Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Apr 16;64(Pt 5):m660–m661. doi: 10.1107/S160053680800932X

{2-[(3,5-Dichloro-2-oxidobenzyl­idene)amino-κ2 N,O]-3-methyl­penta­noato-κO}(N,N′-dimethyl­formamide-κO)copper(II)

Jin Hong Xia a, Zheng Liu b, Yuan Wang b, Xiao Zhen Feng b,*
PMCID: PMC2961092  PMID: 21202205

Abstract

In the title compound, [Cu(C13H13Cl2NO3)(C3H7NO)], the CuII atom is coordinated in a slightly distorted square-planar geometry by two O atoms and one N atom from the tridentate chiral ligand 2-[(3,5-dichloro-2-oxidobenzyl­idene)amino]-3-methyl­penta­noate and by one O atom from dimethyl­formamide. In the crystal structure, the Cu atom forms contacts with Cl and O atoms of two units (Cu⋯Cl and Cu⋯O = 3.401 and 2.947 Å, respectively), thereby forming an approximately octa­hedral arrangement. A three-dimensional network is constructed through Cl⋯Cu, O⋯Cu, Cl⋯Cl contacts and C—H⋯O hydrogen bonds.

Related literature

For Schiff base complexes containing amino acids, see: Garcia-Raso et al. (1996); Dawes et al. (1982); Laurent et al. (1982); Zhang et al. (2006). For related literature, see: Cohen et al. (1964); Garcia-Orozco et al. (2002); Hu & Englert (2006); Royles & Sherrington (2000); Subramanian et al. (2000); Zaman et al. (2004); Zordan et al. (2005).graphic file with name e-64-0m660-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H13Cl2NO3)(C3H7NO)]

  • M r = 438.78

  • Orthorhombic, Inline graphic

  • a = 11.671 (2) Å

  • b = 27.465 (3) Å

  • c = 5.8890 (18) Å

  • V = 1887.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 298 (2) K

  • 0.43 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.572, T max = 0.833

  • 9274 measured reflections

  • 3260 independent reflections

  • 2288 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.095

  • wR(F 2) = 0.242

  • S = 1.05

  • 3260 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −1.08 e Å−3

  • Absolute structure: Flack (1983), with 1915 Friedel pairs

  • Flack parameter: 0.11 (6)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800932X/gw2039sup1.cif

e-64-0m660-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800932X/gw2039Isup2.hkl

e-64-0m660-Isup2.hkl (160KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—O3 1.872 (9)
Cu1—O1 1.905 (9)
Cu1—O4 1.920 (9)
Cu1—N1 1.925 (10)
O3—Cu1—O1 169.2 (4)
O3—Cu1—O4 92.5 (4)
O1—Cu1—O4 90.5 (3)
O3—Cu1—N1 94.2 (4)
O1—Cu1—N1 82.7 (4)
O4—Cu1—N1 173.1 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯O2i 0.96 2.31 3.19 (2) 150

Symmetry code: (i) Inline graphic.

Acknowledgments

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, China.

supplementary crystallographic information

Comment

Schiff bases is a kind of very important compounds in coordination chemistry. And Schiff base complexes have been increasing interest because of their antivial,anticancer and antibacterial activities.Just as the title compound, it's amino acid salicylicaldehyde of halogen substituent Schiff base. Meanwhile,we find some unusual bonds which look like hydrogen bond in this halogenated compound.

In (I),the CuII atom is coordinated by two O atoms, one N atom, which come from one tridentate ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate and one O atom from N,N-Dimethyl-formamide, forming a slightly distorted planar square geometry (Fig. 1). In the unit one-dimensional chains, the distorted planar square with Cl and O which above or below of it form an approximately "octahedral". The weak interaction length of Cl–Cu and O–Cu is 3.401 Å. and 2.947 Å. These can be seen the reasults of Jahn-Teller effect. (Garcia-Orozco et al., 2002) People have interest in packing arrangements of halogenated compounds date back to what Schmidt called the 'chloro effect', where the presence of chloro substituents on aromatic compounds frequently arise from stacking arrangements with a short (ca 4 Å) crystallographic axis (Cohen et al., 1964; Zaman et al., 2004; Zordan et al., 2005). The title compound contains the dichloride ligand 2-[(3,5-dichloro-2-oxidobenzylidene)amino]-3-methylpentanoate, with two Cl atoms accessible at the periphery of the ligand. The three-dimensional network of (I) through short Cl–Cu, Cl–Cl, O–Cu contacts and C–H···O hydrogen bonds.(Fig.3). The weak interaction length of Cl–Cl is 3.349 Å. The final position parameters of the nonhydrogen atoms are given in Table 1. The selected bond lengths and bond angles are listed in Table 2.

Experimental

The title compound was produced from aqueous solution of copper chloride and A ethanol solution of (E)-2-(3,5-dichloro-2-hydroxybenzylideneamino)-3 -methylpentanoic acid with vapour volatilization of N,N-Dimethyl-formamide at room temperature.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.

Fig. 2.

Fig. 2.

The interactions of Cl···Cu and O···Cu in the asymmetric unit one-dimensional chains.

Fig. 3.

Fig. 3.

Three-dimensional network of (I), broken line showing Short Cl–Cl, Cl···Cu and O···Cu contacts, C–H···O hydrogen bonds.

Crystal data

[Cu(C13H13Cl2NO3)(C3H7NO)] Dx = 1.544 Mg m3
Mr = 438.78 Mo Kα radiation λ = 0.71073 Å
Orthorhombic, P21212 Cell parameters from 1991 reflections
a = 11.671 (2) Å θ = 2.3–20.3º
b = 27.465 (3) Å µ = 1.46 mm1
c = 5.8890 (18) Å T = 298 (2) K
V = 1887.7 (7) Å3 Block, blue
Z = 4 0.43 × 0.15 × 0.13 mm
F000 = 900

Data collection

Bruker SMART CCD area-detector diffractometer 3260 independent reflections
Radiation source: fine-focus sealed tube 2288 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.087
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→13
Tmin = 0.572, Tmax = 0.833 k = −32→32
9274 measured reflections l = −6→6

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.095   w = 1/[σ2(Fo2) + (0.1179P)2 + 7.0901P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.242 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.54 e Å3
3260 reflections Δρmin = −1.08 e Å3
226 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1310 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: 0.11 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.13255 (12) 0.88233 (5) 0.7191 (3) 0.0369 (4)
Cl1 0.0068 (3) 0.79870 (13) 0.0644 (6) 0.0481 (9)
Cl2 0.2946 (3) 0.65124 (12) 0.2389 (8) 0.0671 (12)
N1 0.2606 (8) 0.8445 (3) 0.8257 (17) 0.033 (2)
N2 −0.1115 (10) 0.9551 (4) 0.3728 (17) 0.043 (3)
O1 0.1585 (7) 0.9174 (3) 0.9935 (17) 0.046 (2)
O2 0.2565 (10) 0.9193 (4) 1.3185 (19) 0.063 (3)
O3 0.0957 (7) 0.8388 (3) 0.4856 (18) 0.044 (2)
O4 0.0063 (7) 0.9243 (3) 0.6463 (15) 0.039 (2)
C1 0.2446 (12) 0.9026 (5) 1.125 (2) 0.038 (3)
C2 0.3198 (12) 0.8638 (4) 1.029 (2) 0.035 (3)
H2 0.3294 0.8377 1.1411 0.042*
C3 0.4373 (11) 0.8833 (7) 0.960 (3) 0.059 (4)
H3 0.4762 0.8584 0.8687 0.071*
C4 0.5115 (15) 0.8947 (7) 1.168 (3) 0.067 (5)
H4A 0.5874 0.9039 1.1162 0.080*
H4B 0.4789 0.9226 1.2457 0.080*
C5 0.5232 (16) 0.8529 (7) 1.338 (3) 0.077 (5)
H5A 0.4651 0.8559 1.4523 0.115*
H5B 0.5974 0.8542 1.4076 0.115*
H5C 0.5145 0.8224 1.2600 0.115*
C6 0.4285 (13) 0.9300 (7) 0.818 (3) 0.077 (6)
H6A 0.3701 0.9261 0.7044 0.116*
H6B 0.5007 0.9363 0.7453 0.116*
H6C 0.4092 0.9568 0.9150 0.116*
C7 0.2818 (10) 0.7995 (4) 0.755 (2) 0.040 (3)
H7 0.3322 0.7813 0.8426 0.047*
C8 0.2357 (11) 0.7757 (4) 0.557 (2) 0.034 (3)
C9 0.1437 (12) 0.7977 (4) 0.428 (2) 0.041 (3)
C10 0.1061 (8) 0.7732 (4) 0.235 (2) 0.031 (3)
C11 0.1625 (11) 0.7281 (4) 0.181 (2) 0.043 (3)
H11 0.1418 0.7123 0.0474 0.051*
C12 0.2427 (10) 0.7075 (5) 0.310 (3) 0.043 (3)
C13 0.2807 (11) 0.7309 (5) 0.495 (3) 0.044 (3)
H13 0.3380 0.7170 0.5836 0.053*
C14 −0.0233 (13) 0.9290 (4) 0.448 (3) 0.048 (4)
H14 0.0203 0.9128 0.3393 0.058*
C15 −0.1907 (13) 0.9786 (5) 0.540 (3) 0.053 (4)
H15A −0.2402 0.9544 0.6047 0.080*
H15B −0.2361 1.0028 0.4636 0.080*
H15C −0.1467 0.9938 0.6579 0.080*
C16 −0.1495 (16) 0.9579 (7) 0.135 (3) 0.063 (5)
H16A −0.0882 0.9478 0.0366 0.094*
H16B −0.1709 0.9908 0.0995 0.094*
H16C −0.2143 0.9368 0.1129 0.094*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0356 (7) 0.0313 (6) 0.0437 (9) 0.0098 (6) −0.0076 (7) −0.0074 (7)
Cl1 0.0389 (18) 0.061 (2) 0.044 (2) −0.0044 (16) −0.0118 (16) 0.0061 (17)
Cl2 0.081 (3) 0.0460 (18) 0.074 (3) −0.0011 (17) 0.018 (3) −0.019 (2)
N1 0.039 (5) 0.030 (5) 0.028 (6) 0.009 (4) −0.013 (5) −0.012 (4)
N2 0.044 (7) 0.055 (7) 0.030 (6) 0.032 (6) 0.002 (5) 0.011 (5)
O1 0.024 (5) 0.049 (5) 0.066 (7) 0.017 (4) −0.021 (4) −0.005 (5)
O2 0.069 (7) 0.066 (7) 0.055 (7) 0.012 (6) −0.009 (6) −0.021 (6)
O3 0.040 (5) 0.024 (4) 0.069 (7) 0.009 (4) −0.012 (4) −0.010 (4)
O4 0.026 (4) 0.060 (6) 0.031 (5) 0.004 (4) 0.004 (4) −0.002 (4)
C1 0.032 (7) 0.042 (7) 0.041 (8) −0.008 (6) 0.012 (6) −0.014 (6)
C2 0.051 (8) 0.034 (6) 0.020 (6) 0.007 (5) 0.006 (6) −0.004 (5)
C3 0.022 (7) 0.086 (11) 0.068 (10) 0.020 (8) −0.006 (7) −0.017 (11)
C4 0.054 (9) 0.091 (13) 0.056 (10) −0.008 (9) −0.011 (8) −0.011 (9)
C5 0.063 (11) 0.091 (13) 0.076 (13) 0.003 (10) −0.028 (10) −0.010 (10)
C6 0.031 (8) 0.111 (14) 0.091 (14) −0.005 (8) 0.008 (9) −0.028 (13)
C7 0.040 (7) 0.049 (7) 0.031 (8) 0.014 (5) 0.001 (6) −0.007 (7)
C8 0.040 (7) 0.032 (6) 0.030 (7) 0.002 (5) −0.004 (6) −0.002 (5)
C9 0.048 (8) 0.034 (6) 0.041 (8) 0.008 (6) 0.006 (7) 0.001 (6)
C10 0.022 (6) 0.043 (6) 0.029 (7) 0.001 (4) 0.004 (5) 0.012 (6)
C11 0.051 (8) 0.031 (6) 0.046 (9) −0.021 (6) −0.002 (7) −0.004 (6)
C12 0.030 (6) 0.042 (7) 0.058 (9) −0.006 (6) 0.016 (7) −0.025 (7)
C13 0.026 (7) 0.039 (7) 0.067 (10) 0.000 (5) 0.005 (6) −0.006 (7)
C14 0.059 (9) 0.029 (7) 0.056 (10) 0.015 (6) 0.005 (8) 0.013 (7)
C15 0.052 (9) 0.055 (8) 0.053 (10) 0.012 (7) −0.008 (8) −0.006 (7)
C16 0.059 (11) 0.081 (11) 0.048 (10) 0.004 (9) 0.015 (8) −0.010 (8)

Geometric parameters (Å, °)

Cu1—O3 1.872 (9) C5—H5A 0.9600
Cu1—O1 1.905 (9) C5—H5B 0.9600
Cu1—O4 1.920 (9) C5—H5C 0.9600
Cu1—N1 1.925 (10) C6—H6A 0.9600
Cl1—C10 1.685 (11) C6—H6B 0.9600
Cl2—C12 1.712 (12) C6—H6C 0.9600
N1—C7 1.328 (14) C7—C8 1.442 (17)
N1—C2 1.482 (16) C7—H7 0.9300
N2—C14 1.329 (17) C8—C13 1.384 (16)
N2—C16 1.473 (19) C8—C9 1.444 (17)
N2—C15 1.497 (18) C9—C10 1.395 (17)
O1—C1 1.333 (17) C10—C11 1.438 (17)
O2—C1 1.233 (16) C11—C12 1.333 (19)
O3—C9 1.306 (14) C11—H11 0.9300
O4—C14 1.225 (17) C12—C13 1.341 (19)
C1—C2 1.493 (17) C13—H13 0.9300
C2—C3 1.53 (2) C14—H14 0.9300
C2—H2 0.9800 C15—H15A 0.9600
C3—C4 1.53 (2) C15—H15B 0.9600
C3—C6 1.53 (3) C15—H15C 0.9600
C3—H3 0.9800 C16—H16A 0.9600
C4—C5 1.53 (2) C16—H16B 0.9600
C4—H4A 0.9700 C16—H16C 0.9600
C4—H4B 0.9700
O3—Cu1—O1 169.2 (4) C3—C6—H6A 109.5
O3—Cu1—O4 92.5 (4) C3—C6—H6B 109.5
O1—Cu1—O4 90.5 (3) H6A—C6—H6B 109.5
O3—Cu1—N1 94.2 (4) C3—C6—H6C 109.5
O1—Cu1—N1 82.7 (4) H6A—C6—H6C 109.5
O4—Cu1—N1 173.1 (4) H6B—C6—H6C 109.5
C7—N1—C2 120.0 (10) N1—C7—C8 127.5 (11)
C7—N1—Cu1 122.9 (8) N1—C7—H7 116.3
C2—N1—Cu1 115.7 (7) C8—C7—H7 116.3
C14—N2—C16 125.3 (13) C13—C8—C7 118.2 (11)
C14—N2—C15 119.5 (12) C13—C8—C9 121.1 (12)
C16—N2—C15 114.6 (11) C7—C8—C9 120.7 (10)
C1—O1—Cu1 117.4 (7) O3—C9—C10 119.5 (11)
C9—O3—Cu1 130.0 (9) O3—C9—C8 123.1 (11)
C14—O4—Cu1 119.5 (8) C10—C9—C8 117.4 (10)
O2—C1—O1 120.6 (13) C9—C10—C11 116.8 (10)
O2—C1—C2 123.3 (14) C9—C10—Cl1 120.2 (9)
O1—C1—C2 116.1 (11) C11—C10—Cl1 122.8 (10)
N1—C2—C1 106.7 (11) C12—C11—C10 124.2 (12)
N1—C2—C3 109.0 (10) C12—C11—H11 117.9
C1—C2—C3 112.3 (11) C10—C11—H11 117.9
N1—C2—H2 109.6 C11—C12—C13 119.5 (12)
C1—C2—H2 109.6 C11—C12—Cl2 119.4 (11)
C3—C2—H2 109.6 C13—C12—Cl2 121.1 (12)
C2—C3—C4 111.3 (13) C12—C13—C8 120.8 (13)
C2—C3—C6 112.3 (11) C12—C13—H13 119.6
C4—C3—C6 107.6 (15) C8—C13—H13 119.6
C2—C3—H3 108.5 O4—C14—N2 126.3 (14)
C4—C3—H3 108.5 O4—C14—H14 116.9
C6—C3—H3 108.5 N2—C14—H14 116.9
C5—C4—C3 114.9 (15) N2—C15—H15A 109.5
C5—C4—H4A 108.5 N2—C15—H15B 109.5
C3—C4—H4A 108.5 H15A—C15—H15B 109.5
C5—C4—H4B 108.5 N2—C15—H15C 109.5
C3—C4—H4B 108.5 H15A—C15—H15C 109.5
H4A—C4—H4B 107.5 H15B—C15—H15C 109.5
C4—C5—H5A 109.5 N2—C16—H16A 109.5
C4—C5—H5B 109.5 N2—C16—H16B 109.5
H5A—C5—H5B 109.5 H16A—C16—H16B 109.5
C4—C5—H5C 109.5 N2—C16—H16C 109.5
H5A—C5—H5C 109.5 H16A—C16—H16C 109.5
H5B—C5—H5C 109.5 H16B—C16—H16C 109.5
O3—Cu1—N1—C7 −10.6 (11) C6—C3—C4—C5 176.2 (14)
O1—Cu1—N1—C7 159.0 (11) C2—N1—C7—C8 −177.5 (12)
O3—Cu1—N1—C2 −177.3 (8) Cu1—N1—C7—C8 16.4 (19)
O1—Cu1—N1—C2 −7.7 (8) N1—C7—C8—C13 171.3 (12)
O3—Cu1—O1—C1 74 (2) N1—C7—C8—C9 −10 (2)
O4—Cu1—O1—C1 180.0 (9) Cu1—O3—C9—C10 −175.0 (8)
N1—Cu1—O1—C1 0.4 (9) Cu1—O3—C9—C8 4.8 (19)
O1—Cu1—O3—C9 −72 (2) C13—C8—C9—O3 177.1 (12)
O4—Cu1—O3—C9 −177.7 (11) C7—C8—C9—O3 −2(2)
N1—Cu1—O3—C9 0.7 (12) C13—C8—C9—C10 −3.1 (18)
O3—Cu1—O4—C14 −34.2 (11) C7—C8—C9—C10 178.0 (11)
O1—Cu1—O4—C14 156.2 (11) O3—C9—C10—C11 180.0 (11)
Cu1—O1—C1—O2 −170.2 (10) C8—C9—C10—C11 0.1 (16)
Cu1—O1—C1—C2 7.0 (14) O3—C9—C10—Cl1 4.9 (16)
C7—N1—C2—C1 −154.7 (12) C8—C9—C10—Cl1 −175.0 (9)
Cu1—N1—C2—C1 12.4 (12) C9—C10—C11—C12 3.9 (18)
C7—N1—C2—C3 83.7 (14) Cl1—C10—C11—C12 178.8 (10)
Cu1—N1—C2—C3 −109.1 (11) C10—C11—C12—C13 −5(2)
O2—C1—C2—N1 164.9 (13) C10—C11—C12—Cl2 174.6 (9)
O1—C1—C2—N1 −12.2 (15) C11—C12—C13—C8 2(2)
O2—C1—C2—C3 −75.7 (17) Cl2—C12—C13—C8 −177.8 (10)
O1—C1—C2—C3 107.2 (13) C7—C8—C13—C12 −178.7 (12)
N1—C2—C3—C4 −169.2 (13) C9—C8—C13—C12 2(2)
C1—C2—C3—C4 72.8 (17) Cu1—O4—C14—N2 177.0 (11)
N1—C2—C3—C6 70.2 (15) C16—N2—C14—O4 −176.1 (15)
C1—C2—C3—C6 −47.9 (17) C15—N2—C14—O4 −5(2)
C2—C3—C4—C5 52.8 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15B···O2i 0.96 2.31 3.19 (2) 150

Symmetry codes: (i) −x, −y+2, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2039).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cohen, M. D., Schmidt, G. M. J. & Sonntag, F. I. (1964). J. Chem. Soc. pp. 2000–2013.
  3. Dawes, H. M., Waters, J. M. & Waters, T. N. (1982). Inorg. Chim. Acta, 66, 29-36.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Garcia-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct.604, 57–64.
  6. Garcia-Raso, A., Foil, J. J. & Badenas, F. (1996). Polyhedron, 15, 4407–4413.
  7. Hu, C. & Englert, U. (2006). Angew. Chem. Int. Ed.45, 3457–3459. [DOI] [PubMed]
  8. Laurent, J. P., Bonnet, J.-J., Nepveu, F., Astheimer, H., Walz , L. & Haase, W. (1982). J. Chem. Soc. Dalton Trans. pp. 2433–2438.
  9. Royles, B. J. L. & Sherrington, D. C. (2000). J. Mater. Chem.10, 2035–2041.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Subramanian, P. S., Suresh, E. & Srinivas, D. (2000). Inorg. Chem.39, 2053–2060. [DOI] [PubMed]
  13. Zaman, B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des.4, 585–589.
  14. Zhang, S.-H., Li, G.-Z., Feng, X.-Z. & Liu, Z. (2007). Acta Cryst. E63, m1319–m1320.
  15. Zordan, F., Brammer, L. & Sherwood, P. (2005). J. Am. Chem. Soc.127, 5979–5989. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800932X/gw2039sup1.cif

e-64-0m660-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800932X/gw2039Isup2.hkl

e-64-0m660-Isup2.hkl (160KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES