Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):o928. doi: 10.1107/S1600536808011446

2-(Benzyl­sulfan­yl)pyridine N-oxide

B Ravindran Durai Nayagam a,*, Samuel Robinson Jebas b, H Johnson Jeyakumar c, Dieter Schollmeyer d
PMCID: PMC2961086  PMID: 21202409

Abstract

In the title compound, C12H11NOS, the dihedral angle between the oxopyridinium and phenyl rings is 58.40 (1)°. The crystal structure is stabilized by C—H⋯O hydrogen bonds, π–π stacking inter­actions involving the pyridinium rings [centroid–centroid distance = 3.6891 (9) Å] and C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al.(1987). For biological activities of N-oxide derivatives, see: Bovin et al. (1992); Katsuyuki et al. (1991); Leonard et al. (1955); Lobana & Bhatia (1989); Symons & West (1985). For related literature, see: Jebas et al. (2005); Ravindran et al. (2008).graphic file with name e-64-0o928-scheme1.jpg

Experimental

Crystal data

  • C12H11NOS

  • M r = 217.28

  • Monoclinic, Inline graphic

  • a = 5.7277 (2) Å

  • b = 15.8760 (3) Å

  • c = 11.6498 (4) Å

  • β = 97.816 (2)°

  • V = 1049.51 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.49 mm−1

  • T = 298 (2) K

  • 0.6 × 0.32 × 0.16 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (CORINC; Draeger & Gattow, 1971) T min = 0.423, T max = 0.676

  • 2183 measured reflections

  • 1979 independent reflections

  • 1865 reflections with I > 2σ(I)

  • R int = 0.020

  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.088

  • S = 1.05

  • 1979 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CORINC (Draeger & Gattow, 1971); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011446/ci2583sup1.cif

e-64-0o928-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011446/ci2583Isup2.hkl

e-64-0o928-Isup2.hkl (95.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O7i 0.93 2.42 3.323 (2) 164
C14—H14⋯Cg1ii 0.93 2.92 3.560 (2) 127
C4—H4⋯Cg2iii 0.93 2.99 3.777 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the ring C1–C5/N6 and Cg2 is the centroid of the ring C10–C15.

Acknowledgments

RDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al., 1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al., 1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al., 1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The bond lengths and angles agree well with the N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N–oxides (Allen et al.,1987).

The oxopyridinium and benzene rings are planar to within ±0.002 (2) Å and ±0.005 (2) Å, respectively, and they form a dihedral angle of 58.40 (1)°. Atom O7 deviates from the plane of the pyridinium ring by -0.012 (1) Å.

In the crystal structure, inversion related molecules at (x, y, z) and (-1-x, 1-y, -z) are linked by C—H···O hydrogen bonds to form a R22(8) ring (Fig. 2). In addition, the crystal packing is stabilized by a π-π interaction between the pyridinium rings of adjacent molecules at (x, y, z) and (-x, 2-y, -z), with a ring centroid to centroid distance of 3.6891 (9) Å. Weak C—H···π interactions involving the two aromatic rings are also observed.

Experimental

A mixture of benzyl chloride, (0.126 g, 1 mmol) and 1-hydroxypyridine-2-thione sodium salt (0.149 g, 1 mmol) in water and methanol (30 ml each) was heated at 333 K with stirring for 30 min. The compound formed was filtered off, and dried (0.20 g, 92%). The compound was recrystallized from chloroform-methanol (1:1 v/v).

Refinement

H atoms were positioned geometrically [C-H = 0.93 (aromatic) or 0.97 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C12H11NOS F000 = 456
Mr = 217.28 Dx = 1.375 Mg m3
Monoclinic, P21/c Cu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 5.7277 (2) Å θ = 65–70º
b = 15.8760 (3) Å µ = 2.49 mm1
c = 11.6498 (4) Å T = 298 (2) K
β = 97.816 (2)º Plate, colourless
V = 1049.51 (6) Å3 0.6 × 0.32 × 0.16 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.020
Monochromator: graphite θmax = 69.9º
T = 298(2) K θmin = 4.7º
ω/2θ scans h = 0→6
Absorption correction: numerical(CORINC; Draeger & Gattow, 1971) k = 0→19
Tmin = 0.423, Tmax = 0.676 l = −14→14
2183 measured reflections 3 standard reflections
1979 independent reflections every 60 min
1865 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3205P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032 (Δ/σ)max = 0.001
wR(F2) = 0.088 Δρmax = 0.23 e Å3
S = 1.05 Δρmin = −0.23 e Å3
1979 reflections Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
137 parameters Extinction coefficient: 0.0138 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0305 (2) 0.50000 (9) 0.21475 (12) 0.0323 (3)
C2 0.2020 (3) 0.55970 (10) 0.20485 (13) 0.0397 (4)
H2 0.3446 0.5575 0.2536 0.048*
C3 0.1620 (3) 0.62241 (11) 0.12302 (14) 0.0462 (4)
H3 0.2768 0.6629 0.1165 0.055*
C4 −0.0502 (3) 0.62477 (11) 0.05064 (14) 0.0456 (4)
H4 −0.0788 0.6668 −0.005 0.055*
C5 −0.2179 (3) 0.56490 (11) 0.06128 (13) 0.0426 (4)
H5 −0.3605 0.5664 0.0125 0.051*
N6 −0.1782 (2) 0.50342 (8) 0.14226 (10) 0.0358 (3)
O7 −0.33607 (19) 0.44536 (8) 0.15290 (11) 0.0507 (3)
S8 0.04017 (6) 0.41513 (2) 0.31047 (3) 0.03918 (16)
C9 0.3207 (3) 0.43634 (10) 0.39937 (14) 0.0415 (4)
H9A 0.4475 0.4338 0.3522 0.05*
H9B 0.319 0.4923 0.4327 0.05*
C10 0.3594 (2) 0.37147 (9) 0.49432 (12) 0.0348 (3)
C11 0.5483 (3) 0.31656 (10) 0.50101 (13) 0.0404 (4)
H11 0.6517 0.3197 0.4462 0.049*
C12 0.5852 (3) 0.25699 (10) 0.58820 (15) 0.0465 (4)
H12 0.7138 0.2208 0.5919 0.056*
C13 0.4330 (3) 0.25101 (11) 0.66927 (14) 0.0481 (4)
H13 0.4565 0.2103 0.7271 0.058*
C14 0.2452 (3) 0.30575 (13) 0.66418 (15) 0.0527 (4)
H14 0.1426 0.3024 0.7194 0.063*
C15 0.2084 (3) 0.36542 (11) 0.57771 (14) 0.0461 (4)
H15 0.081 0.402 0.5752 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0293 (7) 0.0344 (7) 0.0321 (7) 0.0014 (5) −0.0005 (5) −0.0014 (5)
C2 0.0311 (7) 0.0454 (8) 0.0407 (8) −0.0045 (6) −0.0019 (6) 0.0043 (6)
C3 0.0422 (9) 0.0470 (9) 0.0482 (9) −0.0091 (7) 0.0021 (7) 0.0095 (7)
C4 0.0481 (9) 0.0473 (9) 0.0397 (8) 0.0013 (7) 0.0004 (7) 0.0105 (7)
C5 0.0381 (8) 0.0479 (9) 0.0382 (8) 0.0026 (7) −0.0073 (6) 0.0031 (7)
N6 0.0298 (6) 0.0378 (6) 0.0377 (6) −0.0022 (5) −0.0027 (5) −0.0023 (5)
O7 0.0360 (6) 0.0504 (7) 0.0612 (7) −0.0139 (5) −0.0092 (5) 0.0073 (6)
S8 0.0355 (2) 0.0354 (2) 0.0437 (2) −0.00537 (13) −0.00524 (15) 0.00604 (14)
C9 0.0362 (8) 0.0388 (8) 0.0459 (8) −0.0033 (6) −0.0075 (6) 0.0058 (6)
C10 0.0342 (7) 0.0324 (7) 0.0355 (7) −0.0012 (6) −0.0035 (5) −0.0015 (6)
C11 0.0370 (8) 0.0444 (8) 0.0397 (7) 0.0034 (6) 0.0044 (6) −0.0004 (6)
C12 0.0460 (9) 0.0408 (8) 0.0502 (9) 0.0109 (7) −0.0024 (7) 0.0025 (7)
C13 0.0590 (10) 0.0445 (9) 0.0374 (8) −0.0046 (7) −0.0054 (7) 0.0064 (7)
C14 0.0543 (10) 0.0660 (11) 0.0393 (8) −0.0035 (9) 0.0121 (7) 0.0004 (8)
C15 0.0421 (9) 0.0505 (9) 0.0458 (8) 0.0107 (7) 0.0065 (7) −0.0034 (7)

Geometric parameters (Å, °)

C1—N6 1.3678 (18) C9—H9A 0.97
C1—C2 1.381 (2) C9—H9B 0.97
C1—S8 1.7450 (14) C10—C11 1.383 (2)
C2—C3 1.376 (2) C10—C15 1.389 (2)
C2—H2 0.93 C11—C12 1.383 (2)
C3—C4 1.382 (2) C11—H11 0.93
C3—H3 0.93 C12—C13 1.373 (2)
C4—C5 1.369 (2) C12—H12 0.93
C4—H4 0.93 C13—C14 1.378 (3)
C5—N6 1.355 (2) C13—H13 0.93
C5—H5 0.93 C14—C15 1.378 (2)
N6—O7 1.3090 (16) C14—H14 0.93
S8—C9 1.8205 (15) C15—H15 0.93
C9—C10 1.505 (2)
N6—C1—C2 119.53 (13) C10—C9—H9B 109.9
N6—C1—S8 111.98 (10) S8—C9—H9B 109.9
C2—C1—S8 128.49 (11) H9A—C9—H9B 108.3
C3—C2—C1 120.09 (14) C11—C10—C15 118.26 (14)
C3—C2—H2 120 C11—C10—C9 120.56 (14)
C1—C2—H2 120 C15—C10—C9 121.18 (14)
C2—C3—C4 119.47 (15) C12—C11—C10 120.85 (14)
C2—C3—H3 120.3 C12—C11—H11 119.6
C4—C3—H3 120.3 C10—C11—H11 119.6
C5—C4—C3 119.71 (15) C13—C12—C11 120.29 (15)
C5—C4—H4 120.1 C13—C12—H12 119.9
C3—C4—H4 120.1 C11—C12—H12 119.9
N6—C5—C4 120.65 (14) C12—C13—C14 119.47 (15)
N6—C5—H5 119.7 C12—C13—H13 120.3
C4—C5—H5 119.7 C14—C13—H13 120.3
O7—N6—C5 121.37 (12) C13—C14—C15 120.39 (16)
O7—N6—C1 118.08 (12) C13—C14—H14 119.8
C5—N6—C1 120.55 (12) C15—C14—H14 119.8
C1—S8—C9 99.76 (7) C14—C15—C10 120.73 (15)
C10—C9—S8 108.78 (10) C14—C15—H15 119.6
C10—C9—H9A 109.9 C10—C15—H15 119.6
S8—C9—H9A 109.9
N6—C1—C2—C3 0.4 (2) C2—C1—S8—C9 5.82 (16)
S8—C1—C2—C3 179.80 (13) C1—S8—C9—C10 177.00 (11)
C1—C2—C3—C4 −0.4 (3) S8—C9—C10—C11 117.36 (14)
C2—C3—C4—C5 0.1 (3) S8—C9—C10—C15 −63.08 (17)
C3—C4—C5—N6 0.1 (3) C15—C10—C11—C12 0.2 (2)
C4—C5—N6—O7 −179.46 (15) C9—C10—C11—C12 179.81 (14)
C4—C5—N6—C1 −0.1 (2) C10—C11—C12—C13 0.5 (3)
C2—C1—N6—O7 179.21 (13) C11—C12—C13—C14 −1.0 (3)
S8—C1—N6—O7 −0.28 (16) C12—C13—C14—C15 0.8 (3)
C2—C1—N6—C5 −0.2 (2) C13—C14—C15—C10 0.0 (3)
S8—C1—N6—C5 −179.65 (11) C11—C10—C15—C14 −0.5 (2)
N6—C1—S8—C9 −174.73 (11) C9—C10—C15—C14 179.91 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O7i 0.93 2.42 3.323 (2) 164
C14—H14···Cg1ii 0.93 2.92 3.560 (2) 127
C4—H4···Cg2iii 0.93 2.99 3.777 (2) 143

Symmetry codes: (i) −x−1, −y+1, −z; (ii) −x, −y+1, −z+1; (iii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2583).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chim. Fr.129, 145–150.
  3. Draeger, M. & Gattow, G. (1971). Acta Chem. Scand.25, 761–762.
  4. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  5. Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  6. Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc.113, 5099–5100.
  7. Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264. [PubMed]
  8. Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res.48, 394–401.
  9. Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Symons, M. C. R. & West, D.-X. (1985). J. Chem. Soc. Dalton Trans. pp. 379–381.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011446/ci2583sup1.cif

e-64-0o928-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011446/ci2583Isup2.hkl

e-64-0o928-Isup2.hkl (95.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES