Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 26;64(Pt 5):m722–m723. doi: 10.1107/S1600536808011112

Cyclo­pentyl­diphen­yl(4-thio­semi­carbazonopenta­noato-κO)tin(IV)

Kong Mun Lo a, Seik Weng Ng a,*
PMCID: PMC2961090  PMID: 21202248

Abstract

The Sn atom in the title compound, [Sn(C5H9)(C6H5)2(C6H10N3O2S)], exists within a tetra­hedral geometry. The –NH2 group forms a weak hydrogen bond across a center of inversion to the S atom of an adjacent mol­ecule, as well as another weaker hydrogen (across another center of inversion) to the Sn-bound O atom of another mol­ecule. The hydrogen-bonded layer structure is consolidated by a strong hydrogen bond between the –NH– group and the uncoordinated O atom of a third mol­ecule.

Related literature

For the antibacterial and antifungal applications of cyclo­pentyl­diphenyl­tin carboxyl­ates, see: Koshy et al. (2001). For the crystal structures of cyclo­pentyl­diphenyl­tin derivatives, see: Lo & Ng (2004); Lo et al. (1999); Teo et al. (2004). For the synthesis of levulinic acid thio­semicarbazone, see: Ng (1992). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991, 1994).graphic file with name e-64-0m722-scheme1.jpg

Experimental

Crystal data

  • [Sn(C5H9)(C6H5)2(C6H10N3O2S)]

  • M r = 530.24

  • Triclinic, Inline graphic

  • a = 9.5780 (1) Å

  • b = 10.2375 (1) Å

  • c = 13.4205 (1) Å

  • α = 86.901 (1)°

  • β = 83.370 (1)°

  • γ = 63.667 (1)°

  • V = 1171.50 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 (2) K

  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.779, T max = 0.889

  • 15020 measured reflections

  • 5350 independent reflections

  • 5186 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.078

  • S = 1.03

  • 5350 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 1.99 e Å−3

  • Δρmin = −0.91 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011112/tk2255sup1.cif

e-64-0m722-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011112/tk2255Isup2.hkl

e-64-0m722-Isup2.hkl (261.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Sn1—O1 2.063 (2)
Sn1—C1 2.131 (3)
Sn1—C6 2.125 (2)
Sn1—C12 2.134 (2)
O1—Sn1—C1 112.7 (1)
O1—Sn1—C6 108.6 (1)
O1—Sn1—C12 95.9 (1)
C1—Sn1—C6 116.5 (1)
C1—Sn1—C12 112.1 (1)
C6—Sn1—C12 109.2 (1)
Sn1—O1—C18 109.3 (1)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O2i 0.88 2.12 2.975 (3) 163
N3—H3n1⋯O1ii 0.88 2.43 3.121 (3) 136
N3—H3n2⋯S1iii 0.88 2.54 3.389 (2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Triorganotin carboxylates having two different organyl substituents possess ehanced anti-bacterial and anti-fungal properties compared with the symmetrical compounds (Koshy et al., 2001). The synthesis of cyclopentyldiphenyltin hydroxide, which is the principal reagent that condenses readily with carboxylic acids, is a multi-step synthesis. Previous studies have characterized a few cyclopentyldiphenyltin derivatives (Lo & Ng, 2004; Lo et al., 1999; Teo et al., 2004). In the reaction with levulinic acid thiosemicarbazone (Ng, 1992), the organotin hydroxide yields a four-coordinate compound (I) (Fig. 1 & Table 1). The tin atom exists in a tetrahedral geometry; adjacent molecules are linked by hydrogen bonds into a layer structure, Table 2.

Experimental

Levulinic acid thiosemicarbazone was synthesized from the reaction of levulinic acid and thiosemicarbazide (Ng, 1992). Cyclopentyldiphenyltin hydroxide was sythesized by using a multistep reaction, starting from the Grignard reaction of cyclopentylmagnesium bromide on triphenyltin chloride. One phenyl radical was then cleaved by iodine in DMF; the resulting iodide was then hydrolyzed with sodium hydroxide in acetone to give the mixed triorganotin hydroxide (Lo et al., 1999). The thiosemicarbazone (1.1 g, 5 mmol) and triorganotin hydroxide (2 g, 5 mmol) were dissolved in hot ethanol (50 ml). The clear solution was filtered and colorless crystals separated from the cool solution after a day (yield: 75%).

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen-bound H-atom were similarly generated (N–H 0.88±0.01 Å) and their temperature factors similarly tied.

The final difference Fourier map had a large peak at 1.4 Å from C1 but was otherwise diffuse.

Figures

Fig. 1.

Fig. 1.

70% Probability thermal ellipsoid plot of Sn(C5H9)(C6H5)2(C12H15N3O2S), (I), show atom-numbering scheme. Hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(C5H9)(C6H5)2(C6H10N3O2S)] Z = 2
Mr = 530.24 F000 = 540
Triclinic, P1 Dx = 1.503 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.5780 (1) Å Cell parameters from 9905 reflections
b = 10.2375 (1) Å θ = 2.4–28.3º
c = 13.4205 (1) Å µ = 1.20 mm1
α = 86.901 (1)º T = 100 (2) K
β = 83.370 (1)º Irregular block, colorless
γ = 63.667 (1)º 0.30 × 0.15 × 0.10 mm
V = 1171.50 (2) Å3

Data collection

Bruker SMART APEXII diffractometer 5350 independent reflections
Radiation source: fine-focus sealed tube 5186 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.014
T = 100(2) K θmax = 27.5º
ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→12
Tmin = 0.779, Tmax = 0.889 k = −13→13
15020 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H-atom parameters constrained
wR(F2) = 0.078   w = 1/[σ2(Fo2) + (0.0431P)2 + 2.3757P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
5350 reflections Δρmax = 1.99 e Å3
272 parameters Δρmin = −0.91 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sn1 0.400900 (17) 0.628156 (16) 0.232609 (11) 0.01648 (6)
S1 0.24404 (7) 0.05406 (6) 0.56139 (5) 0.02291 (13)
O1 0.4075 (2) 0.63541 (19) 0.38521 (13) 0.0191 (3)
O2 0.1648 (2) 0.66366 (19) 0.38475 (13) 0.0188 (3)
N1 0.1747 (2) 0.4584 (2) 0.57946 (15) 0.0161 (4)
N2 0.1483 (2) 0.3354 (2) 0.58783 (15) 0.0160 (4)
H2N 0.0552 0.3410 0.6087 0.019*
N3 0.4100 (2) 0.2066 (2) 0.54086 (17) 0.0215 (4)
H3N1 0.4187 0.2883 0.5433 0.026*
H3N2 0.4933 0.1248 0.5240 0.026*
C1 0.2123 (3) 0.8151 (3) 0.1783 (2) 0.0269 (5)
H1 0.1189 0.7944 0.1863 0.032*
C2 0.2415 (5) 0.8439 (5) 0.0673 (3) 0.0712 (16)
H2A 0.1932 0.8001 0.0267 0.085*
H2B 0.3553 0.8010 0.0460 0.085*
C3 0.1675 (4) 1.0097 (4) 0.0531 (2) 0.0359 (7)
H3A 0.2491 1.0442 0.0376 0.043*
H3B 0.0987 1.0397 −0.0019 0.043*
C4 0.0732 (5) 1.0696 (4) 0.1530 (3) 0.0495 (9)
H4A −0.0343 1.0788 0.1542 0.059*
H4B 0.0672 1.1663 0.1663 0.059*
C5 0.1651 (4) 0.9556 (3) 0.2307 (3) 0.0398 (7)
H5A 0.2577 0.9674 0.2456 0.048*
H5B 0.0978 0.9625 0.2940 0.048*
C6 0.4168 (3) 0.4221 (3) 0.19650 (18) 0.0199 (5)
C7 0.4926 (3) 0.2975 (3) 0.2541 (2) 0.0245 (5)
H7 0.5361 0.3044 0.3126 0.029*
C8 0.5049 (3) 0.1635 (3) 0.2263 (2) 0.0285 (6)
H8 0.5560 0.0794 0.2661 0.034*
C9 0.4429 (3) 0.1523 (3) 0.1411 (2) 0.0271 (5)
H9 0.4516 0.0607 0.1223 0.032*
C10 0.3684 (3) 0.2743 (3) 0.08321 (19) 0.0238 (5)
H10 0.3244 0.2668 0.0251 0.029*
C11 0.3575 (3) 0.4079 (3) 0.10956 (19) 0.0225 (5)
H11 0.3093 0.4906 0.0680 0.027*
C12 0.6217 (3) 0.6303 (3) 0.19063 (17) 0.0176 (4)
C13 0.7494 (3) 0.5069 (3) 0.14887 (18) 0.0201 (5)
H13 0.7382 0.4206 0.1403 0.024*
C14 0.8925 (3) 0.5089 (3) 0.11974 (19) 0.0236 (5)
H14 0.9784 0.4245 0.0913 0.028*
C15 0.9095 (3) 0.6343 (3) 0.13229 (19) 0.0243 (5)
H15 1.0070 0.6359 0.1118 0.029*
C16 0.7847 (3) 0.7577 (3) 0.17470 (19) 0.0231 (5)
H16 0.7970 0.8432 0.1841 0.028*
C17 0.6419 (3) 0.7553 (3) 0.20323 (18) 0.0198 (5)
H17 0.5565 0.8400 0.2318 0.024*
C18 0.2692 (3) 0.6595 (2) 0.43182 (18) 0.0163 (4)
C19 0.2537 (3) 0.6844 (3) 0.54288 (18) 0.0184 (4)
H19A 0.2739 0.7692 0.5536 0.022*
H19B 0.3354 0.5982 0.5733 0.022*
C20 0.0950 (3) 0.7117 (3) 0.59732 (18) 0.0194 (5)
H20A 0.0866 0.7515 0.6645 0.023*
H20B 0.0126 0.7872 0.5600 0.023*
C21 0.0628 (3) 0.5805 (2) 0.61014 (17) 0.0162 (4)
C22 −0.0961 (3) 0.6051 (3) 0.65817 (19) 0.0211 (5)
H22A −0.1493 0.7023 0.6884 0.032*
H22B −0.0851 0.5313 0.7103 0.032*
H22C −0.1579 0.5979 0.6073 0.032*
C23 0.2715 (3) 0.2065 (2) 0.56254 (17) 0.0170 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sn1 0.01453 (9) 0.01349 (9) 0.02213 (10) −0.00650 (6) −0.00357 (6) 0.00085 (6)
S1 0.0168 (3) 0.0119 (3) 0.0404 (4) −0.0064 (2) −0.0043 (2) 0.0007 (2)
O1 0.0150 (8) 0.0209 (8) 0.0235 (8) −0.0098 (7) −0.0020 (6) −0.0008 (6)
O2 0.0167 (8) 0.0197 (8) 0.0223 (8) −0.0099 (7) −0.0036 (6) 0.0004 (6)
N1 0.0180 (9) 0.0135 (9) 0.0185 (9) −0.0081 (8) −0.0033 (7) −0.0001 (7)
N2 0.0139 (9) 0.0128 (9) 0.0219 (9) −0.0065 (7) −0.0021 (7) 0.0007 (7)
N3 0.0148 (9) 0.0140 (9) 0.0349 (11) −0.0058 (8) 0.0000 (8) −0.0047 (8)
C1 0.0213 (12) 0.0260 (13) 0.0251 (12) −0.0028 (10) −0.0042 (10) 0.0019 (10)
C2 0.046 (2) 0.068 (3) 0.040 (2) 0.023 (2) 0.0084 (16) 0.0231 (19)
C3 0.0378 (16) 0.0442 (18) 0.0334 (15) −0.0241 (14) −0.0144 (12) 0.0166 (13)
C4 0.049 (2) 0.0292 (16) 0.064 (2) −0.0123 (15) −0.0080 (18) 0.0046 (15)
C5 0.0435 (18) 0.0289 (15) 0.0423 (17) −0.0111 (14) −0.0067 (14) 0.0004 (13)
C6 0.0214 (11) 0.0190 (11) 0.0228 (11) −0.0120 (10) −0.0032 (9) 0.0000 (9)
C7 0.0274 (13) 0.0209 (12) 0.0287 (13) −0.0120 (10) −0.0120 (10) 0.0026 (10)
C8 0.0327 (14) 0.0183 (12) 0.0366 (14) −0.0120 (11) −0.0105 (11) 0.0048 (10)
C9 0.0285 (14) 0.0221 (12) 0.0323 (14) −0.0124 (11) −0.0035 (11) −0.0021 (10)
C10 0.0257 (13) 0.0257 (13) 0.0224 (12) −0.0133 (11) −0.0020 (10) −0.0032 (9)
C11 0.0236 (12) 0.0205 (12) 0.0230 (12) −0.0091 (10) −0.0052 (9) 0.0021 (9)
C12 0.0163 (11) 0.0177 (11) 0.0186 (10) −0.0072 (9) −0.0035 (8) 0.0027 (8)
C13 0.0215 (12) 0.0169 (11) 0.0209 (11) −0.0075 (9) −0.0030 (9) 0.0021 (9)
C14 0.0188 (12) 0.0238 (12) 0.0227 (12) −0.0050 (10) −0.0008 (9) 0.0009 (9)
C15 0.0200 (12) 0.0322 (14) 0.0232 (12) −0.0144 (11) −0.0020 (9) 0.0040 (10)
C16 0.0265 (13) 0.0260 (12) 0.0233 (12) −0.0171 (11) −0.0041 (10) 0.0015 (9)
C17 0.0194 (11) 0.0185 (11) 0.0211 (11) −0.0079 (9) −0.0026 (9) −0.0003 (9)
C18 0.0165 (11) 0.0098 (9) 0.0234 (11) −0.0063 (8) −0.0023 (8) −0.0002 (8)
C19 0.0206 (11) 0.0142 (10) 0.0228 (11) −0.0095 (9) −0.0038 (9) −0.0014 (8)
C20 0.0202 (11) 0.0143 (10) 0.0226 (11) −0.0064 (9) −0.0013 (9) −0.0029 (8)
C21 0.0163 (11) 0.0157 (10) 0.0162 (10) −0.0063 (9) −0.0033 (8) −0.0009 (8)
C22 0.0172 (11) 0.0209 (11) 0.0234 (11) −0.0070 (9) −0.0006 (9) −0.0032 (9)
C23 0.0173 (11) 0.0139 (10) 0.0203 (11) −0.0068 (9) −0.0050 (8) 0.0006 (8)

Geometric parameters (Å, °)

Sn1—O1 2.063 (2) C7—H7 0.9500
Sn1—C1 2.131 (3) C8—C9 1.379 (4)
Sn1—C6 2.125 (2) C8—H8 0.9500
Sn1—C12 2.134 (2) C9—C10 1.380 (4)
S1—C23 1.695 (2) C9—H9 0.9500
O1—C18 1.320 (3) C10—C11 1.387 (4)
O2—C18 1.227 (3) C10—H10 0.9500
N1—C21 1.283 (3) C11—H11 0.9500
N1—N2 1.387 (3) C12—C13 1.398 (3)
N2—C23 1.350 (3) C12—C17 1.399 (3)
N2—H2N 0.8800 C13—C14 1.391 (4)
N3—C23 1.325 (3) C13—H13 0.9500
N3—H3N1 0.8800 C14—C15 1.384 (4)
N3—H3N2 0.8800 C14—H14 0.9500
C1—C5 1.492 (4) C15—C16 1.389 (4)
C1—C2 1.522 (4) C15—H15 0.9500
C1—H1 1.0000 C16—C17 1.388 (4)
C2—C3 1.532 (5) C16—H16 0.9500
C2—H2A 0.9900 C17—H17 0.9500
C2—H2B 0.9900 C18—C19 1.505 (3)
C3—C4 1.519 (5) C19—C20 1.520 (3)
C3—H3A 0.9900 C19—H19A 0.9900
C3—H3B 0.9900 C19—H19B 0.9900
C4—C5 1.547 (5) C20—C21 1.503 (3)
C4—H4A 0.9900 C20—H20A 0.9900
C4—H4B 0.9900 C20—H20B 0.9900
C5—H5A 0.9900 C21—C22 1.499 (3)
C5—H5B 0.9900 C22—H22A 0.9800
C6—C11 1.396 (3) C22—H22B 0.9800
C6—C7 1.398 (3) C22—H22C 0.9800
C7—C8 1.393 (4)
O1—Sn1—C1 112.7 (1) C8—C9—H9 120.0
O1—Sn1—C6 108.6 (1) C10—C9—H9 120.0
O1—Sn1—C12 95.9 (1) C9—C10—C11 120.2 (2)
C1—Sn1—C6 116.5 (1) C9—C10—H10 119.9
C1—Sn1—C12 112.1 (1) C11—C10—H10 119.9
C6—Sn1—C12 109.2 (1) C10—C11—C6 120.7 (2)
Sn1—O1—C18 109.3 (1) C10—C11—H11 119.7
C21—N1—N2 118.3 (2) C6—C11—H11 119.7
C23—N2—N1 117.11 (19) C13—C12—C17 118.4 (2)
C23—N2—H2N 121.4 C13—C12—Sn1 120.71 (18)
N1—N2—H2N 121.4 C17—C12—Sn1 120.94 (18)
C23—N3—H3N1 120.0 C14—C13—C12 120.8 (2)
C23—N3—H3N2 120.0 C14—C13—H13 119.6
H3N1—N3—H3N2 120.0 C12—C13—H13 119.6
C5—C1—C2 106.2 (3) C15—C14—C13 119.9 (2)
C5—C1—Sn1 116.7 (2) C15—C14—H14 120.1
C2—C1—Sn1 113.0 (2) C13—C14—H14 120.1
C5—C1—H1 106.8 C14—C15—C16 120.4 (2)
C2—C1—H1 106.8 C14—C15—H15 119.8
Sn1—C1—H1 106.8 C16—C15—H15 119.8
C1—C2—C3 106.9 (3) C17—C16—C15 119.5 (2)
C1—C2—H2A 110.3 C17—C16—H16 120.2
C3—C2—H2A 110.3 C15—C16—H16 120.2
C1—C2—H2B 110.3 C16—C17—C12 121.1 (2)
C3—C2—H2B 110.3 C16—C17—H17 119.5
H2A—C2—H2B 108.6 C12—C17—H17 119.5
C4—C3—C2 104.5 (3) O2—C18—O1 120.5 (2)
C4—C3—H3A 110.9 O2—C18—C19 125.2 (2)
C2—C3—H3A 110.9 O1—C18—C19 114.2 (2)
C4—C3—H3B 110.9 C18—C19—C20 114.6 (2)
C2—C3—H3B 110.9 C18—C19—H19A 108.6
H3A—C3—H3B 108.9 C20—C19—H19A 108.6
C3—C4—C5 104.1 (3) C18—C19—H19B 108.6
C3—C4—H4A 110.9 C20—C19—H19B 108.6
C5—C4—H4A 110.9 H19A—C19—H19B 107.6
C3—C4—H4B 110.9 C21—C20—C19 115.40 (19)
C5—C4—H4B 110.9 C21—C20—H20A 108.4
H4A—C4—H4B 109.0 C19—C20—H20A 108.4
C1—C5—C4 102.4 (3) C21—C20—H20B 108.4
C1—C5—H5A 111.3 C19—C20—H20B 108.4
C4—C5—H5A 111.3 H20A—C20—H20B 107.5
C1—C5—H5B 111.3 N1—C21—C22 126.5 (2)
C4—C5—H5B 111.3 N1—C21—C20 116.6 (2)
H5A—C5—H5B 109.2 C22—C21—C20 116.8 (2)
C11—C6—C7 118.4 (2) C21—C22—H22A 109.5
C11—C6—Sn1 119.38 (18) C21—C22—H22B 109.5
C7—C6—Sn1 122.09 (18) H22A—C22—H22B 109.5
C8—C7—C6 120.4 (2) C21—C22—H22C 109.5
C8—C7—H7 119.8 H22A—C22—H22C 109.5
C6—C7—H7 119.8 H22B—C22—H22C 109.5
C9—C8—C7 120.2 (3) N3—C23—N2 117.2 (2)
C9—C8—H8 119.9 N3—C23—S1 123.29 (18)
C7—C8—H8 119.9 N2—C23—S1 119.54 (18)
C8—C9—C10 120.0 (2)
C6—Sn1—O1—C18 −77.70 (16) C9—C10—C11—C6 −2.2 (4)
C1—Sn1—O1—C18 52.80 (17) C7—C6—C11—C10 2.5 (4)
C12—Sn1—O1—C18 169.72 (15) Sn1—C6—C11—C10 179.0 (2)
C21—N1—N2—C23 −174.8 (2) O1—Sn1—C12—C13 110.54 (19)
O1—Sn1—C1—C5 32.7 (3) C6—Sn1—C12—C13 −1.5 (2)
C6—Sn1—C1—C5 159.1 (2) C1—Sn1—C12—C13 −132.09 (19)
C12—Sn1—C1—C5 −74.2 (2) O1—Sn1—C12—C17 −70.09 (19)
O1—Sn1—C1—C2 156.3 (3) C6—Sn1—C12—C17 177.87 (18)
C6—Sn1—C1—C2 −77.3 (3) C1—Sn1—C12—C17 47.3 (2)
C12—Sn1—C1—C2 49.4 (3) C17—C12—C13—C14 −0.6 (4)
C5—C1—C2—C3 −15.5 (4) Sn1—C12—C13—C14 178.79 (18)
Sn1—C1—C2—C3 −144.7 (3) C12—C13—C14—C15 0.2 (4)
C1—C2—C3—C4 −9.9 (5) C13—C14—C15—C16 0.6 (4)
C2—C3—C4—C5 30.7 (4) C14—C15—C16—C17 −0.9 (4)
C2—C1—C5—C4 34.0 (4) C15—C16—C17—C12 0.4 (4)
Sn1—C1—C5—C4 161.0 (2) C13—C12—C17—C16 0.3 (4)
C3—C4—C5—C1 −40.3 (4) Sn1—C12—C17—C16 −179.07 (18)
O1—Sn1—C6—C11 155.98 (19) Sn1—O1—C18—O2 5.1 (3)
C1—Sn1—C6—C11 27.6 (2) Sn1—O1—C18—C19 −173.25 (14)
C12—Sn1—C6—C11 −100.6 (2) O2—C18—C19—C20 2.0 (3)
O1—Sn1—C6—C7 −27.7 (2) O1—C18—C19—C20 −179.78 (19)
C1—Sn1—C6—C7 −156.1 (2) C18—C19—C20—C21 72.7 (3)
C12—Sn1—C6—C7 75.7 (2) N2—N1—C21—C22 2.0 (3)
C11—C6—C7—C8 −1.6 (4) N2—N1—C21—C20 −178.51 (19)
Sn1—C6—C7—C8 −178.0 (2) C19—C20—C21—N1 3.9 (3)
C6—C7—C8—C9 0.4 (4) C19—C20—C21—C22 −176.6 (2)
C7—C8—C9—C10 −0.1 (4) N1—N2—C23—N3 6.1 (3)
C8—C9—C10—C11 1.0 (4) N1—N2—C23—S1 −174.76 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2n···O2i 0.88 2.12 2.975 (3) 163
N3—H3n1···O1ii 0.88 2.43 3.121 (3) 136
N3—H3n2···S1iii 0.88 2.54 3.389 (2) 161

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2255).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Koshy, J., Ansary, A., Lo, K. M. & Kumar Das, V. G. (2001). Met.-Based Drugs, 8, 107–111. [DOI] [PMC free article] [PubMed]
  4. Lo, K. M., Kumar Das, V. G. & Ng, S. W. (1999). Acta Cryst. C55, 889–894.
  5. Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m715–m716.
  6. Ng, S. W. (1992). Acta Cryst. C48, 2057–2058.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Teo, Y. Y., Lo, K. M. & Ng, S. W. (2004). Acta Cryst. E60, m1478–m1480.
  10. Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  11. Tiekink, E. R. T. (1994). Trends Organomet. Chem.1, 71–116.
  12. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808011112/tk2255sup1.cif

e-64-0m722-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011112/tk2255Isup2.hkl

e-64-0m722-Isup2.hkl (261.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES