Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 30;64(Pt 5):m732. doi: 10.1107/S1600536808006466

Bis(2-amino­pyrimidine-κN 1)dibromidozinc(II)

Yang Qu a,*, Shi Ming Zhang a, Xian Zong Wu a, Huan Zhang a, Zhi Dong Lin b
PMCID: PMC2961077  PMID: 21202255

Abstract

The title compound, [ZnBr2(C4H5N3)2], is a mononuclear complex in which the ZnII ions have distorted tetra­hedral coordination geometry. The ZnII ion binds to two N atoms from two different 2-amino­pyrimidine ligands and two bromide ions. N—H⋯N hydrogen bonds link the mol­ecules to form a one-dimensional supra­molecular structure. The supra­molecular chains are parallel to each other and N—H⋯Br hydrogen bonds link them into a two-dimensional network in the ac plane. Additionally, there are strong π–π inter­actions [centroid–centroid distance = 3.403 (3) Å].

Related literature

For related literature, see: Bourne et al. (2001); Etter et al. (1990); Lin & Zeng (2007); Pon et al. (1997).graphic file with name e-64-0m732-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C4H5N3)2]

  • M r = 415.41

  • Triclinic, Inline graphic

  • a = 6.7912 (11) Å

  • b = 7.2197 (12) Å

  • c = 15.512 (3) Å

  • α = 81.060 (3)°

  • β = 83.823 (3)°

  • γ = 63.132 (2)°

  • V = 669.61 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.79 mm−1

  • T = 292 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.305, T max = 0.408 (expected range = 0.251–0.336)

  • 5351 measured reflections

  • 2342 independent reflections

  • 1878 reflections with I > 2σ(I)

  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.110

  • S = 1.02

  • 2342 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.69 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006466/rn2036sup1.cif

e-64-0m732-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006466/rn2036Isup2.hkl

e-64-0m732-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Br1—Zn1 2.3528 (9)
Br2—Zn1 2.3593 (8)
N1—Zn1 2.060 (4)
N4—Zn1 2.056 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Br2i 0.93 2.87 3.651 (5) 142
N6—H6B⋯N5ii 0.89 2.47 2.996 (6) 119
N3—H3A⋯Br2 0.75 2.74 3.480 (5) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful for financial support from the Bureau of Science and Technology of Wuhan City, Hubei Province, People’s Republic of China (grant No. 20055003059-28).

supplementary crystallographic information

Comment

Recently, the design of molecular architecture with pyrimidine and bipyrimidine has aroused interest in the fields of coordination, bioinorganic and magnetochemistry (Pon et al., 1997).

In our laboratory, analogous crystals have been obtained from the interaction of zinc(lI) chloride with 2-aminopyrimidine (Lin & Zeng, 2007). As an extension of this work, we report the crystal structure of the title compound, (I), bis(2-aminopyrimidine)-zinc(II) bromide. Compound I contains discrete L2CuBr2 molecules (L: 2-aminopyrimidine). The ZnII ion is coordinated by two N atoms from two different 2-aminopyrimidine ligands and two Br anions, giving distorted tetrahedral coordination geometry [mean Zn—N = 2.058 (8) Å and mean Zn—Br = 2.356 (4) Å]. The bond lengths and angles of Zn—N and Zn—Br (Table 1) are within the expected ranges (Bourne et al., 2001).

In the crystal structure, N—H···N hydrogen bonds and N—H···Br hydrogen bonds (Table 2) help to establish the crystal packing. The 2-aminopyrimidine molecules form N—H···N hydrogen bonds, resulting in eight membered ring graph-set motif, [R22(8)] (Etter et al., 1990). The N—H···N hydrogen bonds bind the neighboring 2-aminopyrimidine molecules to form a zigzag one-dimensional ribbon structure. The supramolecular ribbons are parallel to each other and N—H···Br hydrogen bonds link them into a two-dimensional network. The close distance, 3.403 (3) Å, between the centroids of two rings (N4,N5,C5,C6,C7,C8 and its symmetry equivalent at -x,1 - y,1 - z) indicates that there are also strong π -π interactions.

Experimental

10 ml e thanol solution containing ZnBr2 (0.5 mmol) and 2-aminopyrimidine (1.0 mmol) was stirred at room temperature for 12 h and then filtered. The filtrate was kept at room temperature in the dark for two weeks to give white crystals of (I). The crystals were isolated and washed three times with ethanol and dried in a vacuum desiccator using anhydrous CaCl2. Analysis calculated for C8N6H10 Zn Br2: C 23.13, N 20.23, H 2.43%; found: C 23.19, N 20.46,H 2.61%.

Refinement

The H atoms bonded to C atoms were placed in calculated positions, and were allowed to ride on their parent C atoms, with a distance of 0.93 Å for aromatic H atoms and Uiso(H) = 1.2 times its parent atom. The H atoms of –NH2 were found from residue peaks in the difference map. The H atoms of the NH2 group were placed in geometrically calculated positions and the N—H distance restrained to 0.86 (2) Å. The isotropic displacement parameters were set equal to 1.5Ueq(parent N atom) for amino H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed along the a axis. The O–H···N and Br—H···N hydrogen bonding interactions are shown as dashed lines.

Crystal data

[ZnBr2(C4H5N3)2] Z = 2
Mr = 415.41 F000 = 400
Triclinic, P1 Dx = 2.060 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 6.7912 (11) Å Cell parameters from 2800 reflections
b = 7.2197 (12) Å θ = 2.1–28.7º
c = 15.512 (3) Å µ = 7.79 mm1
α = 81.060 (3)º T = 292 (2) K
β = 83.823 (3)º Block, white
γ = 63.132 (2)º 0.20 × 0.16 × 0.14 mm
V = 669.61 (19) Å3

Data collection

Siemens SMART CCD area-detector diffractometer 2342 independent reflections
Radiation source: fine-focus sealed tube 1878 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.074
T = 292(2) K θmax = 25.0º
φ and ω scans θmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→7
Tmin = 0.305, Tmax = 0.409 k = −8→8
5351 measured reflections l = −18→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.110   w = 1/[σ2(Fo2) + (0.0639P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2342 reflections Δρmax = 0.80 e Å3
156 parameters Δρmin = −0.68 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.19184 (13) 0.75744 (9) 0.20800 (4) 0.0660 (2)
Br2 0.57558 (9) 0.19239 (9) 0.31136 (4) 0.0528 (2)
C1 0.2693 (11) 0.1954 (8) 0.0989 (3) 0.0472 (14)
C2 −0.0153 (14) 0.2437 (10) 0.0194 (4) 0.0631 (18)
H2 −0.0664 0.2230 −0.0298 0.076*
C3 −0.1718 (12) 0.3635 (10) 0.0799 (4) 0.0613 (17)
H3 −0.3231 0.4171 0.0737 0.074*
C4 −0.0852 (11) 0.3955 (9) 0.1486 (4) 0.0527 (15)
H4 −0.1815 0.4767 0.1901 0.063*
C5 −0.0098 (7) 0.2696 (8) 0.4074 (3) 0.0322 (10)
C6 −0.2637 (9) 0.4775 (9) 0.5028 (3) 0.0470 (14)
H6 −0.3439 0.4925 0.5559 0.056*
C7 −0.2909 (8) 0.6530 (9) 0.4488 (4) 0.0481 (14)
H7 −0.3932 0.7848 0.4622 0.058*
C8 −0.1607 (8) 0.6272 (8) 0.3737 (3) 0.0452 (13)
H8 −0.1738 0.7449 0.3357 0.054*
N1 0.1338 (8) 0.3141 (7) 0.1588 (2) 0.0412 (10)
N2 0.1963 (11) 0.1600 (8) 0.0279 (3) 0.0594 (14)
N3 0.4858 (9) 0.1121 (9) 0.1065 (3) 0.0674 (16)
H3A 0.5101 0.1135 0.1524 0.101*
H3B 0.5506 0.1597 0.0607 0.101*
N4 −0.0134 (6) 0.4360 (6) 0.3530 (2) 0.0356 (9)
N5 −0.1293 (7) 0.2848 (7) 0.4844 (3) 0.0414 (10)
N6 0.1223 (8) 0.0761 (7) 0.3887 (3) 0.0477 (11)
H6A 0.1646 0.0802 0.3421 0.071*
H6B 0.0449 0.0026 0.3950 0.071*
Zn1 0.22458 (9) 0.41974 (8) 0.25651 (3) 0.0358 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1151 (6) 0.0446 (4) 0.0495 (4) −0.0468 (4) 0.0003 (3) −0.0032 (3)
Br2 0.0431 (4) 0.0522 (4) 0.0541 (4) −0.0125 (3) 0.0026 (3) −0.0125 (3)
C1 0.082 (5) 0.042 (3) 0.033 (3) −0.042 (3) 0.011 (3) −0.011 (2)
C2 0.115 (6) 0.062 (4) 0.037 (3) −0.061 (4) −0.013 (3) 0.002 (3)
C3 0.086 (5) 0.067 (4) 0.051 (4) −0.051 (4) −0.017 (3) 0.005 (3)
C4 0.081 (5) 0.050 (3) 0.040 (3) −0.040 (3) −0.002 (3) −0.005 (3)
C5 0.027 (2) 0.041 (3) 0.027 (2) −0.014 (2) 0.0021 (18) −0.007 (2)
C6 0.042 (3) 0.068 (4) 0.038 (3) −0.028 (3) 0.009 (2) −0.024 (3)
C7 0.032 (3) 0.050 (3) 0.058 (3) −0.010 (3) 0.009 (2) −0.024 (3)
C8 0.041 (3) 0.037 (3) 0.045 (3) −0.006 (2) 0.001 (2) −0.007 (2)
N1 0.063 (3) 0.049 (3) 0.027 (2) −0.037 (2) 0.0078 (19) −0.0118 (19)
N2 0.109 (5) 0.058 (3) 0.036 (3) −0.056 (3) 0.004 (3) −0.015 (2)
N3 0.081 (4) 0.090 (4) 0.049 (3) −0.049 (3) 0.023 (3) −0.041 (3)
N4 0.036 (2) 0.038 (2) 0.030 (2) −0.0123 (18) 0.0025 (16) −0.0095 (18)
N5 0.040 (2) 0.056 (3) 0.030 (2) −0.023 (2) 0.0061 (18) −0.011 (2)
N6 0.056 (3) 0.044 (3) 0.042 (3) −0.022 (2) 0.014 (2) −0.011 (2)
Zn1 0.0478 (4) 0.0332 (3) 0.0277 (3) −0.0190 (3) 0.0045 (2) −0.0081 (2)

Geometric parameters (Å, °)

Br1—Zn1 2.3528 (9) C5—N5 1.360 (6)
Br2—Zn1 2.3593 (8) C6—N5 1.330 (7)
C1—N3 1.324 (8) C6—C7 1.354 (8)
C1—N1 1.340 (7) C6—H6 0.9300
C1—N2 1.358 (7) C7—C8 1.368 (8)
C2—N2 1.295 (9) C7—H7 0.9300
C2—C3 1.401 (10) C8—N4 1.353 (6)
C2—H2 0.9300 C8—H8 0.9300
C3—C4 1.368 (8) N1—Zn1 2.060 (4)
C3—H3 0.9300 N3—H3A 0.7500
C4—N1 1.347 (8) N3—H3B 0.9006
C4—H4 0.9300 N4—Zn1 2.056 (4)
C5—N6 1.333 (6) N6—H6A 0.7500
C5—N4 1.348 (6) N6—H6B 0.8901
N3—C1—N1 119.5 (5) N4—C8—H8 119.0
N3—C1—N2 117.2 (5) C7—C8—H8 119.0
N1—C1—N2 123.2 (6) C1—N1—C4 117.6 (5)
N2—C2—C3 124.1 (6) C1—N1—Zn1 126.4 (4)
N2—C2—H2 118.0 C4—N1—Zn1 115.4 (3)
C3—C2—H2 118.0 C2—N2—C1 117.5 (6)
C4—C3—C2 114.9 (7) C1—N3—H3A 109.5
C4—C3—H3 122.5 C1—N3—H3B 111.2
C2—C3—H3 122.5 H3A—N3—H3B 120.6
N1—C4—C3 122.7 (6) C5—N4—C8 116.8 (4)
N1—C4—H4 118.6 C5—N4—Zn1 124.1 (3)
C3—C4—H4 118.6 C8—N4—Zn1 118.1 (4)
N6—C5—N4 120.2 (4) C6—N5—C5 116.2 (5)
N6—C5—N5 116.0 (5) C5—N6—H6A 109.5
N4—C5—N5 123.8 (4) C5—N6—H6B 109.0
N5—C6—C7 123.9 (5) H6A—N6—H6B 108.2
N5—C6—H6 118.0 N4—Zn1—N1 101.97 (16)
C7—C6—H6 118.0 N4—Zn1—Br1 109.63 (11)
C6—C7—C8 116.9 (5) N1—Zn1—Br1 109.06 (12)
C6—C7—H7 121.6 N4—Zn1—Br2 108.97 (11)
C8—C7—H7 121.6 N1—Zn1—Br2 114.70 (13)
N4—C8—C7 122.1 (5) Br1—Zn1—Br2 112.00 (3)
N2—C2—C3—C4 2.8 (9) C7—C8—N4—C5 3.9 (7)
C2—C3—C4—N1 −1.5 (9) C7—C8—N4—Zn1 −164.7 (4)
N5—C6—C7—C8 −4.1 (8) C7—C6—N5—C5 2.0 (7)
C6—C7—C8—N4 1.0 (8) N6—C5—N5—C6 −179.1 (4)
N3—C1—N1—C4 −179.8 (5) N4—C5—N5—C6 3.5 (7)
N2—C1—N1—C4 2.2 (8) C5—N4—Zn1—N1 79.9 (4)
N3—C1—N1—Zn1 9.2 (7) C8—N4—Zn1—N1 −112.3 (4)
N2—C1—N1—Zn1 −168.8 (4) C5—N4—Zn1—Br1 −164.6 (3)
C3—C4—N1—C1 −0.8 (8) C8—N4—Zn1—Br1 3.2 (4)
C3—C4—N1—Zn1 171.2 (5) C5—N4—Zn1—Br2 −41.7 (4)
C3—C2—N2—C1 −1.5 (9) C8—N4—Zn1—Br2 126.0 (3)
N3—C1—N2—C2 −179.1 (5) C1—N1—Zn1—N4 −149.6 (4)
N1—C1—N2—C2 −1.1 (8) C4—N1—Zn1—N4 39.2 (4)
N6—C5—N4—C8 176.3 (4) C1—N1—Zn1—Br1 94.5 (4)
N5—C5—N4—C8 −6.3 (7) C4—N1—Zn1—Br1 −76.7 (4)
N6—C5—N4—Zn1 −15.8 (6) C1—N1—Zn1—Br2 −32.1 (5)
N5—C5—N4—Zn1 161.6 (3) C4—N1—Zn1—Br2 156.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···Br2i 0.93 2.87 3.651 (5) 142
N6—H6B···N5ii 0.89 2.47 2.996 (6) 119
N3—H3A···Br2 0.75 2.74 3.480 (5) 170

Symmetry codes: (i) x−1, y+1, z; (ii) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RN2036).

References

  1. Bourne, S. A., Kilkenny, M. & Nassimbeni, L. R. (2001). Dalton Trans. pp. 1176–1179.
  2. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  3. Lin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.
  4. Pon, G., Willett, R. D., Prince, B. A. & Robinson, W. T. (1997). Inorg. Chim. Acta, 255, 325–334.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808006466/rn2036sup1.cif

e-64-0m732-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808006466/rn2036Isup2.hkl

e-64-0m732-Isup2.hkl (115.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES