Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):o829. doi: 10.1107/S1600536808009240

Eplerenone ethanol solvate

Qian Yang a, Wei-Dong Ye b, Jian-Yong Yuan b, Jing-Jing Nie a, Duan-Jun Xu a,*
PMCID: PMC2961083  PMID: 21202318

Abstract

Eplerenone [systematic name: 7α-(methoxy­carbon­yl)-3-oxo-9α,11-ep­oxy-17α-pregn-4-ene-21,17-carbolactone], an aldo­sterone receptor antagonist, crystallizes from ethanol as a monosolvate, C24H30O6·C2H6O. The eplerenone mol­ecule has two five-membered rings, three six-membered rings and one three-membered ring. Both five-membered rings display envelope conformations, while the three six-membered rings assume envelope (cyclohexene), half-chair (cyclohexane sharing one edge with epoxy) and chair (other cyclohexane) conformations. The solvent mol­ecule is disordered equally over two sites. It is linked to the eplerenone mol­ecule by hydrogen bonds.

Related literature

For background literature, see: Grob et al. (1985). For related structures, see: Grob et al. (1997); Yang et al. (2007); Xu et al. (2007). For ring analysis, see: Spek (2003).graphic file with name e-64-0o829-scheme1.jpg

Experimental

Crystal data

  • C24H30O6·C2H6O

  • M r = 460.55

  • Orthorhombic, Inline graphic

  • a = 8.3236 (5) Å

  • b = 12.8306 (9) Å

  • c = 23.3173 (13) Å

  • V = 2490.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.20 × 0.16 × 0.14 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: none

  • 19548 measured reflections

  • 2559 independent reflections

  • 1955 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.151

  • S = 1.05

  • 2559 reflections

  • 293 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009240/ng2439sup1.cif

e-64-0o829-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009240/ng2439Isup2.hkl

e-64-0o829-Isup2.hkl (123.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8A⋯O1i 0.96 2.19 3.15 (4) 178
O9—H9A⋯O1i 0.98 2.34 3.32 (4) 177

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

The eplerenone is known as an aldosterone receptor antagonist and can be administered in a therapeutically effective amount where use of an aldosterone receptor antagonist (Grob et al., 1985). The crystal structure of the eplerenone ethanol solvate is reported here.

The crystal of the title compound consists of eplerenone molecules and lattice ethanol molecules (Fig. 1). The molecule of eplerenone contains three six-membered rings, two five-membered rings and one three-membered ring. A ring analysis (Spek, 2003) indicates that three six-membered rings assume different conformations: chair, half-chair and envelope; both five-membered rings display the similar envelope configuration. This agrees with those found in the structure of eplerenone THF solvate (Yang et al. 2007) and in the structure of eplerenone dioxane solvate (Xu et al., 2007). The C2—C3 bond distance of 1.343 (6) Å indicates the typical C?C double bond. The C23-ester group forms an intra-molecular C—H···O hydrogen bond with the adjacent C14-methine group (Table 1). This structural feature is also found in the crystal structure of eplerenone dichloromethane solvate (Grob et al., 1997).

In the crystal structure, lattice solvent molecules are disorderly located in the cavities formed by eplerenone molecules and link with eplerenone molecules via O—H···O and C—H···O hydrogen bonding (Table 1).

Experimental

A microcrystalline powder sample of eplerenone was prepared in the manner reported by Grob et al. (1997). Single crystals of the title compound were obtained from an ethanol solution of eplerenone.

Refinement

The lattice ethanol molecule is disordered in the crystal structure; a two-site model with each 0.5 site occupancies was adopted in the refinement. The C—C and C—O distances for the disordered solvent molecule were constrained to 1.50±0.01 and 1.40±0.01 Å, respectively; atomic displacement parameters for non-H atoms of the disordered solvent molecule were constrained to be the same. Hydroxyl H atoms were placed in chemical sensible positions and refined in riding mode with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 to 0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl or 1.2Ueq(C) for others. In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration was not determined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). One of disordered solvent components has been omitted for clarity.

Crystal data

C24H30O6·C2H6O F000 = 992
Mr = 460.55 Dx = 1.228 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4788 reflections
a = 8.3236 (5) Å θ = 3.2–25.2º
b = 12.8306 (9) Å µ = 0.09 mm1
c = 23.3173 (13) Å T = 295 (2) K
V = 2490.2 (3) Å3 Prism, colorless
Z = 4 0.20 × 0.16 × 0.14 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1955 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
Monochromator: graphite θmax = 25.2º
T = 295(2) K θmin = 3.0º
ω scans h = −9→8
Absorption correction: none k = −15→15
19548 measured reflections l = −27→27
2559 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.151   w = 1/[σ2(Fo2) + (0.0933P)2 + 0.2684P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
2559 reflections Δρmax = 0.30 e Å3
293 parameters Δρmin = −0.18 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.0903 (5) 0.5823 (4) 0.10016 (17) 0.1137 (15)
O2 0.1457 (3) 0.82438 (19) 0.29175 (10) 0.0474 (6)
O3 0.4884 (4) 0.8328 (2) 0.49749 (10) 0.0644 (8)
O4 0.3946 (5) 0.8951 (3) 0.57892 (12) 0.0842 (10)
O5 0.4856 (5) 0.9197 (3) 0.22555 (13) 0.0866 (11)
O6 0.3136 (4) 0.8354 (2) 0.17081 (12) 0.0691 (8)
C1 −0.0244 (6) 0.5948 (4) 0.1464 (2) 0.0742 (13)
C2 0.1457 (6) 0.6130 (3) 0.15092 (19) 0.0642 (11)
H2 0.2062 0.6122 0.1174 0.077*
C3 0.2222 (5) 0.6310 (3) 0.20064 (16) 0.0476 (9)
C4 0.1357 (4) 0.6367 (3) 0.25779 (16) 0.0481 (9)
C5 −0.0438 (4) 0.6600 (4) 0.2471 (2) 0.0653 (11)
H5A −0.1024 0.6499 0.2826 0.078*
H5B −0.0552 0.7326 0.2361 0.078*
C6 −0.1187 (6) 0.5921 (4) 0.2008 (2) 0.0759 (13)
H6A −0.1249 0.5208 0.2145 0.091*
H6B −0.2272 0.6160 0.1933 0.091*
C7 0.4024 (4) 0.6423 (3) 0.20023 (16) 0.0515 (9)
H7A 0.4385 0.6512 0.1610 0.062*
H7B 0.4502 0.5787 0.2149 0.062*
C8 0.4618 (4) 0.7341 (3) 0.23596 (14) 0.0465 (9)
H8 0.5790 0.7285 0.2383 0.056*
C9 0.3961 (4) 0.7217 (3) 0.29729 (14) 0.0432 (8)
H9 0.4299 0.6526 0.3105 0.052*
C10 0.2131 (4) 0.7204 (3) 0.29597 (15) 0.0438 (8)
C11 0.1258 (4) 0.7665 (3) 0.34520 (16) 0.0467 (9)
H11 0.0178 0.7384 0.3516 0.056*
C12 0.2055 (4) 0.8119 (3) 0.39783 (15) 0.0508 (9)
H12A 0.1525 0.7852 0.4318 0.061*
H12B 0.1925 0.8871 0.3975 0.061*
C13 0.3852 (5) 0.7856 (3) 0.40082 (14) 0.0474 (9)
C14 0.4600 (4) 0.7996 (3) 0.34071 (14) 0.0451 (9)
H14 0.4309 0.8694 0.3271 0.054*
C15 0.6431 (5) 0.7989 (4) 0.35129 (17) 0.0646 (12)
H15A 0.6865 0.7293 0.3463 0.078*
H15B 0.6972 0.8458 0.3250 0.078*
C16 0.6647 (5) 0.8359 (5) 0.41383 (17) 0.0721 (13)
H16A 0.7153 0.7820 0.4368 0.086*
H16B 0.7307 0.8981 0.4153 0.086*
C17 0.4943 (5) 0.8590 (3) 0.43599 (14) 0.0534 (10)
C18 0.4499 (5) 0.9740 (3) 0.43479 (17) 0.0578 (10)
H18A 0.3843 0.9900 0.4015 0.069*
H18B 0.5455 1.0173 0.4339 0.069*
C19 0.3553 (7) 0.9913 (4) 0.49035 (16) 0.0727 (13)
H19A 0.3789 1.0590 0.5069 0.087*
H19B 0.2406 0.9858 0.4837 0.087*
C20 0.4135 (6) 0.9058 (3) 0.52799 (16) 0.0629 (11)
C21 0.1522 (6) 0.5303 (3) 0.28953 (19) 0.0659 (11)
H21A 0.2639 0.5144 0.2949 0.099*
H21B 0.1027 0.4765 0.2671 0.099*
H21C 0.1002 0.5346 0.3262 0.099*
C22 0.4032 (6) 0.6722 (3) 0.42265 (17) 0.0648 (11)
H22A 0.3698 0.6684 0.4620 0.097*
H22B 0.5135 0.6511 0.4196 0.097*
H22C 0.3374 0.6268 0.3999 0.097*
C23 0.4237 (5) 0.8399 (3) 0.21110 (15) 0.0503 (9)
C24 0.2627 (8) 0.9320 (4) 0.1450 (2) 0.0944 (18)
H24A 0.2670 0.9867 0.1731 0.142*
H24B 0.1546 0.9249 0.1312 0.142*
H24C 0.3326 0.9489 0.1136 0.142*
O8 0.547 (6) 0.823 (3) 0.0144 (17) 0.431 (13)* 0.50
H8A 0.5024 0.8527 −0.0201 0.646* 0.50
C81 0.715 (6) 0.815 (6) 0.021 (2) 0.431 (13)* 0.50
H81A 0.7682 0.8468 −0.0114 0.517* 0.50
H81B 0.7455 0.7423 0.0227 0.517* 0.50
C82 0.769 (7) 0.868 (5) 0.075 (2) 0.431 (13)* 0.50
H82A 0.8188 0.8181 0.1000 0.646* 0.50
H82B 0.6778 0.8983 0.0940 0.646* 0.50
H82C 0.8447 0.9219 0.0657 0.646* 0.50
O9 0.632 (5) 0.917 (4) 0.0182 (15) 0.431 (13)* 0.50
H9A 0.5650 0.9195 −0.0163 0.646* 0.50
C91 0.625 (7) 0.824 (4) 0.050 (3) 0.431 (13)* 0.50
H91A 0.6519 0.7660 0.0249 0.517* 0.50
H91B 0.5155 0.8136 0.0632 0.517* 0.50
C92 0.735 (7) 0.825 (5) 0.100 (2) 0.431 (13)* 0.50
H92A 0.7614 0.7541 0.1100 0.646* 0.50
H92B 0.6839 0.8584 0.1315 0.646* 0.50
H92C 0.8316 0.8614 0.0898 0.646* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.100 (3) 0.143 (4) 0.098 (3) −0.039 (3) −0.033 (2) −0.015 (3)
O2 0.0473 (14) 0.0399 (13) 0.0551 (13) 0.0060 (11) 0.0018 (12) 0.0004 (11)
O3 0.091 (2) 0.0635 (17) 0.0388 (13) 0.0233 (17) −0.0092 (14) −0.0007 (13)
O4 0.127 (3) 0.079 (2) 0.0468 (16) 0.021 (2) 0.0019 (18) 0.0003 (15)
O5 0.114 (3) 0.072 (2) 0.0730 (19) −0.039 (2) −0.005 (2) 0.0047 (17)
O6 0.087 (2) 0.0521 (17) 0.0681 (16) −0.0022 (17) −0.0233 (16) 0.0092 (14)
C1 0.070 (3) 0.068 (3) 0.084 (3) −0.016 (2) −0.015 (3) −0.018 (3)
C2 0.070 (3) 0.062 (3) 0.061 (2) −0.006 (2) −0.003 (2) −0.011 (2)
C3 0.053 (2) 0.0314 (18) 0.058 (2) 0.0005 (16) 0.0028 (19) −0.0040 (16)
C4 0.0421 (18) 0.041 (2) 0.062 (2) 0.0008 (16) 0.0030 (18) −0.0031 (16)
C5 0.045 (2) 0.060 (3) 0.091 (3) −0.001 (2) −0.001 (2) −0.023 (2)
C6 0.053 (2) 0.063 (3) 0.112 (4) −0.009 (2) −0.008 (3) −0.023 (3)
C7 0.052 (2) 0.054 (2) 0.0484 (19) 0.0091 (18) 0.0050 (18) −0.0047 (18)
C8 0.0345 (18) 0.061 (2) 0.0443 (19) 0.0012 (17) 0.0017 (16) −0.0036 (17)
C9 0.0380 (17) 0.047 (2) 0.0443 (17) 0.0067 (15) 0.0050 (16) 0.0000 (16)
C10 0.0453 (18) 0.0397 (19) 0.0464 (18) 0.0024 (16) 0.0052 (17) 0.0026 (16)
C11 0.0408 (19) 0.042 (2) 0.057 (2) 0.0010 (16) 0.0100 (17) 0.0014 (17)
C12 0.054 (2) 0.052 (2) 0.0461 (18) 0.0068 (19) 0.0109 (18) −0.0004 (17)
C13 0.052 (2) 0.052 (2) 0.0380 (17) 0.0077 (17) 0.0021 (17) −0.0009 (16)
C14 0.0380 (18) 0.058 (2) 0.0397 (17) 0.0012 (17) 0.0022 (15) 0.0004 (16)
C15 0.045 (2) 0.095 (4) 0.054 (2) 0.007 (2) −0.0038 (19) −0.012 (2)
C16 0.053 (2) 0.103 (4) 0.060 (2) 0.017 (3) −0.010 (2) −0.016 (3)
C17 0.063 (2) 0.060 (2) 0.0365 (17) 0.008 (2) −0.0021 (17) 0.0003 (17)
C18 0.066 (3) 0.056 (2) 0.051 (2) −0.001 (2) −0.0043 (19) 0.0061 (19)
C19 0.105 (4) 0.061 (3) 0.052 (2) 0.016 (3) −0.004 (2) 0.000 (2)
C20 0.086 (3) 0.059 (3) 0.043 (2) 0.010 (2) −0.005 (2) −0.0002 (19)
C21 0.071 (3) 0.048 (2) 0.079 (3) −0.001 (2) 0.014 (2) 0.005 (2)
C22 0.088 (3) 0.056 (2) 0.051 (2) 0.017 (2) 0.004 (2) 0.0080 (19)
C23 0.053 (2) 0.055 (2) 0.0424 (18) −0.0129 (19) 0.0082 (17) −0.0015 (17)
C24 0.122 (5) 0.071 (3) 0.090 (3) 0.020 (3) −0.018 (3) 0.018 (3)

Geometric parameters (Å, °)

O1—C1 1.221 (6) C14—C15 1.545 (5)
O2—C10 1.451 (4) C14—H14 0.9800
O2—C11 1.460 (4) C15—C16 1.544 (6)
O3—C20 1.331 (5) C15—H15A 0.9700
O3—C17 1.474 (4) C15—H15B 0.9700
O4—C20 1.206 (5) C16—C17 1.538 (6)
O5—C23 1.195 (5) C16—H16A 0.9700
O6—C23 1.314 (5) C16—H16B 0.9700
O6—C24 1.441 (5) C17—C18 1.522 (6)
C1—C2 1.438 (7) C18—C19 1.532 (6)
C1—C6 1.492 (7) C18—H18A 0.9700
C2—C3 1.343 (6) C18—H18B 0.9700
C2—H2 0.9300 C19—C20 1.486 (6)
C3—C7 1.508 (5) C19—H19A 0.9700
C3—C4 1.516 (5) C19—H19B 0.9700
C4—C10 1.536 (5) C21—H21A 0.9600
C4—C5 1.544 (5) C21—H21B 0.9600
C4—C21 1.559 (5) C21—H21C 0.9600
C5—C6 1.520 (6) C22—H22A 0.9600
C5—H5A 0.9700 C22—H22B 0.9600
C5—H5B 0.9700 C22—H22C 0.9600
C6—H6A 0.9700 C24—H24A 0.9600
C6—H6B 0.9700 C24—H24B 0.9600
C7—C8 1.525 (5) C24—H24C 0.9600
C7—H7A 0.9700 O8—C81 1.409 (11)
C7—H7B 0.9700 O8—H8A 0.9668
C8—C23 1.510 (5) C81—C82 1.494 (11)
C8—C9 1.539 (5) C81—H81A 0.9700
C8—H8 0.9800 C81—H81B 0.9700
C9—C14 1.519 (5) C82—H82A 0.9600
C9—C10 1.523 (5) C82—H82B 0.9600
C9—H9 0.9800 C82—H82C 0.9600
C10—C11 1.482 (5) O9—C91 1.403 (11)
C11—C12 1.512 (5) O9—H9A 0.9804
C11—H11 0.9800 C91—C92 1.483 (11)
C12—C13 1.535 (5) C91—H91A 0.9700
C12—H12A 0.9700 C91—H91B 0.9700
C12—H12B 0.9700 C92—H92A 0.9600
C13—C14 1.544 (5) C92—H92B 0.9600
C13—C17 1.545 (6) C92—H92C 0.9600
C13—C22 1.548 (6)
C10—O2—C11 61.2 (2) C14—C15—H15A 110.7
C20—O3—C17 112.0 (3) C16—C15—H15B 110.7
C23—O6—C24 117.8 (4) C14—C15—H15B 110.7
O1—C1—C2 121.9 (5) H15A—C15—H15B 108.8
O1—C1—C6 120.8 (4) C17—C16—C15 105.6 (3)
C2—C1—C6 117.3 (4) C17—C16—H16A 110.6
C3—C2—C1 123.9 (4) C15—C16—H16A 110.6
C3—C2—H2 118.1 C17—C16—H16B 110.6
C1—C2—H2 118.1 C15—C16—H16B 110.6
C2—C3—C7 118.9 (4) H16A—C16—H16B 108.7
C2—C3—C4 122.8 (3) O3—C17—C18 103.4 (3)
C7—C3—C4 118.3 (3) O3—C17—C16 108.3 (3)
C3—C4—C10 110.1 (3) C18—C17—C16 113.9 (4)
C3—C4—C5 109.1 (3) O3—C17—C13 111.0 (3)
C10—C4—C5 111.4 (3) C18—C17—C13 116.0 (3)
C3—C4—C21 109.4 (3) C16—C17—C13 104.3 (3)
C10—C4—C21 107.4 (3) C17—C18—C19 104.4 (3)
C5—C4—C21 109.4 (3) C17—C18—H18A 110.9
C6—C5—C4 113.6 (3) C19—C18—H18A 110.9
C6—C5—H5A 108.8 C17—C18—H18B 110.9
C4—C5—H5A 108.8 C19—C18—H18B 110.9
C6—C5—H5B 108.8 H18A—C18—H18B 108.9
C4—C5—H5B 108.8 C20—C19—C18 103.0 (4)
H5A—C5—H5B 107.7 C20—C19—H19A 111.2
C1—C6—C5 112.0 (4) C18—C19—H19A 111.2
C1—C6—H6A 109.2 C20—C19—H19B 111.2
C5—C6—H6A 109.2 C18—C19—H19B 111.2
C1—C6—H6B 109.2 H19A—C19—H19B 109.1
C5—C6—H6B 109.2 O4—C20—O3 120.5 (4)
H6A—C6—H6B 107.9 O4—C20—C19 128.5 (4)
C3—C7—C8 113.1 (3) O3—C20—C19 110.9 (3)
C3—C7—H7A 109.0 C4—C21—H21A 109.5
C8—C7—H7A 109.0 C4—C21—H21B 109.5
C3—C7—H7B 109.0 H21A—C21—H21B 109.5
C8—C7—H7B 109.0 C4—C21—H21C 109.5
H7A—C7—H7B 107.8 H21A—C21—H21C 109.5
C23—C8—C7 114.6 (3) H21B—C21—H21C 109.5
C23—C8—C9 112.0 (3) C13—C22—H22A 109.5
C7—C8—C9 108.2 (3) C13—C22—H22B 109.5
C23—C8—H8 107.2 H22A—C22—H22B 109.5
C7—C8—H8 107.2 C13—C22—H22C 109.5
C9—C8—H8 107.2 H22A—C22—H22C 109.5
C14—C9—C10 111.8 (3) H22B—C22—H22C 109.5
C14—C9—C8 115.3 (3) O5—C23—O6 122.7 (4)
C10—C9—C8 109.7 (3) O5—C23—C8 124.9 (4)
C14—C9—H9 106.5 O6—C23—C8 112.4 (3)
C10—C9—H9 106.5 O6—C24—H24A 109.5
C8—C9—H9 106.5 O6—C24—H24B 109.5
O2—C10—C11 59.7 (2) H24A—C24—H24B 109.5
O2—C10—C9 112.2 (3) O6—C24—H24C 109.5
C11—C10—C9 118.1 (3) H24A—C24—H24C 109.5
O2—C10—C4 116.2 (3) H24B—C24—H24C 109.5
C11—C10—C4 121.5 (3) C81—O8—H8A 120.4
C9—C10—C4 116.0 (3) C81—O8—H9A 91.0
O2—C11—C10 59.1 (2) O8—C81—C82 111.1 (11)
O2—C11—C12 116.5 (3) O8—C81—H81A 109.4
C10—C11—C12 124.6 (3) C82—C81—H81A 109.4
O2—C11—H11 114.9 O8—C81—H81B 109.4
C10—C11—H11 114.9 C82—C81—H81B 109.4
C12—C11—H11 114.9 H81A—C81—H81B 108.0
C11—C12—C13 112.3 (3) C81—C82—H82A 109.5
C11—C12—H12A 109.1 C81—C82—H82B 109.5
C13—C12—H12A 109.1 H82A—C82—H82B 109.5
C11—C12—H12B 109.1 C81—C82—H82C 109.5
C13—C12—H12B 109.1 H82A—C82—H82C 109.5
H12A—C12—H12B 107.9 H82B—C82—H82C 109.5
C12—C13—C14 109.0 (3) C91—O9—H9A 115.6
C12—C13—C17 117.6 (3) O9—C91—C92 112.3 (12)
C14—C13—C17 100.0 (3) O9—C91—H91A 109.1
C12—C13—C22 108.5 (3) C92—C91—H91A 109.1
C14—C13—C22 111.7 (3) O9—C91—H91B 109.1
C17—C13—C22 110.0 (3) C92—C91—H91B 109.1
C9—C14—C13 112.8 (3) H91A—C91—H91B 107.9
C9—C14—C15 116.6 (3) C91—C92—H92A 109.5
C13—C14—C15 104.6 (3) C91—C92—H92B 109.5
C9—C14—H14 107.5 H92A—C92—H92B 109.5
C13—C14—H14 107.5 C91—C92—H92C 109.5
C15—C14—H14 107.5 H92A—C92—H92C 109.5
C16—C15—C14 105.3 (3) H92B—C92—H92C 109.5
C16—C15—H15A 110.7
O1—C1—C2—C3 177.4 (5) O2—C11—C12—C13 −81.0 (4)
C6—C1—C2—C3 −2.3 (7) C10—C11—C12—C13 −11.7 (5)
C1—C2—C3—C7 176.2 (4) C11—C12—C13—C14 43.1 (4)
C1—C2—C3—C4 −1.5 (7) C11—C12—C13—C17 155.9 (3)
C2—C3—C4—C10 −143.4 (4) C11—C12—C13—C22 −78.6 (4)
C7—C3—C4—C10 38.9 (4) C10—C9—C14—C13 51.8 (4)
C2—C3—C4—C5 −20.9 (5) C8—C9—C14—C13 178.0 (3)
C7—C3—C4—C5 161.4 (3) C10—C9—C14—C15 172.9 (3)
C2—C3—C4—C21 98.7 (4) C8—C9—C14—C15 −60.9 (5)
C7—C3—C4—C21 −79.0 (4) C12—C13—C14—C9 −66.2 (4)
C3—C4—C5—C6 47.3 (5) C17—C13—C14—C9 169.9 (3)
C10—C4—C5—C6 169.0 (4) C22—C13—C14—C9 53.7 (4)
C21—C4—C5—C6 −72.4 (5) C12—C13—C14—C15 166.1 (3)
O1—C1—C6—C5 −150.7 (5) C17—C13—C14—C15 42.2 (4)
C2—C1—C6—C5 29.0 (7) C22—C13—C14—C15 −74.1 (4)
C4—C5—C6—C1 −52.5 (6) C9—C14—C15—C16 −151.0 (4)
C2—C3—C7—C8 134.9 (4) C13—C14—C15—C16 −25.7 (5)
C4—C3—C7—C8 −47.3 (5) C14—C15—C16—C17 −1.4 (5)
C3—C7—C8—C23 −70.2 (4) C20—O3—C17—C18 14.6 (5)
C3—C7—C8—C9 55.7 (4) C20—O3—C17—C16 135.7 (4)
C23—C8—C9—C14 −59.7 (4) C20—O3—C17—C13 −110.5 (4)
C7—C8—C9—C14 172.9 (3) C15—C16—C17—O3 146.3 (4)
C23—C8—C9—C10 67.5 (4) C15—C16—C17—C18 −99.4 (4)
C7—C8—C9—C10 −59.9 (4) C15—C16—C17—C13 28.0 (5)
C11—O2—C10—C9 −110.5 (3) C12—C13—C17—O3 82.8 (4)
C11—O2—C10—C4 112.7 (4) C14—C13—C17—O3 −159.5 (3)
C14—C9—C10—O2 48.9 (4) C22—C13—C17—O3 −41.9 (4)
C8—C9—C10—O2 −80.2 (4) C12—C13—C17—C18 −34.7 (5)
C14—C9—C10—C11 −17.5 (5) C14—C13—C17—C18 83.0 (4)
C8—C9—C10—C11 −146.7 (3) C22—C13—C17—C18 −159.5 (3)
C14—C9—C10—C4 −174.2 (3) C12—C13—C17—C16 −160.8 (3)
C8—C9—C10—C4 56.6 (4) C14—C13—C17—C16 −43.1 (4)
C3—C4—C10—O2 91.2 (4) C22—C13—C17—C16 74.5 (4)
C5—C4—C10—O2 −30.0 (5) O3—C17—C18—C19 −23.4 (4)
C21—C4—C10—O2 −149.7 (3) C16—C17—C18—C19 −140.6 (4)
C3—C4—C10—C11 160.2 (3) C13—C17—C18—C19 98.3 (4)
C5—C4—C10—C11 39.1 (5) C17—C18—C19—C20 23.9 (5)
C21—C4—C10—C11 −80.7 (4) C17—O3—C20—O4 178.1 (4)
C3—C4—C10—C9 −44.0 (4) C17—O3—C20—C19 1.0 (5)
C5—C4—C10—C9 −165.1 (3) C18—C19—C20—O4 167.2 (5)
C21—C4—C10—C9 75.1 (4) C18—C19—C20—O3 −16.1 (5)
C10—O2—C11—C12 116.1 (3) C24—O6—C23—O5 −2.4 (6)
C9—C10—C11—O2 100.7 (3) C24—O6—C23—C8 177.9 (4)
C4—C10—C11—O2 −104.0 (3) C7—C8—C23—O5 −164.2 (4)
O2—C10—C11—C12 −102.7 (4) C9—C8—C23—O5 72.0 (5)
C9—C10—C11—C12 −2.0 (5) C7—C8—C23—O6 15.5 (4)
C4—C10—C11—C12 153.4 (3) C9—C8—C23—O6 −108.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O8—H8A···O1i 0.96 2.19 3.15 (4) 178
O9—H9A···O1i 0.98 2.34 3.32 (4) 177
C6—H6A···O2ii 0.97 2.53 3.447 (6) 157
C7—H7B···O5iii 0.97 2.52 3.467 (5) 164
C11—H11···O4iv 0.98 2.57 3.337 (5) 135
C14—H14···O5 0.98 2.50 3.103 (5) 120
C21—H21A···O5iii 0.96 2.46 3.351 (6) 154
C92—H92A···O1v 0.96 2.54 3.44 (6) 155

Symmetry codes: (i) x+1/2, −y+3/2, −z; (ii) −x, y−1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, −y+3/2, −z+1; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2439).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Grob, J., Boillaz, M., Schmidlin, J., Wehrli, H., Wieland, P., Fuhrer, H., Rihs, G., Joss, U., de Gasparo, M., Haenni, H., Ramjoue, H. P., Whitebread, S. E. & Kalvoda, J. (1997). Helv. Chim. Acta, 80, 566–585.
  5. Grob, J. & Kalvoda, J. (1985). US Patent 4559332.
  6. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  10. Xu, L.-Z., Yang, Q. & Nie, J.-J. (2007). Acta Cryst. E63, o4898.
  11. Yang, Q., Ye, W.-D., Yuan, J.-Y. & Nie, J.-J. (2007). Acta Cryst. E63, o2068–o2070.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009240/ng2439sup1.cif

e-64-0o829-sup1.cif (27.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009240/ng2439Isup2.hkl

e-64-0o829-Isup2.hkl (123.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES