured reflections

  • 2820 independent reflections

  • 1943 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.117

  • S = 1.02

  • 2820 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007125/fb2092sup1.cif

e-64-0o736-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007125/fb2092Isup2.hkl

e-64-0o736-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.95 2.51 3.268 (3) 137
C9—H9B⋯N1ii 0.99 2.38 3.293 (3) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Substituted-1,3,4-oxadiazole derivatives are of significant interest due to their chemotherapeutic effects (Kadi et al., 2007; Zareef et al., 2006; Zareef et al., 2007; Cao et al., 2002). Based on the known structures of the 2,5-disubstituted-1,3,4-oxadiazoles with diverse biological activities and their derivatives, we have designed and synthesized several new derivatives of 1,3,4-oxadiazole (Zareef et al., 2007). In this paper, we report the structure of one of these compounds.

The structure of the title compound (Fig. 1) is composed of two essentially planar moieties, C1—C8/N1/N2/O1/S1 and C9—C12/O2/O3 the least-square planes of which are inclined at 80.07 (8)°; the maximum deviations from the respective least square planes are: O1 = 0.037 (2) and C11 = 0.048 (2) Å. The structure is stabilized by two intermolecular interactions C4—H4···O2 and C9—H9B···N1 (Table 1). The shortest distance between the centroids of the phenyl and the oxadiazole rings of the adjacent molecules is 3.846 (2) Å which indicates the existence of π-π stacking interactions. In addition, there is a π-interaction between the carbonyl O-atom and the oxadiazole ring. (The distance from this O atom to the centroid of the oxadiazole ring is 3.156 (2) Å). The bond distances and angles in the title compound are in agreement with the corresponding ones reported in the similar structure of Ethyl 2-({5-[2-(benzoylamino)phenyl]-1,3,4-oxadiazol-2-yl}sulfanyl)acetate (Iqbal et al., 2007).

Experimental

The title compound was prepared according to the procedure reported in the literature (Zareef et al., 2006; Mir & Siddiqui, 1970). To a solution of benzoic acid hydrazide (50 mmol) in ethanol (150 ml) was added carbon disulfide (55 mmol), followed by the addition of KOH (50 mmol) dissolved in 25 ml of water. The reaction mixture was stirred and subjected to reflux for 19 h. After reaction completion, excess ethanol was distilled off. The crude solid obtained was dissolved in water (50 ml) and acidified with 4 N HCl to pH 2–3. The product was filtered, washed with water and recrystallized from aqueous ethanol (20–30%). The resulting 5-phenyl-2-mercapto-1,3,4-oxadiazole (20 mmol) was dissolved in saturated aqueous sodium hydrogencarbonate solution while stirring. The required ethylbromoacetate (20 mmol) in absolute ethanol (10 ml) was added and the reaction mixture was stirred for 7 h at 325–335 K. After reaction completion, the resulting solid was filtered off, washed with water and recrystallized from aqueous ethanol (60%) (Yield = 75%; m.p. = 344–345 K). Prismatic crystals suitable for crystallographic study were grown from ethanol solution by slow evaporation at room temperature.

Refinement

Though all the H atoms could be distinguished in the difference Fouries map the H-atoms were situated at the geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl, methylene and methyl C—H distances were set to 0.95, 0.99 and 0.98 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of the title molecule with displacement ellipsoids plotted at 50% probability level.

Crystal data

C12H12N2O3S F000 = 552
Mr = 264.30 Dx = 1.419 Mg m3
Monoclinic, P21/c Melting point = 344–345 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 8.777 (3) Å Cell parameters from 5263 reflections
b = 11.008 (5) Å θ = 3.7–27.5º
c = 13.177 (6) Å µ = 0.26 mm1
β = 103.59 (3)º T = 173 (2) K
V = 1237.5 (9) Å3 Prism, colourless
Z = 4 0.16 × 0.10 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer 2820 independent reflections
Radiation source: fine-focus sealed tube 1943 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.046
T = 173(2) K θmax = 27.5º
ω and φ scans θmin = 3.7º
Absorption correction: multi-scan(SORTAV; Blessing, 1997) h = −11→11
Tmin = 0.959, Tmax = 0.979 k = −13→14
5263 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 H-atom parameters constrained
wR(F2) = 0.117   w = 1/[σ2(Fo2) + (0.058P)2 + 0.1P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
2820 reflections Δρmax = 0.25 e Å3
165 parameters Δρmin = −0.27 e Å3
47 constraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.021 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.76489 (6) 0.36024 (5) 0.69782 (4) 0.0336 (2)
O1 0.67313 (14) 0.20172 (11) 0.54296 (10) 0.0264 (3)
O2 0.86894 (16) 0.19182 (14) 0.88791 (12) 0.0412 (4)
O3 1.12555 (15) 0.22664 (13) 0.90282 (11) 0.0354 (4)
N1 0.87361 (18) 0.07562 (15) 0.55872 (13) 0.0307 (4)
N2 0.91309 (18) 0.16477 (15) 0.63754 (13) 0.0319 (4)
C1 0.6404 (2) 0.03494 (16) 0.41660 (14) 0.0245 (4)
C2 0.7088 (2) −0.06503 (17) 0.37915 (15) 0.0283 (5)
H2 0.8131 −0.0882 0.4116 0.034*
C3 0.6246 (2) −0.13002 (18) 0.29499 (16) 0.0339 (5)
H3 0.6717 −0.1972 0.2690 0.041*
C4 0.4712 (2) −0.09762 (19) 0.24806 (16) 0.0335 (5)
H4 0.4130 −0.1429 0.1905 0.040*
C5 0.4040 (2) 0.0005 (2) 0.28557 (16) 0.0342 (5)
H5 0.2991 0.0225 0.2534 0.041*
C6 0.4870 (2) 0.06791 (19) 0.36949 (15) 0.0291 (5)
H6 0.4397 0.1357 0.3945 0.035*
C7 0.7333 (2) 0.10069 (16) 0.50595 (15) 0.0245 (4)
C8 0.7925 (2) 0.23515 (17) 0.62486 (15) 0.0266 (4)
C9 0.9529 (2) 0.35400 (18) 0.78938 (17) 0.0337 (5)
H9A 1.0358 0.3499 0.7498 0.040*
H9B 0.9684 0.4302 0.8304 0.040*
C10 0.9730 (2) 0.24772 (19) 0.86414 (16) 0.0311 (5)
C11 1.1623 (2) 0.1290 (2) 0.97896 (17) 0.0392 (6)
H11A 1.1105 0.0528 0.9492 0.047*
H11B 1.1252 0.1498 1.0422 0.047*
C12 1.3366 (2) 0.1135 (2) 1.00597 (17) 0.0421 (6)
H12A 1.3655 0.0466 1.0558 0.051*
H12B 1.3864 0.1887 1.0373 0.051*
H12C 1.3722 0.0952 0.9425 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0300 (3) 0.0316 (3) 0.0369 (3) 0.0048 (2) 0.0031 (2) −0.0069 (2)
O1 0.0232 (7) 0.0275 (7) 0.0273 (7) 0.0048 (6) 0.0037 (5) −0.0008 (6)
O2 0.0280 (7) 0.0554 (10) 0.0392 (9) −0.0054 (7) 0.0056 (7) −0.0009 (8)
O3 0.0235 (7) 0.0397 (8) 0.0407 (9) 0.0003 (6) 0.0026 (6) 0.0013 (7)
N1 0.0292 (8) 0.0333 (10) 0.0278 (9) 0.0061 (7) 0.0031 (7) −0.0055 (8)
N2 0.0279 (9) 0.0354 (10) 0.0308 (10) 0.0070 (8) 0.0038 (7) −0.0050 (8)
C1 0.0265 (9) 0.0261 (10) 0.0219 (10) −0.0015 (8) 0.0074 (8) 0.0045 (8)
C2 0.0275 (10) 0.0286 (10) 0.0288 (11) 0.0000 (9) 0.0066 (8) 0.0020 (9)
C3 0.0403 (12) 0.0296 (11) 0.0327 (12) −0.0022 (10) 0.0103 (9) −0.0023 (9)
C4 0.0349 (11) 0.0373 (12) 0.0278 (11) −0.0128 (10) 0.0061 (9) −0.0010 (9)
C5 0.0250 (10) 0.0473 (13) 0.0286 (11) −0.0036 (10) 0.0031 (9) 0.0057 (10)
C6 0.0265 (10) 0.0354 (11) 0.0264 (11) 0.0028 (9) 0.0085 (8) 0.0044 (9)
C7 0.0241 (9) 0.0235 (10) 0.0278 (10) 0.0056 (8) 0.0101 (8) 0.0034 (8)
C8 0.0243 (9) 0.0283 (10) 0.0267 (10) 0.0011 (9) 0.0050 (8) 0.0005 (8)
C9 0.0269 (10) 0.0336 (11) 0.0382 (12) −0.0033 (9) 0.0027 (9) −0.0088 (9)
C10 0.0241 (10) 0.0381 (12) 0.0300 (11) −0.0027 (9) 0.0040 (8) −0.0111 (9)
C11 0.0353 (11) 0.0437 (14) 0.0387 (13) 0.0012 (10) 0.0089 (10) 0.0031 (10)
C12 0.0356 (12) 0.0534 (15) 0.0360 (13) 0.0066 (11) 0.0056 (10) 0.0033 (11)

Geometric parameters (Å, °)

S1—C8 1.729 (2) C3—H3 0.9500
S1—C9 1.802 (2) C4—C5 1.377 (3)
O1—C8 1.366 (2) C4—H4 0.9500
O1—C7 1.369 (2) C5—C6 1.387 (3)
O2—C10 1.202 (2) C5—H5 0.9500
O3—C10 1.336 (2) C6—H6 0.9500
O3—C11 1.454 (3) C9—C10 1.513 (3)
N1—C7 1.294 (2) C9—H9A 0.9900
N1—N2 1.412 (2) C9—H9B 0.9900
N2—C8 1.291 (2) C11—C12 1.497 (3)
C1—C6 1.392 (2) C11—H11A 0.9900
C1—C2 1.398 (3) C11—H11B 0.9900
C1—C7 1.457 (3) C12—H12A 0.9800
C2—C3 1.379 (3) C12—H12B 0.9800
C2—H2 0.9500 C12—H12C 0.9800
C3—C4 1.390 (3)
C8—S1—C9 96.66 (9) O1—C7—C1 120.13 (15)
C8—O1—C7 102.24 (13) N2—C8—O1 113.20 (17)
C10—O3—C11 115.56 (16) N2—C8—S1 128.61 (15)
C7—N1—N2 106.58 (15) O1—C8—S1 118.18 (13)
C8—N2—N1 105.66 (15) C10—C9—S1 114.43 (14)
C6—C1—C2 119.91 (17) C10—C9—H9A 108.7
C6—C1—C7 121.99 (18) S1—C9—H9A 108.7
C2—C1—C7 118.10 (16) C10—C9—H9B 108.7
C3—C2—C1 119.90 (18) S1—C9—H9B 108.7
C3—C2—H2 120.0 H9A—C9—H9B 107.6
C1—C2—H2 120.0 O2—C10—O3 124.49 (19)
C2—C3—C4 120.3 (2) O2—C10—C9 125.87 (18)
C2—C3—H3 119.8 O3—C10—C9 109.62 (17)
C4—C3—H3 119.8 O3—C11—C12 107.26 (18)
C5—C4—C3 119.56 (18) O3—C11—H11A 110.3
C5—C4—H4 120.2 C12—C11—H11A 110.3
C3—C4—H4 120.2 O3—C11—H11B 110.3
C4—C5—C6 121.14 (18) C12—C11—H11B 110.3
C4—C5—H5 119.4 H11A—C11—H11B 108.5
C6—C5—H5 119.4 C11—C12—H12A 109.5
C5—C6—C1 119.2 (2) C11—C12—H12B 109.5
C5—C6—H6 120.4 H12A—C12—H12B 109.5
C1—C6—H6 120.4 C11—C12—H12C 109.5
N1—C7—O1 112.32 (16) H12A—C12—H12C 109.5
N1—C7—C1 127.55 (18) H12B—C12—H12C 109.5
C7—N1—N2—C8 0.1 (2) C6—C1—C7—O1 −3.2 (3)
C6—C1—C2—C3 0.6 (3) C2—C1—C7—O1 177.68 (16)
C7—C1—C2—C3 179.73 (18) N1—N2—C8—O1 −0.3 (2)
C1—C2—C3—C4 −0.9 (3) N1—N2—C8—S1 178.66 (15)
C2—C3—C4—C5 0.5 (3) C7—O1—C8—N2 0.4 (2)
C3—C4—C5—C6 0.1 (3) C7—O1—C8—S1 −178.68 (14)
C4—C5—C6—C1 −0.3 (3) C9—S1—C8—N2 0.1 (2)
C2—C1—C6—C5 0.0 (3) C9—S1—C8—O1 179.01 (15)
C7—C1—C6—C5 −179.09 (18) C8—S1—C9—C10 −69.82 (17)
N2—N1—C7—O1 0.2 (2) C11—O3—C10—O2 −0.3 (3)
N2—N1—C7—C1 −179.84 (18) C11—O3—C10—C9 177.96 (16)
C8—O1—C7—N1 −0.4 (2) S1—C9—C10—O2 −22.7 (3)
C8—O1—C7—C1 179.66 (16) S1—C9—C10—O3 159.06 (14)
C6—C1—C7—N1 176.80 (19) C10—O3—C11—C12 175.61 (18)
C2—C1—C7—N1 −2.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2i 0.95 2.51 3.268 (3) 137
C9—H9B···N1ii 0.99 2.38 3.293 (3) 153

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2092).

References

  1. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  2. Cao, S., Qian, X., Song, G. & Huang, Q. C. (2002). J. Fluorine Chem.117, 63–66.
  3. Fan, H.-F. (1991). SAPI91 Rigaku Corporation, Tokyo, Japan.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  6. Iqbal, R., Aziz, S., Ahmed, M. N., Qadeer, G. & Wong, W.-Y. (2007). Acta Cryst. E63, o1021–o1022.
  7. Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem.42, 235–242. [DOI] [PubMed]
  8. Mir, I. & Siddiqui, M. T. (1970). Tetrahedron, 26, 5235–5238. [DOI] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Zareef, M., Innocenti, A., Iqbal, R., Zaidi, J. H., Arfan, M., Scozzafava, A. & Supuran, C. T. J. (2006). Enzym. Inhib. Med. Chem.21, 351–359. [DOI] [PubMed]
  12. Zareef, M., Iqbal, R., Al-Masoudi, N. A., Zaidi, J. H., Arfan, M. & Shahzad, S. A. (2007). Phosphorus Sulfur Silicon Relat. Elem.182, 281–298.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808007125/fb2092sup1.cif

e-64-0o736-sup1.cif (16.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007125/fb2092Isup2.hkl

e-64-0o736-Isup2.hkl (135.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES