Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 10;64(Pt 5):o824–o825. doi: 10.1107/S1600536808009148

(E)-3,4-Dihydroxy­benzaldehyde 4-ethyl­thio­semicarbazone

Safa’a Fares Kayed a, Yang Farina a, Ibrahim Baba a, Jim Simpson b,*
PMCID: PMC2961087  PMID: 21202314

Abstract

The title compound, C10H13N3O2S, was prepared by condensation of 3,4-dihydroxy­benzaldehyde with 4-ethyl-3-thio­semicarbazide. The mol­ecule adopts an E configuration with respect to the C=N bond. One of the OH substituents on the dihydroxy­benzene ring is disordered over the two possible 3-positions on either side of the ordered 4-hydr­oxy group. The occupancy of the major disorder component refined to 0.633 (7). The mol­ecule is essentially planar, with an r.m.s. deviation through all non-H atoms of 0.0862 Å. An intra­molecular N—H⋯N hydrogen bond forms between the outer amine residue and the imine N atom, generating an S(5) ring motif and contributing to the planarity of the mol­ecule. In the crystal structure, an extensive network of classical O—H⋯O, O—H⋯S and N—H⋯S hydrogen bonds and weak C—H⋯O and S⋯O [3.301 (3) Å] inter­actions link mol­ecules into sheets running approximately parallel to the ab plane.

Related literature

For related structures, see: Swesi et al. (2006); Kovala-Demertzi et al. (2004); Jian & Li (2006). For reference structural data, see: Allen et al. (1987). For ring motifs, see: Bernstein et al. (1995).graphic file with name e-64-0o824-scheme1.jpg

Experimental

Crystal data

  • C10H13N3O2S

  • M r = 239.29

  • Monoclinic, Inline graphic

  • a = 10.6549 (12) Å

  • b = 12.9020 (16) Å

  • c = 8.6375 (11) Å

  • β = 107.910 (4)°

  • V = 1129.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 91 (2) K

  • 0.44 × 0.11 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.818, T max = 0.975

  • 12327 measured reflections

  • 1998 independent reflections

  • 1507 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.168

  • S = 1.05

  • 1998 reflections

  • 165 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.41 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009148/hg2389sup1.cif

e-64-0o824-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009148/hg2389Isup2.hkl

e-64-0o824-Isup2.hkl (98.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N1 0.88 2.23 2.626 (4) 107
O5—H5A⋯S1i 0.84 2.82 3.106 (9) 102
C2—H2⋯O5ii 0.95 2.65 3.335 (8) 129
N2—H2A⋯S1iii 0.88 2.52 3.392 (4) 172
O4—H4⋯O4iv 0.84 2.16 2.988 (5) 169
C9—H9A⋯O3v 0.99 2.46 2.985 (5) 113

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant UKM-ST-01-FRGS0022–2006. We also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

For example the structure of the related molecule 2,3-dihydroxybenzaldehyde thiosemicarbazone hemihydrate has been reported by Swesi et al. (2006) as have the structures of a phenylthiocarbazole with a single hydroxy-substituent on the benzylidene ring (Jian & Li, 2006) and of a palladium(II) complex of an ethylthiosemicarbonate ligand deprotonated at the phenolate ring (Kovala-Demertzi et al., 2004).

The molecule adopts an E configuration with respect to the C=N bond and bond distances and angles are normal (Allen et al., 1987). One of the OH substituents on the dihydroxy benzene ring is disordered over the two possible 3-positions (labelled O3 and O5) on either side of the ordered O4 hydroxo group. Occupancy of the O3 and H5 atoms of the major disorder component refines to 0.633 (7). The molecule is essentially planar with an r.m.s. deviation through all non-hydrogen atoms of 0.0862 Å. An intramolecular N3—H3B···N1 hydrogen bond forms between the outer amine residue and the imine N atom generating an S(5) ring motif (Bernstein et al., 1995) which contributes to the planarity of the molecule.

In the crystal structure N2—H2A···S1 hydrogen bonds, Table 1, generate centrosymmetric R22(8) rings. Other classical O—H···O and O—H···S hydrogen bonds combine with weak C—H···O and S1···O4i interactions (d(S1···O4) = 3.301 (3) Å; i = -1 + x, 1/2 - y, 1/2 + z) to form sheets running approximately parallel to the ac diagonal, Fig 2.

Experimental

The title compound C10H13N3O2S was prepared by heating an ethanolic (35 ml) solution of 3,4-dihydroxybenzaldehyde (1.4 g, 10 mmol) and 4-ethyl-3-thiosemicarbazide (1.2 g, 10 mmol) under reflux for 1 h. The resulting product was isolated and recrystallized from ethanol to afford red block-shaped crystals in 71% yield (m.p. 464–467 K).

Refinement

The aromatic H atoms of the two disorder components were located in a difference Fourier map and refined with fixed isotropic displacement parameters with C—H distances restrained to 0.95 (1) Å. All other H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 0.99 Å, Uiso = 1.2Ueq (C) for CH2, 0.98 Å, Uiso = 1.5Ueq (C) for CH3 0.88 Å, Uiso = 1.2Ueq (N) for NH and 0.84 Å, Uiso = 1.5Ueq (O) for the OH atoms. Close contacts involving the H atoms of the OH substituents, suggest that there may be unresolved disorder particularly with the location of the H atoms. The highest residual electron density peak is located at 2.56 Å from O5 and the deepest hole is located at 0.81 Å from S1.

Figures

Fig. 1.

Fig. 1.

The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line. For clarity only the major disorder component of the disordered OH groups is shown.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed down the b axis with hydrogen bonds drawn as dashed lines.

Crystal data

C10H13N3O2S F000 = 504
Mr = 239.29 Dx = 1.407 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3071 reflections
a = 10.6549 (12) Å θ = 2.6–25.0º
b = 12.9020 (16) Å µ = 0.28 mm1
c = 8.6375 (11) Å T = 91 (2) K
β = 107.910 (4)º Block, red
V = 1129.9 (2) Å3 0.44 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1998 independent reflections
Radiation source: fine-focus sealed tube 1507 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 92(2) K θmax = 25.1º
ω scans θmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2006) h = −12→12
Tmin = 0.818, Tmax = 0.975 k = −15→15
12327 measured reflections l = −10→8

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168   w = 1/[σ2(Fo2) + (0.0718P)2 + 1.7231P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1998 reflections Δρmax = 1.41 e Å3
165 parameters Δρmin = −0.64 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7990 (3) 0.2409 (2) 0.2636 (3) 0.0304 (7)
C2 0.9009 (3) 0.1922 (2) 0.2235 (3) 0.0342 (7)
H2 0.9097 0.1190 0.2323 0.041*
C3 0.9897 (3) 0.2493 (3) 0.1712 (4) 0.0382 (8)
H3 1.048 (11) 0.201 (8) 0.147 (17) 0.046* 0.367 (7)
O3 1.0884 (4) 0.2059 (4) 0.1330 (6) 0.0525 (14) 0.633 (7)
H3A 1.1301 0.2516 0.0999 0.079* 0.633 (7)
C5 0.8761 (3) 0.4051 (3) 0.1995 (4) 0.0394 (8)
H5 0.862 (11) 0.477 (2) 0.177 (13) 0.047* 0.633 (7)
O5 0.8733 (10) 0.5042 (5) 0.1953 (12) 0.045 (2) 0.367 (7)
H5A 0.8856 0.5248 0.1089 0.068* 0.367 (7)
C4 0.9776 (3) 0.3557 (3) 0.1580 (4) 0.0381 (8)
O4 1.0659 (2) 0.4115 (2) 0.1053 (3) 0.0503 (7)
H4 1.0294 0.4656 0.0584 0.075*
C6 0.7871 (3) 0.3484 (2) 0.2514 (3) 0.0334 (7)
H6 0.7178 0.3825 0.2787 0.040*
C7 0.7094 (3) 0.1775 (3) 0.3225 (3) 0.0357 (7)
H7 0.7228 0.1047 0.3322 0.043*
N1 0.6134 (2) 0.2175 (2) 0.3612 (3) 0.0390 (7)
N2 0.5403 (3) 0.1489 (3) 0.4216 (3) 0.0442 (7)
H2A 0.5567 0.0819 0.4244 0.053*
C8 0.4433 (3) 0.1862 (3) 0.4763 (4) 0.0458 (9)
S1 0.36442 (11) 0.10262 (10) 0.56744 (13) 0.0685 (4)
N3 0.4168 (3) 0.2853 (3) 0.4565 (3) 0.0506 (8)
H3B 0.4660 0.3233 0.4133 0.061*
C9 0.3112 (4) 0.3371 (4) 0.5010 (5) 0.0678 (13)
H9A 0.3118 0.3133 0.6102 0.081*
H9B 0.2252 0.3177 0.4224 0.081*
C10 0.3260 (5) 0.4506 (5) 0.5024 (6) 0.0804 (15)
H10A 0.4042 0.4708 0.5917 0.121*
H10B 0.2476 0.4831 0.5179 0.121*
H10C 0.3361 0.4735 0.3987 0.121*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0251 (14) 0.0466 (18) 0.0195 (14) −0.0048 (12) 0.0069 (11) 0.0028 (12)
C2 0.0353 (16) 0.0376 (17) 0.0304 (15) 0.0009 (13) 0.0112 (13) 0.0039 (13)
C3 0.0292 (16) 0.057 (2) 0.0319 (16) 0.0021 (14) 0.0146 (13) 0.0001 (15)
O3 0.037 (3) 0.075 (3) 0.059 (3) 0.009 (2) 0.036 (2) −0.002 (2)
C5 0.0427 (18) 0.0392 (18) 0.0365 (17) −0.0057 (15) 0.0122 (14) 0.0051 (15)
O5 0.048 (4) 0.035 (4) 0.053 (5) −0.010 (4) 0.015 (3) 0.013 (4)
C4 0.0331 (16) 0.056 (2) 0.0265 (15) −0.0149 (15) 0.0113 (13) 0.0037 (14)
O4 0.0449 (14) 0.0657 (17) 0.0471 (14) −0.0192 (12) 0.0241 (12) 0.0093 (12)
C6 0.0304 (15) 0.0422 (17) 0.0295 (16) 0.0020 (13) 0.0119 (13) 0.0009 (13)
C7 0.0348 (16) 0.0476 (19) 0.0252 (15) −0.0110 (14) 0.0099 (13) 0.0018 (13)
N1 0.0281 (13) 0.0639 (18) 0.0267 (13) −0.0131 (12) 0.0110 (11) 0.0059 (12)
N2 0.0380 (14) 0.0675 (19) 0.0319 (14) −0.0205 (14) 0.0178 (12) −0.0021 (13)
C8 0.0331 (17) 0.082 (3) 0.0250 (16) −0.0237 (18) 0.0133 (13) −0.0102 (17)
S1 0.0738 (7) 0.0931 (9) 0.0585 (7) −0.0513 (6) 0.0497 (6) −0.0299 (6)
N3 0.0305 (14) 0.092 (3) 0.0352 (15) −0.0037 (15) 0.0181 (12) 0.0076 (16)
C9 0.038 (2) 0.131 (4) 0.039 (2) 0.008 (2) 0.0176 (16) 0.000 (2)
C10 0.076 (3) 0.122 (5) 0.053 (3) 0.036 (3) 0.034 (2) 0.000 (3)

Geometric parameters (Å, °)

C1—C2 1.388 (4) C7—N1 1.278 (4)
C1—C6 1.395 (5) C7—H7 0.9500
C1—C7 1.462 (4) N1—N2 1.384 (3)
C2—C3 1.380 (4) N2—C8 1.350 (4)
C2—H2 0.9500 N2—H2A 0.8800
C3—O3 1.319 (5) C8—N3 1.310 (5)
C3—C4 1.380 (5) C8—S1 1.702 (3)
C3—H3 0.950 (10) S1—O4i 3.301 (2)
O3—H3A 0.8400 N3—C9 1.457 (5)
C5—O5 1.279 (7) N3—H3B 0.8800
C5—C6 1.376 (4) C9—C10 1.473 (7)
C5—C4 1.394 (5) C9—H9A 0.9900
C5—H5 0.950 (10) C9—H9B 0.9900
O5—H5A 0.8400 C10—H10A 0.9800
C4—O4 1.369 (3) C10—H10B 0.9800
O4—H4 0.8400 C10—H10C 0.9800
C6—H6 0.9500
C2—C1—C6 119.4 (3) N1—C7—C1 121.7 (3)
C2—C1—C7 118.6 (3) N1—C7—H7 119.1
C6—C1—C7 121.9 (3) C1—C7—H7 119.1
C3—C2—C1 120.6 (3) C7—N1—N2 115.4 (3)
C3—C2—H2 119.7 C8—N2—N1 119.0 (3)
C1—C2—H2 119.7 C8—N2—H2A 120.5
O3—C3—C4 117.6 (3) N1—N2—H2A 120.5
O3—C3—C2 122.3 (4) N3—C8—N2 117.4 (3)
C4—C3—C2 120.1 (3) N3—C8—S1 124.2 (3)
C4—C3—H3 133 (8) N2—C8—S1 118.4 (3)
C2—C3—H3 107 (8) C8—N3—C9 124.5 (3)
C3—O3—H3A 109.5 C8—N3—H3B 117.8
O5—C5—C6 121.9 (5) C9—N3—H3B 117.8
O5—C5—C4 117.6 (5) N3—C9—C10 111.6 (4)
C6—C5—C4 120.5 (3) N3—C9—H9A 109.3
C6—C5—H5 120 (7) C10—C9—H9A 109.3
C4—C5—H5 119 (7) N3—C9—H9B 109.3
C5—O5—H5A 109.5 C10—C9—H9B 109.3
O4—C4—C3 119.6 (3) H9A—C9—H9B 108.0
O4—C4—C5 120.8 (3) C9—C10—H10A 109.5
C3—C4—C5 119.6 (3) C9—C10—H10B 109.5
C4—O4—H4 109.5 H10A—C10—H10B 109.5
C5—C6—C1 119.9 (3) C9—C10—H10C 109.5
C5—C6—H6 120.1 H10A—C10—H10C 109.5
C1—C6—H6 120.1 H10B—C10—H10C 109.5

Symmetry codes: (i) x−1, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3B···N1 0.88 2.23 2.626 (4) 107
O5—H5A···S1ii 0.84 2.82 3.106 (9) 102
C2—H2···O5iii 0.95 2.65 3.335 (8) 129
N2—H2A···S1iv 0.88 2.52 3.392 (4) 172
O4—H4···O4v 0.84 2.16 2.988 (5) 169
C9—H9A···O3i 0.99 2.46 2.985 (5) 113

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) −x+2, −y+1, −z; (i) x−1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2389).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  6. Jian, F.-F. & Li, Y. (2006). Acta Cryst. E62, o4563–o4564.
  7. Kovala-Demertzi, D., Yadav, P. N., Demertzis, M. A., Jasiski, J. P., Andreadaki, F. J. & Kostas, I. D. (2004). Tetrahedron Lett.45, 2923–2926.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009148/hg2389sup1.cif

e-64-0o824-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009148/hg2389Isup2.hkl

e-64-0o824-Isup2.hkl (98.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES